
conference

proceedings

12th USENIX Conference on
File and Storage Technologies

Santa Clara, CA, USA
February 17–20, 2014

Proceedings of the 12th U
SEN

IX Conference on File and Storage Technologies
 Santa Clara, CA

, USA
February 17–20, 2014

Sponsored by

In cooperation with ACM SIGOPS

© 2014 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primarily
for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-08-9

Thanks to Our FAST ’14 Sponsors

Media Sponsors and Industry Partners
ACM Queue

ADMIN magazine
Distributed Management

Task Force (DMTF)
EnterpriseTech

HPCwire
InfoSec News

Linux Pro Magazine
LXer

No Starch Press
O’Reilly Media

Raspberry Pi Geek
UserFriendly.org

Platinum Sponsor

Open Access Sponsor

Gold Sponsors

Silver Sponsor

Bronze Sponsors

General Sponsors

Thanks to Our USENIX and LISA SIG Supporters

USENIX Patrons
Google Microsoft Research NetApp VMware

USENIX and LISA Partners
Cambridge Computer Google

USENIX Partners
EMC Meraki

USENIX Benefactors
Akamai Citrix Facebook Linux Pro Magazine Puppet Labs

TM

USENIX Association

February 17–20, 2014
Santa Clara, CA

Proceedings of the
12th USENIX Conference on File

and Storage Technologies

Conference Organizers

Program Co-Chairs
Bianca Schroeder, University of Toronto
Eno Thereska, Microsoft Research

Program Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Andre Brinkmann, Universität Mainz
Landon Cox, Duke University
Angela Demke-Brown, University of Toronto
Jason Flinn, University of Michigan
Garth Gibson, Carnegie Mellon University and Panasas
Steven Hand, University of Cambridge
Randy Katz, University of California, Berkeley
Kimberly Keeton, HP Labs
Jay Lorch, Microsoft Research
C.S. Lui, The Chinese University of Hong Kong
Arif Merchant, Google
Ethan Miller, University of California, Santa Cruz
Brian Noble, University of Michigan
Sam H. Noh, Hongik University
James Plank, University of Tennesee
Florentina Popovici, Google
Raju Rangaswami, Florida International University
Erik Riedel, EMC
Jiri Schindler, NetApp
Anand Sivasubramaniam, Pennsylvania State University
Steve Swanson, University of California, San Diego
Tom Talpey, Microsoft
Andrew Warfield, University of British Columbia and

Coho Data

Hakim Weatherspoon, Cornell University
Erez Zadok, Stony Brook University
Xiaodong Zhang, Ohio State University
Zheng Zhang, Microsoft Research Beijing

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
William J. Bolosky, Microsoft Research
Randal Burns, Johns Hopkins University
Jason Flinn, University of Michigan
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Darrell Long, University of California, Santa Cruz
Jai Menon, Dell
Erik Riedel, EMC
Margo Seltzer, Harvard School of Engineering and

Applied Sciences and Oracle
Keith A. Smith, NetApp
Ric Wheeler, Red Hat
John Wilkes, Google
Yuanyuan Zhou, University of California, San Diego

Tutorial Coordinator
John Strunk, NetApp

External Reviewers
Rachit Agarwal
Ganesh Ananthanarayanan
Christos Gkantsidis

Jacob Gorm Hansen
Cheng Huang
Qiao Lian

K. Shankari
Shivaram Venkataraman
Neeraja Yadwadkar

12th USENIX Conference on File and Storage Technologies
February 17–20, 2014

Santa Clara, CA

Message from the Program Co-Chairs . vi

Tuesday, February 18, 2014
Big Memory
Log-structured Memory for DRAM-based Storage .1
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout, Stanford University

Strata: High-Performance Scalable Storage on Virtualized Non-volatile Memory .17
Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden,
Geoffrey Lefebvre, Daniel Ferstay, and Andrew Warfield, Coho Data

Evaluating Phase Change Memory for Enterprise Storage Systems:
A Study of Caching and Tiering Approaches .33
Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu, IBM Almaden Research Center

Flash and SSDs
Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance .47
Xavier Jimenez, David Novo, and Paolo Ienne, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program
and Erase Scaling .61
Jaeyong Jeong and Sangwook Shane Hahn, Seoul National University; Sungjin Lee, MIT/CSAIL; Jihong Kim,
Seoul National University

ReconFS: A Reconstructable File System on Flash Storage .75
Youyou Lu, Jiwu Shu, and Wei Wang, Tsinghua University

Personal and Mobile
 .89

 .105

 .119

Toward Strong, Usable Access Control for Shared Distributed Data .
Michelle L. Mazurek, Yuan Liang, William Melicher, Manya Sleeper, Lujo Bauer, Gregory R. Ganger, and Nitin
Gupta, Carnegie Mellon University; Michael K. Reiter, University of North Carolina at Chapel Hill

On the Energy Overhead of Mobile Storage Systems .
Jing Li, University of California, San Diego; Anirudh Badam and Ranveer Chandra, Microsoft Research; Steven
Swanson, University of California, San Diego; Bruce Worthington and Qi Zhang, Microsoft

ViewBox: Integrating Local File Systems with Cloud Storage Services .
Yupu Zhang, University of Wisconsin—Madison; Charlotte Dragga, University of Wisconsin—Madison and
NetApp, Inc.; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

(Tuesday, February 18, continues on p. iv)

RAID and Erasure Codes
CRAID: Online RAID Upgrades Using Dynamic Hot Data Reorganization .133
Alberto Miranda, Barcelona Supercomputing Center (BSC-CNS); Toni Cortes, Barcelona Supercomputing
Center (BSC-CNS) and Technical University of Catalonia (UPC)

STAIR Codes: A General Family of Erasure Codes for Tolerating Device and Sector Failures
in Practical Storage Systems .147
Mingqiang Li and Patrick P. C. Lee, The Chinese University of Hong Kong

Parity Logging with Reserved Space: Towards Efficient Updates and Recovery
in Erasure-coded Clustered Storage .163
Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan, The Chinese University of Hong Kong

Wednesday, February 19, 2014
Experience from Real Systems
(Big)Data in a Virtualized World: Volume, Velocity, and Variety in Enterprise Datacenters 177
Robert Birke, Mathias Bjoerkqvist, and Lydia Y. Chen, IBM Research Zurich Lab; Evgenia Smirni, College of
William and Mary; Ton Engbersen IBM Research Zurich Lab

From Research to Practice: Experiences Engineering a Production Metadata Database
for a Scale Out File System .191
Charles Johnson, Kimberly Keeton, and Charles B. Morrey III, HP Labs; Craig A. N. Soules, Natero;
Alistair Veitch, Google; Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton Coutinho, Patrick J. Doyle,
Rafael Eichelberger, Hugo Kiehl, Guilherme Magalhaes, James McEvoy, Padmanabhan Nagarajan, Patrick Osborne,
Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien Tandel, Lincoln Thomas, and Sebastian Zangaro,
HP Storage

Analysis of HDFS Under HBase: A Facebook Messages Case Study .199
Tyler Harter, University of Wisconsin—Madison; Dhruba Borthakur, Siying Dong, Amitanand Aiyer,
and Liyin Tang, Facebook Inc.; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, University of
Wisconsin—Madison

Automatic Identification of Application I/O Signatures from Noisy Server-Side Traces 213
Yang Liu, North Carolina State University; Raghul Gunasekaran, Oak Ridge National Laboratory; Xiaosong Ma,
Qatar Computing Research Institute and North Carolina State University; Sudharshan S. Vazhkudai, Oak Ridge
National Laboratory

Performance and Efficiency
Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation 229
Hui Wang and Peter Varman, Rice University

SpringFS: Bridging Agility and Performance in Elastic Distributed Storage .243
Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, and Nitin Gupta, Carnegie Mellon University;
Michael A. Kozuch, Intel Labs; Gregory R. Ganger, Carnegie Mellon University

Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility 257
Xing Lin, University of Utah; Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace, EMC Corporation—
Data Protection and Availability Division

Thursday, February 20, 2014
OS and Storage Interactions
Resolving Journaling of Journal Anomaly in Android I/O: Multi-Version B-tree with Lazy Split 273
Wook-Hee Kim and Beomseok Nam, Ulsan National Institute of Science and Technology; Dongil Park and
Youjip Won, Hanyang University

Journaling of Journal Is (Almost) Free .287
Kai Shen, Stan Park, and Meng Zhu, University of Rochester

Checking the Integrity of Transactional Mechanisms .295
Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and Ashvin Goel, University of Toronto

OS and Peripherals
DC Express: Shortest Latency Protocol for Reading Phase Change Memory over PCI Express 309
Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip Blagojević, Luiz Franca-Neto, and Damien Le
Moal, HGST San Jose Research Center; Trevor Bunker, Jian Xu, and Steven Swanson, University of California,
San Diego; Zvonimir Bandić, HGST San Jose Research Center

MultiLanes: Providing Virtualized Storage for OS-level Virtualization on Many Cores 317
Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai, Beihang University

Message from the
12th USENIX Conference on File and Storage Technologies

Program Co-Chairs

Welcome to the 12th USENIX Conference on File and Storage Technologies. This year’s conference continues the
FAST tradition of bringing together researchers and practitioners from both industry and academia for a program of
innovative and rigorous storage-related research. We are pleased to present a diverse set of papers on topics such as
personal and mobile storage, RAID and erasure codes, experiences from building and running real systems, flash
and SSD, performance, reliability and efficiency of storage systems, and interactions between operating and storage
system. Our authors hail from seven countries on three continents and represent both academia and industry. Many
of our papers are the fruits of collaboration between the two.

FAST ’14 received 133 submissions, nearly equalling the record number of submissions (137) from FAST ’12. Of
these, we selected 24, for an acceptance rate of 18%. Six accepted papers have Program Committee authors. The
Program Committee used a two-round online review process, and then met in person to select the final program. In
the first round, each paper received three reviews. For the second round, 64 papers received two or more additional
reviews. The Program Committee discussed 54 papers in an all-day meeting on December 6, 2013, in Toronto,
Canada. We used Eddie Kohler’s excellent HotCRP software to manage all stages of the review process, from sub-
mission to author notification.

As in the previous two years, we have again included a category of short papers in the program. Short papers provide
a vehicle for presenting research ideas that do not require a full-length paper to describe and evaluate. In judging
short papers, we applied the same standards as for full-length submissions. 32 of our submissions were short papers,
of which we accepted three.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the
authors who submitted their research to FAST ’14. We had a wide range of high-quality work from which to choose
our program. We would also like to thank the attendees of FAST ’14 and future readers of these papers. Together
with the authors, you form the FAST community and make storage research vibrant and fun. We also extend our
thanks to the staff of USENIX, who have provided outstanding support throughout the planning and organizing of
this conference. They gave advice, anticipated our needs, and guided us through the logistics of planning a large
conference with professionalism and good humor. Most importantly, they handled all of the behind-the-scenes work
that makes this conference actually happen. Thanks go also to the members of the FAST Steering Committee who
provided invaluable advice and feedback. Thanks!

Finally, we wish to thank our Program Committee for their many hours of hard work in reviewing and discussing
the submissions. We were privileged to work with this knowledgeable and dedicated group of researchers. Together
with our external reviewers, they wrote over 500 thoughtful and meticulous reviews. Their reviews, and their thor-
ough and conscientious deliberations at the PC meeting, contributed significantly to the quality of our decisions.
We also thank the three student volunteers, Nosayba El-Sayed, Andy Hwang and Ioan Stefanovici, who helped us
organize the PC meeting.

 We look forward to an interesting and enjoyable conference!

Bianca Schroeder, University of Toronto
Eno Thereska, Microsoft Research
FAST ’14 Program Co-Chairs

vi 12th USENIX Conference on File and Storage Technologies USENIX Association

USENIX Association 12th USENIX Conference on File and Storage Technologies 1

Log-structured Memory for DRAM-based Storage
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout

{rumble, ankitak, ouster}@cs.stanford.edu
Stanford University

Abstract
Traditional memory allocation mechanisms are not

suitable for new DRAM-based storage systems because
they use memory inefficiently, particularly under chang-
ing access patterns. In contrast, a log-structured approach
to memory management allows 80-90% memory utiliza-
tion while offering high performance. The RAMCloud
storage system implements a unified log-structured mech-
anism both for active information in memory and backup
data on disk. The RAMCloud implementation of log-
structured memory uses a two-level cleaning policy,
which conserves disk bandwidth and improves perfor-
mance up to 6x at high memory utilization. The cleaner
runs concurrently with normal operations and employs
multiple threads to hide most of the cost of cleaning.

1 Introduction
In recent years a new class of storage systems has

arisen in which all data is stored in DRAM. Examples
include memcached [2], Redis [3], RAMCloud [30], and
Spark [38]. Because of the relatively high cost of DRAM,
it is important for these systems to use their memory ef-
ficiently. Unfortunately, efficient memory usage is not
possible with existing general-purpose storage allocators:
they can easily waste half or more of memory, particularly
in the face of changing access patterns.

In this paper we show how a log-structured approach to
memory management (treating memory as a sequentially-
written log) supports memory utilizations of 80-90%
while providing high performance. In comparison to non-
copying allocators such as malloc, the log-structured ap-
proach allows data to be copied to eliminate fragmenta-
tion. Copying allows the system to make a fundamen-
tal space-time trade-off: for the price of additional CPU
cycles and memory bandwidth, copying allows for more
efficient use of storage space in DRAM. In comparison
to copying garbage collectors, which eventually require a
global scan of all data, the log-structured approach pro-
vides garbage collection that is more incremental. This
results in more efficient collection, which enables higher
memory utilization.

We have implemented log-structured memory in the
RAMCloud storage system, using a unified approach that
handles both information in memory and backup replicas
stored on disk or flash memory. The overall architecture
is similar to that of a log-structured file system [32], but
with several novel aspects:
• In contrast to log-structured file systems, log-structured

memory is simpler because it stores very little metadata
in the log. The only metadata consists of log digests to
enable log reassembly after crashes, and tombstones to
prevent the resurrection of deleted objects.

• RAMCloud uses a two-level approach to cleaning, with
different policies for cleaning data in memory versus
secondary storage. This maximizes DRAM utilization
while minimizing disk and network bandwidth usage.

• Since log data is immutable once appended, the log
cleaner can run concurrently with normal read and
write operations. Furthermore, multiple cleaners can
run in separate threads. As a result, parallel cleaning
hides most of the cost of garbage collection.

Performance measurements of log-structured memory
in RAMCloud show that it enables high client through-
put at 80-90% memory utilization, even with artificially
stressful workloads. In the most stressful workload, a
single RAMCloud server can support 270,000-410,000
durable 100-byte writes per second at 90% memory uti-
lization. The two-level approach to cleaning improves
performance by up to 6x over a single-level approach
at high memory utilization, and reduces disk bandwidth
overhead by 7-87x for medium-sized objects (1 to 10 KB).
Parallel cleaning effectively hides the cost of cleaning: an
active cleaner adds only about 2% to the latency of typical
client write requests.

2 Why Not Use Malloc?
An off-the-shelf memory allocator such as the C li-

brary’s malloc function might seem like a natural choice
for an in-memory storage system. However, existing allo-
cators are not able to use memory efficiently, particularly
in the face of changing access patterns. We measured a
variety of allocators under synthetic workloads and found
that all of them waste at least 50% of memory under con-
ditions that seem plausible for a storage system.

Memory allocators fall into two general classes: non-
copying allocators and copying allocators. Non-copying
allocators such as malloc cannot move an object once it
has been allocated, so they are vulnerable to fragmen-
tation. Non-copying allocators work well for individual
applications with a consistent distribution of object sizes,
but Figure 1 shows that they can easily waste half of mem-
ory when allocation patterns change. For example, ev-
ery allocator we measured performed poorly when 10 GB
of small objects were mostly deleted, then replaced with
10 GB of much larger objects.

Changes in size distributions may be rare in individual

2 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 5

 10

 15

 20

 25

 30

 35

glibc 2.12 malloc Hoard 3.9 jemalloc 3.3.0 tcmalloc 2.0 memcached 1.4.13 Java 1.7
OpenJDK

Boehm GC 7.2d

G
B

 U
se

d

Allocators

W1
W2
W3
W4
W5
W6
W7
W8

Live

Figure 1: Total memory needed by allocators to support 10 GB of live data under the changing workloads described in Table 1
(average of 5 runs). “Live” indicates the amount of live data, and represents an optimal result. “glibc” is the allocator typically used
by C and C++ applications on Linux. “Hoard” [10], “jemalloc” [19], and “tcmalloc” [1] are non-copying allocators designed for
speed and multiprocessor scalability. “Memcached” is the slab-based allocator used in the memcached [2] object caching system.
“Java” is the JVM’s default parallel scavenging collector with no maximum heap size restriction (it ran out of memory if given less
than 16 GB of total space). “Boehm GC” is a non-copying garbage collector for C and C++. Hoard could not complete the W8
workload (it overburdened the kernel by mmaping each large allocation separately).

Workload Before Delete After
W1 Fixed 100 Bytes N/A N/A
W2 Fixed 100 Bytes 0% Fixed 130 Bytes
W3 Fixed 100 Bytes 90% Fixed 130 Bytes
W4 Uniform 100 - 150 Bytes 0% Uniform 200 - 250 Bytes
W5 Uniform 100 - 150 Bytes 90% Uniform 200 - 250 Bytes
W6 Uniform 100 - 200 Bytes 50% Uniform 1,000 - 2,000 Bytes
W7 Uniform 1,000 - 2,000 Bytes 90% Uniform 1,500 - 2,500 Bytes
W8 Uniform 50 - 150 Bytes 90% Uniform 5,000 - 15,000 Bytes

Table 1: Summary of workloads used in Figure 1. The workloads were not intended to be representative of actual application
behavior, but rather to illustrate plausible workload changes that might occur in a shared storage system. Each workload consists
of three phases. First, the workload allocates 50 GB of memory using objects from a particular size distribution; it deletes existing
objects at random in order to keep the amount of live data from exceeding 10 GB. In the second phase the workload deletes a
fraction of the existing objects at random. The third phase is identical to the first except that it uses a different size distribution
(objects from the new distribution gradually displace those from the old distribution). Two size distributions were used: “Fixed”
means all objects had the same size, and “Uniform” means objects were chosen uniform randomly over a range (non-uniform
distributions yielded similar results). All workloads were single-threaded and ran on a Xeon E5-2670 system with Linux 2.6.32.

applications, but they are more likely in storage systems
that serve many applications over a long period of time.
Such shifts can be caused by changes in the set of appli-
cations using the system (adding new ones and/or remov-
ing old ones), by changes in application phases (switching
from map to reduce), or by application upgrades that in-
crease the size of common records (to include additional
fields for new features). For example, workload W2 in
Figure 1 models the case where the records of a table are
expanded from 100 bytes to 130 bytes. Facebook encoun-
tered distribution changes like this in its memcached stor-
age systems and was forced to introduce special-purpose
cache eviction code for specific situations [28]. Non-
copying allocators will work well in many cases, but they
are unstable: a small application change could dramat-
ically change the efficiency of the storage system. Un-
less excess memory is retained to handle the worst-case
change, an application could suddenly find itself unable
to make progress.

The second class of memory allocators consists of
those that can move objects after they have been created,
such as copying garbage collectors. In principle, garbage
collectors can solve the fragmentation problem by moving

live data to coalesce free heap space. However, this comes
with a trade-off: at some point all of these collectors (even
those that label themselves as “incremental”) must walk
all live data, relocate it, and update references. This is
an expensive operation that scales poorly, so garbage col-
lectors delay global collections until a large amount of
garbage has accumulated. As a result, they typically re-
quire 1.5-5x as much space as is actually used in order
to maintain high performance [39, 23]. This erases any
space savings gained by defragmenting memory.

Pause times are another concern with copying garbage
collectors. At some point all collectors must halt the
processes’ threads to update references when objects are
moved. Although there has been considerable work on
real-time garbage collectors, even state-of-art solutions
have maximum pause times of hundreds of microseconds,
or even milliseconds [8, 13, 36] – this is 100 to 1,000
times longer than the round-trip time for a RAMCloud
RPC. All of the standard Java collectors we measured ex-
hibited pauses of 3 to 4 seconds by default (2-4 times
longer than it takes RAMCloud to detect a failed server
and reconstitute 64 GB of lost data [29]). We ex-
perimented with features of the JVM collectors that re-

USENIX Association 12th USENIX Conference on File and Storage Technologies 3

duce pause times, but memory consumption increased by
an additional 30% and we still experienced occasional
pauses of one second or more.

An ideal memory allocator for a DRAM-based storage
system such as RAMCloud should have two properties.
First, it must be able to copy objects in order to elimi-
nate fragmentation. Second, it must not require a global
scan of memory: instead, it must be able to perform the
copying incrementally, garbage collecting small regions
of memory independently with cost proportional to the
size of a region. Among other advantages, the incremen-
tal approach allows the garbage collector to focus on re-
gions with the most free space. In the rest of this paper
we will show how a log-structured approach to memory
management achieves these properties.

In order for incremental garbage collection to work, it
must be possible to find the pointers to an object with-
out scanning all of memory. Fortunately, storage systems
typically have this property: pointers are confined to in-
dex structures where they can be located easily. Tradi-
tional storage allocators work in a harsher environment
where the allocator has no control over pointers; the log-
structured approach could not work in such environments.

3 RAMCloud Overview
Our need for a memory allocator arose in the context

of RAMCloud. This section summarizes the features of
RAMCloud that relate to its mechanisms for storage man-
agement, and motivates why we used log-structured mem-
ory instead of a traditional allocator.

RAMCloud is a storage system that stores data in the
DRAM of hundreds or thousands of servers within a dat-
acenter, as shown in Figure 2. It takes advantage of low-
latency networks to offer remote read times of 5μs and
write times of 16μs (for small objects). Each storage
server contains two components. A master module man-
ages the main memory of the server to store RAMCloud
objects; it handles read and write requests from clients. A
backup module uses local disk or flash memory to store
backup copies of data owned by masters on other servers.
The masters and backups are managed by a central coor-
dinator that handles configuration-related issues such as
cluster membership and the distribution of data among the
servers. The coordinator is not normally involved in com-
mon operations such as reads and writes. All RAMCloud
data is present in DRAM at all times; secondary storage
is used only to hold duplicate copies for crash recovery.

RAMCloud provides a simple key-value data model
consisting of uninterpreted data blobs called objects that
are named by variable-length keys. Objects are grouped
into tables that may span one or more servers in the clus-
ter. Objects must be read or written in their entirety.
RAMCloud is optimized for small objects – a few hun-
dred bytes or less – but supports objects up to 1 MB.

Each master’s memory contains a collection of objects
stored in DRAM and a hash table (see Figure 3). The

Coordinator

Master

Backup
Disk

Master

Backup
Disk

Master

Backup
Disk

Master

Backup
Disk

. . .

Client Client Client Client. . .

Datacenter Network

Figure 2: RAMCloud cluster architecture.

Log-structured Memory

Master

Hash Table

. . .

Backup

Buffered Segment

Backup

Buffered Segment

. . .

Disk Disk

<table, key>

Segments

Figure 3: Master servers consist primarily of a hash table and
an in-memory log, which is replicated across several backups
for durability.

hash table contains one entry for each object stored on that
master; it allows any object to be located quickly, given
its table and key. Each live object has exactly one pointer,
which is stored in its hash table entry.

In order to ensure data durability in the face of server
crashes and power failures, each master must keep backup
copies of its objects on the secondary storage of other
servers. The backup data is organized as a log for max-
imum efficiency. Each master has its own log, which is
divided into 8 MB pieces called segments. Each segment
is replicated on several backups (typically two or three).
A master uses a different set of backups to replicate each
segment, so that its segment replicas end up scattered
across the entire cluster.

When a master receives a write request from a client, it
adds the new object to its memory, then forwards informa-
tion about that object to the backups for its current head
segment. The backups append the new object to segment
replicas stored in nonvolatile buffers; they respond to the
master as soon as the object has been copied into their
buffer, without issuing an I/O to secondary storage (back-
ups must ensure that data in buffers can survive power
failures). Once the master has received replies from all
the backups, it responds to the client. Each backup accu-
mulates data in its buffer until the segment is complete.
At that point it writes the segment to secondary storage
and reallocates the buffer for another segment. This ap-
proach has two performance advantages: writes complete
without waiting for I/O to secondary storage, and backups
use secondary storage bandwidth efficiently by perform-
ing I/O in large blocks, even if objects are small.

4 12th USENIX Conference on File and Storage Technologies USENIX Association

RAMCloud could have used a traditional storage allo-
cator for the objects stored in a master’s memory, but we
chose instead to use the same log structure in DRAM that
is used on disk. Thus a master’s object storage consists of
8 MB segments that are identical to those on secondary
storage. This approach has three advantages. First, it
avoids the allocation inefficiencies described in Section 2.
Second, it simplifies RAMCloud by using a single unified
mechanism for information both in memory and on disk.
Third, it saves memory: in order to perform log cleaning
(described below), the master must enumerate all of the
objects in a segment; if objects were stored in separately
allocated areas, they would need to be linked together by
segment, which would add an extra 8-byte pointer per ob-
ject (an 8% memory overhead for 100-byte objects).

The segment replicas stored on backups are never read
during normal operation; most are deleted before they
have ever been read. Backup replicas are only read during
crash recovery (for details, see [29]). Data is never read
from secondary storage in small chunks; the only read op-
eration is to read a master’s entire log.

RAMCloud uses a log cleaner to reclaim free space that
accumulates in the logs when objects are deleted or over-
written. Each master runs a separate cleaner, using a basic
mechanism similar to that of LFS [32]:
• The cleaner selects several segments to clean, using the

same cost-benefit approach as LFS (segments are cho-
sen for cleaning based on the amount of free space and
the age of the data).

• For each of these segments, the cleaner scans the seg-
ment stored in memory and copies any live objects
to new survivor segments. Liveness is determined by
checking for a reference to the object in the hash ta-
ble. The live objects are sorted by age to improve
the efficiency of cleaning in the future. Unlike LFS,
RAMCloud need not read objects from secondary stor-
age during cleaning.

• The cleaner makes the old segments’ memory available
for new segments, and it notifies the backups for those
segments that they can reclaim the replicas’ storage.

The logging approach meets the goals from Section 2:
it copies data to eliminate fragmentation, and it operates
incrementally, cleaning a few segments at a time. How-
ever, it introduces two additional issues. First, the log
must contain metadata in addition to objects, in order to
ensure safe crash recovery; this issue is addressed in Sec-
tion 4. Second, log cleaning can be quite expensive at
high memory utilization [34, 35]. RAMCloud uses two
techniques to reduce the impact of log cleaning: two-level
cleaning (Section 5) and parallel cleaning with multiple
threads (Section 6).

4 Log Metadata
In log-structured file systems, the log contains a lot of

indexing information in order to provide fast random ac-

cess to data in the log. In contrast, RAMCloud has a sep-
arate hash table that provides fast access to information in
memory. The on-disk log is never read during normal use;
it is used only during recovery, at which point it is read in
its entirety. As a result, RAMCloud requires only three
kinds of metadata in its log, which are described below.

First, each object in the log must be self-identifying:
it contains the table identifier, key, and version number
for the object in addition to its value. When the log is
scanned during crash recovery, this information allows
RAMCloud to identify the most recent version of an ob-
ject and reconstruct the hash table.

Second, each new log segment contains a log digest
that describes the entire log. Every segment has a unique
identifier, and the log digest is a list of identifiers for all
the segments that currently belong to the log. Log digests
avoid the need for a central repository of log information
(which would create a scalability bottleneck and introduce
other crash recovery problems). To replay a crashed mas-
ter’s log, RAMCloud locates the latest digest and loads
each segment enumerated in it (see [29] for details).

The third kind of log metadata is tombstones that iden-
tify deleted objects. When an object is deleted or mod-
ified, RAMCloud does not modify the object’s existing
record in the log. Instead, it appends a tombstone record
to the log. The tombstone contains the table identifier,
key, and version number for the object that was deleted.
Tombstones are ignored during normal operation, but they
distinguish live objects from dead ones during crash re-
covery. Without tombstones, deleted objects would come
back to life when logs are replayed during crash recovery.

Tombstones have proven to be a mixed blessing in
RAMCloud: they provide a simple mechanism to prevent
object resurrection, but they introduce additional prob-
lems of their own. One problem is tombstone garbage
collection. Tombstones must eventually be removed from
the log, but this is only safe if the corresponding objects
have been cleaned (so they will never be seen during crash
recovery). To enable tombstone deletion, each tombstone
includes the identifier of the segment containing the ob-
solete object. When the cleaner encounters a tombstone
in the log, it checks the segment referenced in the tomb-
stone. If that segment is no longer part of the log, then it
must have been cleaned, so the old object no longer ex-
ists and the tombstone can be deleted. If the segment still
exists in the log, then the tombstone must be preserved.

5 Two-level Cleaning
Almost all of the overhead for log-structured memory

is due to cleaning. Allocating new storage is trivial; new
objects are simply appended at the end of the head seg-
ment. However, reclaiming free space is much more ex-
pensive. It requires running the log cleaner, which will
have to copy live data out of the segments it chooses for
cleaning as described in Section 3. Unfortunately, the
cost of log cleaning rises rapidly as memory utilization in-

USENIX Association 12th USENIX Conference on File and Storage Technologies 5

creases. For example, if segments are cleaned when 80%
of their data are still live, the cleaner must copy 8 bytes
of live data for every 2 bytes it frees. At 90% utiliza-
tion, the cleaner must copy 9 bytes of live data for every
1 byte freed. Eventually the system will run out of band-
width and write throughput will be limited by the speed of
the cleaner. Techniques like cost-benefit segment selec-
tion [32] help by skewing the distribution of free space,
so that segments chosen for cleaning have lower utiliza-
tion than the overall average, but they cannot eliminate
the fundamental tradeoff between utilization and cleaning
cost. Any copying storage allocator will suffer from in-
tolerable overheads as utilization approaches 100%.

Originally, disk and memory cleaning were tied to-
gether in RAMCloud: cleaning was first performed on
segments in memory, then the results were reflected to the
backup copies on disk. This made it impossible to achieve
both high memory utilization and high write throughput.
For example, if we used memory at high utilization (80-
90%) write throughput would be severely limited by the
cleaner’s usage of disk bandwidth (see Section 8). On
the other hand, we could have improved write bandwidth
by increasing the size of the disk log to reduce its aver-
age utilization. For example, at 50% disk utilization we
could achieve high write throughput. Furthermore, disks
are cheap enough that the cost of the extra space would
not be significant. However, disk and memory were fun-
damentally tied together: if we reduced the utilization of
disk space, we would also have reduced the utilization of
DRAM, which was unacceptable.

The solution is to clean the disk and memory logs in-
dependently – we call this two-level cleaning. With two-
level cleaning, memory can be cleaned without reflecting
the updates on backups. As a result, memory can have
higher utilization than disk. The cleaning cost for mem-
ory will be high, but DRAM can easily provide the band-
width required to clean at 90% utilization or higher. Disk
cleaning happens less often. The disk log becomes larger
than the in-memory log, so it has lower overall utilization,
and this reduces the bandwidth required for cleaning.

The first level of cleaning, called segment compaction,
operates only on the in-memory segments on masters and
consumes no network or disk I/O. It compacts a single
segment at a time, copying its live data into a smaller re-
gion of memory and freeing the original storage for new
segments. Segment compaction maintains the same logi-
cal log in memory and on disk: each segment in memory
still has a corresponding segment on disk. However, the
segment in memory takes less space because deleted ob-
jects and obsolete tombstones were removed (Figure 4).

The second level of cleaning is just the mechanism de-
scribed in Section 3. We call this combined cleaning be-
cause it cleans both disk and memory together. Segment
compaction makes combined cleaning more efficient by
postponing it. The effect of cleaning a segment later is
that more objects have been deleted, so the segment’s uti-

Compacted and Uncompacted Segments in Memory

Corresponding Full-sized Segments on Backups

. . .

. . .

Figure 4: Compacted segments in memory have variable
length because unneeded objects and tombstones have been
removed, but the corresponding segments on disk remain full-
size. As a result, the utilization of memory is higher than that
of disk, and disk can be cleaned more efficiently.

lization will be lower. The result is that when combined
cleaning does happen, less bandwidth is required to re-
claim the same amount of free space. For example, if
the disk log is allowed to grow until it consumes twice
as much space as the log in memory, the utilization of
segments cleaned on disk will never be greater than 50%,
which makes cleaning relatively efficient.

Two-level cleaning leverages the strengths of memory
and disk to compensate for their weaknesses. For mem-
ory, space is precious but bandwidth for cleaning is plenti-
ful, so we use extra bandwidth to enable higher utilization.
For disk, space is plentiful but bandwidth is precious, so
we use extra space to save bandwidth.

5.1 Seglets

In the absence of segment compaction, all segments are
the same size, which makes memory management simple.
With compaction, however, segments in memory can have
different sizes. One possible solution is to use a stan-
dard heap allocator to allocate segments, but this would
result in the fragmentation problems described in Sec-
tion 2. Instead, each RAMCloud master divides its log
memory into fixed-size 64 KB seglets. A segment con-
sists of a collection of seglets, and the number of seglets
varies with the size of the segment. Because seglets are
fixed-size, they introduce a small amount of internal frag-
mentation (one-half seglet for each segment, on average).
In practice, fragmentation should be less than 1% of mem-
ory space, since we expect compacted segments to aver-
age at least half the length of a full-size segment. In addi-
tion, seglets require extra mechanism to handle log entries
that span discontiguous seglets (before seglets, log entries
were always contiguous).

5.2 When to Clean on Disk?

Two-level cleaning introduces a new policy question:
when should the system choose memory compaction over
combined cleaning, and vice-versa? This choice has an
important impact on system performance because com-
bined cleaning consumes precious disk and network I/O
resources. However, as we explain below, memory com-
paction is not always more efficient. This section explains
how these considerations resulted in RAMCloud’s current

6 12th USENIX Conference on File and Storage Technologies USENIX Association

policy module; we refer to it as the balancer. For a more
complete discussion of the balancer, see [33].

There is no point in running either cleaner until the sys-
tem is running low on memory or disk space. The reason
is that cleaning early is never cheaper than cleaning later
on. The longer the system delays cleaning, the more time
it has to accumulate dead objects, which lowers the frac-
tion of live data in segments and makes them less expen-
sive to clean.

The balancer determines that memory is running low
as follows. Let L be the fraction of all memory occu-
pied by live objects and F be the fraction of memory in
unallocated seglets. One of the cleaners will run when-
ever F ≤ min(0.1, (1 − L)/2) In other words, cleaning
occurs if the unallocated seglet pool has dropped to less
than 10% of memory and at least half of the free mem-
ory is in active segments (vs. unallocated seglets). This
formula represents a tradeoff: on the one hand, it delays
cleaning to make it more efficient; on the other hand, it
starts cleaning soon enough for the cleaner to collect free
memory before the system runs out of unallocated seglets.

Given that the cleaner must run, the balancer must
choose which cleaner to use. In general, compaction is
preferred because it is more efficient, but there are two
cases in which the balancer must choose combined clean-
ing. The first is when too many tombstones have ac-
cumulated. The problem with tombstones is that mem-
ory compaction alone cannot remove them: the com-
bined cleaner must first remove dead objects from disk
before their tombstones can be erased. As live tombstones
pile up, segment utilizations increase and compaction be-
comes more and more expensive. Eventually, tombstones
would eat up all free memory. Combined cleaning ensures
that tombstones do not exhaust memory and makes future
compactions more efficient.

The balancer detects tombstone accumulation as fol-
lows. Let T be the fraction of memory occupied by
live tombstones, and L be the fraction of live objects (as
above). Too many tombstones have accumulated once
T/(1 − L) ≥ 40%. In other words, there are too many
tombstones when they account for 40% of the freeable
space in a master (1−L; i.e., all tombstones and dead ob-
jects). The 40% value was chosen empirically based on
measurements of different workloads, object sizes, and
amounts of available disk bandwidth. This policy tends
to run the combined cleaner more frequently under work-
loads that make heavy use of small objects (tombstone
space accumulates more quickly as a fraction of freeable
space, because tombstones are nearly as large as the ob-
jects they delete).

The second reason the combined cleaner must run is
to bound the growth of the on-disk log. The size must be
limited both to avoid running out of disk space and to keep
crash recovery fast (since the entire log must be replayed,
its size directly affects recovery speed). RAMCloud im-
plements a configurable disk expansion factor that sets the

maximum on-disk log size as a multiple of the in-memory
log size. The combined cleaner runs when the on-disk log
size exceeds 90% of this limit.

Finally, the balancer chooses memory compaction
when unallocated memory is low and combined cleaning
is not needed (disk space is not low and tombstones have
not accumulated yet).

6 Parallel Cleaning
Two-level cleaning reduces the cost of combined clean-

ing, but it adds a significant new cost in the form of seg-
ment compaction. Fortunately, the cost of cleaning can be
hidden by performing both combined cleaning and seg-
ment compaction concurrently with normal read and write
requests. RAMCloud employs multiple cleaner threads
simultaneously to take advantage of multi-core CPUs.

Parallel cleaning in RAMCloud is greatly simplified by
the use of a log structure and simple metadata. For exam-
ple, since segments are immutable after they are created,
the cleaner need not worry about objects being modified
while the cleaner is copying them. Furthermore, the hash
table provides a simple way of redirecting references to
objects that are relocated by the cleaner (all objects are
accessed indirectly through it). This means that the basic
cleaning mechanism is very straightforward: the cleaner
copies live data to new segments, atomically updates ref-
erences in the hash table, and frees the cleaned segments.

There are three points of contention between cleaner
threads and service threads handling read and write re-
quests. First, both cleaner and service threads need to add
data at the head of the log. Second, the threads may con-
flict in updates to the hash table. Third, the cleaner must
not free segments that are still in use by service threads.
These issues and their solutions are discussed in the sub-
sections below.

6.1 Concurrent Log Updates
The most obvious way to perform cleaning is to copy

the live data to the head of the log. Unfortunately, this
would create contention for the log head between cleaner
threads and service threads that are writing new data.

RAMCloud’s solution is for the cleaner to write sur-
vivor data to different segments than the log head. Each
cleaner thread allocates a separate set of segments for
its survivor data. Synchronization is required when al-
locating segments, but once segments are allocated, each
cleaner thread can copy data to its own survivor segments
without additional synchronization. Meanwhile, request-
processing threads can write new data to the log head.
Once a cleaner thread finishes a cleaning pass, it arranges
for its survivor segments to be included in the next log di-
gest, which inserts them into the log; it also arranges for
the cleaned segments to be dropped from the next digest.

Using separate segments for survivor data has the addi-
tional benefit that the replicas for survivor segments will
be stored on a different set of backups than the replicas

USENIX Association 12th USENIX Conference on File and Storage Technologies 7

of the head segment. This allows the survivor segment
replicas to be written in parallel with the log head repli-
cas without contending for the same backup disks, which
increases the total throughput for a single master.

6.2 Hash Table Contention

The main source of thread contention during cleaning
is the hash table. This data structure is used both by ser-
vice threads and cleaner threads, as it indicates which ob-
jects are alive and points to their current locations in the
in-memory log. The cleaner uses the hash table to check
whether an object is alive (by seeing if the hash table cur-
rently points to that exact object). If the object is alive,
the cleaner copies it and updates the hash table to refer
to the new location in a survivor segment. Meanwhile,
service threads may be using the hash table to find ob-
jects during read requests and they may update the hash
table during write or delete requests. To ensure consis-
tency while reducing contention, RAMCloud currently
uses fine-grained locks on individual hash table buckets.
In the future we plan to explore lockless approaches to
eliminate this overhead.

6.3 Freeing Segments in Memory

Once a cleaner thread has cleaned a segment, the seg-
ment’s storage in memory can be freed for reuse. At
this point, future service threads will not use data in the
cleaned segment, because there are no hash table entries
pointing into it. However, it could be that a service thread
began using the data in the segment before the cleaner up-
dated the hash table; if so, the cleaner must not free the
segment until the service thread has finished using it.

To solve this problem, RAMCloud uses a simple mech-
anism similar to RCU’s [27] wait-for-readers primitive
and Tornado/K42’s generations [6]: after a segment has
been cleaned, the system will not free it until all RPCs cur-
rently being processed complete. At this point it is safe to
reuse the segment’s memory, since new RPCs cannot ref-
erence the segment. This approach has the advantage of
not requiring additional locks for normal reads and writes.

6.4 Freeing Segments on Disk

Once a segment has been cleaned, its replicas on back-
ups must also be freed. However, this must not be
done until the corresponding survivor segments have been
safely incorporated into the on-disk log. This takes two
steps. First, the survivor segments must be fully repli-
cated on backups. Survivor segments are transmitted to
backups asynchronously during cleaning, so at the end of
each cleaning pass the cleaner must wait for all of its sur-
vivor segments to be received by backups. Second, a new
log digest must be written, which includes the survivor
segments and excludes the cleaned segments. Once the
digest has been durably written to backups, RPCs are is-
sued to free the replicas for the cleaned segments.

20 11 16 20

13

11

utilization = 75 / 80

80

19 11 15 16 14

18 17 19 15

18 20 20 17

14

Cleaned Segments Survivor Segments

Figure 5: A simplified situation in which cleaning uses more
space than it frees. Two 80-byte segments at about 94% uti-
lization are cleaned: their objects are reordered by age (not
depicted) and written to survivor segments. The label in each
object indicates its size. Because of fragmentation, the last
object (size 14) overflows into a third survivor segment.

7 Avoiding Cleaner Deadlock
Since log cleaning copies data before freeing it, the

cleaner must have free memory space to work with be-
fore it can generate more. If there is no free memory,
the cleaner cannot proceed and the system will deadlock.
RAMCloud increases the risk of memory exhaustion by
using memory at high utilization. Furthermore, it delays
cleaning as long as possible in order to allow more objects
to be deleted. Finally, two-level cleaning allows tomb-
stones to accumulate, which consumes even more free
space. This section describes how RAMCloud prevents
cleaner deadlock while maximizing memory utilization.

The first step is to ensure that there are always free
seglets for the cleaner to use. This is accomplished by
reserving a special pool of seglets for the cleaner. When
seglets are freed, they are used to replenish the cleaner
pool before making space available for other uses.

The cleaner pool can only be maintained if each clean-
ing pass frees as much space as it uses; otherwise the
cleaner could gradually consume its own reserve and then
deadlock. However, RAMCloud does not allow objects to
cross segment boundaries, which results in some wasted
space at the end of each segment. When the cleaner re-
organizes objects, it is possible for the survivor segments
to have greater fragmentation than the original segments,
and this could result in the survivors taking more total
space than the original segments (see Figure 5).

To ensure that the cleaner always makes forward
progress, it must produce at least enough free space to
compensate for space lost to fragmentation. Suppose that
N segments are cleaned in a particular pass and the frac-
tion of free space in these segments is F ; furthermore, let
S be the size of a full segment and O the maximum object
size. The cleaner will produce NS(1 − F) bytes of live
data in this pass. Each survivor segment could contain as
little as S−O+1 bytes of live data (if an object of size O
couldn’t quite fit at the end of the segment), so the max-
imum number of survivor segments will be � NS(1−F)

S − O + 1�.
The last seglet of each survivor segment could be empty
except for a single byte, resulting in almost a full seglet of

8 12th USENIX Conference on File and Storage Technologies USENIX Association

CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Crucial M4 SSDs
Disks CT128M4SSD2 (128 GB)
NIC Mellanox ConnectX-2 Infiniband HCA

Switch Mellanox SX6036 (4X FDR)

Table 2: The server hardware configuration used for bench-
marking. All nodes ran Linux 2.6.32 and were connected to
an Infiniband fabric.

fragmentation for each survivor segment. Thus, F must
be large enough to produce a bit more than one seglet’s
worth of free data for each survivor segment generated.
For RAMCloud, we conservatively require 2% of free
space per cleaned segment, which is a bit more than two
seglets. This number could be reduced by making seglets
smaller.

There is one additional problem that could result in
memory deadlock. Before freeing segments after clean-
ing, RAMCloud must write a new log digest to add the
survivors to the log and remove the old segments. Writ-
ing a new log digest means writing a new log head seg-
ment (survivor segments do not contain digests). Unfor-
tunately, this consumes yet another segment, which could
contribute to memory exhaustion. Our initial solution was
to require each cleaner pass to produce enough free space
for the new log head segment, in addition to replacing the
segments used for survivor data. However, it is hard to
guarantee “better than break-even” cleaner performance
when there is very little free space.

The current solution takes a different approach: it re-
serves two special emergency head segments that contain
only log digests; no other data is permitted. If there is no
free memory after cleaning, one of these segments is allo-
cated for the head segment that will hold the new digest.
Since the segment contains no objects or tombstones, it
does not need to be cleaned; it is immediately freed when
the next head segment is written (the emergency head
is not included in the log digest for the next head seg-
ment). By keeping two emergency head segments in re-
serve, RAMCloud can alternate between them until a full
segment’s worth of space is freed and a proper log head
can be allocated. As a result, each cleaner pass only needs
to produce as much free space as it uses.

By combining these techniques, RAMCloud can guar-
antee deadlock-free cleaning with total memory utiliza-
tion as high as 98%. When utilization reaches this limit,
no new data (or tombstones) can be appended to the log
until the cleaner has freed space. However, RAMCloud
sets a lower utilization limit for writes, in order to reserve
space for tombstones. Otherwise all available log space
could be consumed with live data and there would be no
way to add tombstones to delete objects.

8 Evaluation
All of the features described in the previous sections

are implemented in RAMCloud version 1.0, which was

released in January, 2014. This section describes a series
of experiments we ran to evaluate log-structured memory
and its implementation in RAMCloud. The key results
are:
• RAMCloud supports memory utilizations of 80-90%

without significant loss in performance.
• At high memory utilizations, two-level cleaning im-

proves client throughput up to 6x over a single-level
approach.

• Log-structured memory also makes sense for other
DRAM-based storage systems, such as memcached.

• RAMCloud provides a better combination of durabil-
ity and performance than other storage systems such as
HyperDex and Redis.

Note: all plots in this section show the average of 3 or
more runs, with error bars for minimum and maximum
values.

8.1 Performance vs. Utilization

The most important metric for log-structured memory
is how it performs at high memory utilization. In Sec-
tion 2 we found that other allocators could not achieve
high memory utilization in the face of changing work-
loads. With log-structured memory, we can choose any
utilization up to the deadlock limit of about 98% de-
scribed in Section 7. However, system performance will
degrade as memory utilization increases; thus, the key
question is how efficiently memory can be used before
performance drops significantly. Our hope at the begin-
ning of the project was that log-structured memory could
support memory utilizations in the range of 80-90%.

The measurements in this section used an 80-node clus-
ter of identical commodity servers (see Table 2). Our pri-
mary concern was the throughput of a single master, so
we divided the cluster into groups of five servers and used
different groups to measure different data points in par-
allel. Within each group, one node ran a master server,
three nodes ran backups, and the last node ran the co-
ordinator and client benchmark. This configuration pro-
vided each master with about 700 MB/s of back-end band-
width. In an actual RAMCloud system the back-end
bandwidth available to one master could be either more
or less than this; we experimented with different back-
end bandwidths and found that it did not change any of
our conclusions. Each byte stored on a master was repli-
cated to three different backups for durability.

All of our experiments used a maximum of two threads
for cleaning. Our cluster machines have only four cores,
and the main RAMCloud server requires two of them,
so there were only two cores available for cleaning (we
have not yet evaluated the effect of hyperthreading on
RAMCloud’s throughput or latency).

In each experiment, the master was given 16 GB of log
space and the client created objects with sequential keys
until it reached a target memory utilization; then it over-

USENIX Association 12th USENIX Conference on File and Storage Technologies 9

 0

 10

 20

 30

 40

 50

 60

 0

 100

 200

 300

 400

 500

 600
M

B
/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Two-level (Zipfian)
One-level (Zipfian)

Two-level (Uniform)
One-level (Uniform)

Sequential

100-byte Objects

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

1,000-byte Objects

 0

 50

 100

 150

 200

 250

 300

30 40 50 60 70 80 90
 0

 5

 10

 15

 20

 25

 30

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Memory Utilization (%)

10,000-byte Objects

Figure 6: End-to-end client write performance as a func-
tion of memory utilization. For some experiments two-level
cleaning was disabled, so only the combined cleaner was
used. The “Sequential” curve used two-level cleaning and
uniform access patterns with a single outstanding write re-
quest at a time. All other curves used the high-stress work-
load with concurrent multi-writes. Each point is averaged
over 3 runs on different groups of servers.

wrote objects (maintaining a fixed amount of live data
continuously) until the overhead for cleaning converged
to a stable value.

We varied the workload in four ways to measure system
behavior under different operating conditions:

1. Object Size: RAMCloud’s performance depends
on average object size (e.g., per-object overheads versus
memory copying overheads), but not on the exact size dis-
tribution (see Section 8.5 for supporting evidence). Thus,
unless otherwise noted, the objects for each test had the
same fixed size. We ran different tests with sizes of 100,
1000, 10000, and 100,000 bytes (we omit the 100 KB
measurements, since they were nearly identical to 10 KB).

2. Memory Utilization: The percentage of DRAM
used for holding live data (not including tombstones) was
fixed in each test. For example, at 50% and 90% utiliza-
tion there were 8 GB and 14.4 GB of live data, respec-
tively. In some experiments, total memory utilization was
significantly higher than the listed number due to an ac-
cumulation of tombstones.

3. Locality: We ran experiments with both uniform
random overwrites of objects and a Zipfian distribution in

 0

 1

 2

 3

 4

 5

C
le

an
er

 /
N

ew
 B

yt
es

One-level (Uniform)
Two-level (Uniform)
One-level (Zipfian)
Two-level (Zipfian)

100-byte Objects

 0

 1

 2

 3

 4

 5

C
le

an
er

 /
N

ew
 B

yt
es

1,000-byte Objects

 0

 1

 2

 3

 4

 5

30 40 50 60 70 80 90

C
le

an
er

 /
N

ew
 B

yt
es

Memory Utilization (%)

10,000-byte Objects

Figure 7: Cleaner bandwidth overhead (ratio of cleaner
bandwidth to regular log write bandwidth) for the workloads
in Figure 6. 1 means that for every byte of new data written
to backups, the cleaner writes 1 byte of live data to backups
while freeing segment space. The optimal ratio is 0.

which 90% of writes were made to 15% of the objects.
The uniform random case represents a workload with no
locality; Zipfian represents locality similar to what has
been observed in memcached deployments [7].

4. Stress Level: For most of the tests we created an
artificially high workload in order to stress the master
to its limit. To do this, the client issued write requests
asynchronously, with 10 requests outstanding at any given
time. Furthermore, each request was a multi-write con-
taining 75 individual writes. We also ran tests where the
client issued one synchronous request at a time, with a
single write operation in each request; these tests are la-
beled “Sequential” in the graphs.

Figure 6 graphs the overall throughput of a RAMCloud
master with different memory utilizations and workloads.
With two-level cleaning enabled, client throughput drops
only 10-20% as memory utilization increases from 30% to
80%, even with an artificially high workload. Throughput
drops more significantly at 90% utilization: in the worst
case (small objects with no locality), throughput at 90%
utilization is about half that at 30%. At high utilization the
cleaner is limited by disk bandwidth and cannot keep up
with write traffic; new writes quickly exhaust all available
segments and must wait for the cleaner.

10 12th USENIX Conference on File and Storage Technologies USENIX Association

These results exceed our original performance goals for
RAMCloud. At the start of the project, we hoped that
each RAMCloud server could support 100K small writes
per second, out of a total of one million small operations
per second. Even at 90% utilization, RAMCloud can sup-
port almost 410K small writes per second with some lo-
cality and nearly 270K with no locality.

If actual RAMCloud workloads are similar to our
“Sequential” case, then it should be reasonable to run
RAMCloud clusters at 90% memory utilization (for 100
and 1,000B objects there is almost no performance degra-
dation). If workloads include many bulk writes, like most
of the measurements in Figure 6, then it makes more sense
to run at 80% utilization: the higher throughput will more
than offset the 12.5% additional cost for memory.

Compared to the traditional storage allocators mea-
sured in Section 2, log-structured memory permits signif-
icantly higher memory utilization.

8.2 Two-Level Cleaning
Figure 6 also demonstrates the benefits of two-level

cleaning. The figure contains additional measurements in
which segment compaction was disabled (“One-level”);
in these experiments, the system used RAMCloud’s orig-
inal one-level approach where only the combined cleaner
ran. The two-level cleaning approach provides a consider-
able performance improvement: at 90% utilization, client
throughput is up to 6x higher with two-level cleaning than
single-level cleaning.

One of the motivations for two-level cleaning was to
reduce the disk bandwidth used by cleaning, in order to
make more bandwidth available for normal writes. Fig-
ure 7 shows that two-level cleaning reduces disk and net-
work bandwidth overheads at high memory utilizations.
The greatest benefits occur with larger object sizes, where
two-level cleaning reduces overheads by 7-87x. Com-
paction is much more efficient in these cases because
there are fewer objects to process.

8.3 CPU Overhead of Cleaning
Figure 8 shows the CPU time required for cleaning in

two of the workloads from Figure 6. Each bar represents
the average number of fully active cores used for com-
bined cleaning and compaction in the master, as well as
for backup RPC and disk I/O processing in the backups.

At low memory utilization a master under heavy load
uses about 30-50% of one core for cleaning; backups ac-
count for the equivalent of at most 60% of one core across
all six of them. Smaller objects require more CPU time
for cleaning on the master due to per-object overheads,
while larger objects stress backups more because the mas-
ter can write up to 5 times as many megabytes per sec-
ond (Figure 6). As free space becomes more scarce, the
two cleaner threads are eventually active nearly all of the
time. In the 100B case, RAMCloud’s balancer prefers to
run combined cleaning due to the accumulation of tomb-

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

30 40 50 60 70 80 90 30 40 50 60 70 80 90

A
ve

ra
ge

 N
um

be
r o

f
A

ct
iv

e
C

or
es

Memory Utilization (%)

Combined
Compaction

Backup User
Backup Kern

100-byte 1,000-byte

Figure 8: CPU overheads for two-level cleaning under the
100 and 1,000-byte Zipfian workloads in Figure 6, measured
in average number of active cores. “Backup Kern” repre-
sents kernel time spent issuing I/Os to disks, and “Backup
User” represents time spent servicing segment write RPCs
on backup servers. Both of these bars are aggregated across
all backups, and include traffic for normal writes as well
as cleaning. “Compaction” and “Combined” represent time
spent on the master in memory compaction and combined
cleaning. Additional core usage unrelated to cleaning is not
depicted. Each bar is averaged over 3 runs.

 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100

 10 100 1000 10000

%
 o

f W
rit

es
 T

ak
in

g
Lo

ng
er

Th
an

 a
 G

iv
en

 T
im

e
(L

og
 S

ca
le

)

Microseconds (Log Scale)

No Cleaner
Cleaner

Figure 9: Reverse cumulative distribution of client write
latencies when a single client issues back-to-back write re-
quests for 100-byte objects using the uniform distribution.
The “No cleaner” curve was measured with cleaning dis-
abled. The “Cleaner” curve shows write latencies at 90%
memory utilization with cleaning enabled. For example,
about 10% of all write requests took longer than 18μs in both
cases; with cleaning enabled, about 0.1% of all write requests
took 1ms or more. The median latency was 16.70μs with
cleaning enabled and 16.35μs with the cleaner disabled.

stones. With larger objects compaction tends to be more
efficient, so combined cleaning accounts for only a small
fraction of the CPU time.

8.4 Can Cleaning Costs be Hidden?

One of the goals for RAMCloud’s implementation of
log-structured memory was to hide the cleaning costs so
they don’t affect client requests. Figure 9 graphs the la-
tency of client write requests in normal operation with
a cleaner running, and also in a special setup where
the cleaner was disabled. The distributions are nearly
identical up to about the 99.9th percentile, and cleaning
only increased the median latency by 2% (from 16.35 to
16.70μs). About 0.1% of write requests suffer an addi-
tional 1ms or greater delay when cleaning. Preliminary

USENIX Association 12th USENIX Conference on File and Storage Technologies 11

 0

 0.2

 0.4

 0.6

 0.8

 1

70% 80% 90% 90%
(Sequential)

R
at

io
 o

f P
er

fo
rm

an
ce

 w
ith

an
d

w
ith

ou
t C

le
an

in
g

Memory Utilization

W1
W2
W3
W4
W5
W6
W7
W8

Figure 10: Client performance in RAMCloud under the same
workloads as in Figure 1 from Section 2. Each bar measures
the performance of a workload (with cleaning enabled) rela-
tive to the performance of the same workload with cleaning
disabled. Higher is better and 1.0 is optimal; it means that the
cleaner has no impact on the processing of normal requests.
As in Figure 1, 100 GB of allocations were made and at most
10 GB of data was alive at once. The 70%, 80%, and 90%
utilization bars were measured with the high-stress request
pattern using concurrent multi-writes. The “Sequential” bars
used a single outstanding write request at a time; the data size
was scaled down by a factor of 10x for these experiments to
make running times manageable. The master in these experi-
ments ran on the same Xeon E5-2670 system as in Table 1.

experiments both with larger pools of backups and with
replication disabled (not depicted) suggest that these de-
lays are primarily due to contention for the NIC and RPC
queueing delays in the single-threaded backup servers.

8.5 Performance Under Changing Workloads

Section 2 showed that changing workloads caused
poor memory utilization in traditional storage alloca-
tors. For comparison, we ran those same workloads on
RAMCloud, using the same general setup as for earlier
experiments. The results are shown in Figure 10 (this
figure is formatted differently than Figure 1 in order to
show RAMCloud’s performance as a function of memory
utilization). We expected these workloads to exhibit per-
formance similar to the workloads in Figure 6 (i.e. we
expected the performance to be determined by the aver-
age object sizes and access patterns; workload changes
per se should have no impact). Figure 10 confirms this
hypothesis: with the high-stress request pattern, perfor-
mance degradation due to cleaning was 10-20% at 70%
utilization and 40-50% at 90% utilization. With the “Se-
quential” request pattern, performance degradation was
5% or less, even at 90% utilization.

8.6 Other Uses for Log-Structured Memory

Our implementation of log-structured memory is tied to
RAMCloud’s distributed replication mechanism, but we
believe that log-structured memory also makes sense in
other environments. To demonstrate this, we performed
two additional experiments.

First, we re-ran some of the experiments from Fig-
ure 6 with replication disabled in order to simulate a
DRAM-only storage system. We also disabled com-

 0

 100

 200

 300

 400

 500

 600

 30 40 50 60 70 80 90
 0

 100

 200

 300

 400

 500

 600

M
B

/s

O
bj

ec
ts

/s
 (x

1,
00

0)

Memory Utilization (%)

Zipfian R = 0
Uniform R = 0

Zipfian R = 3
Uniform R = 3

Figure 11: Two-level cleaning with (R = 3) and without
replication (R = 0) for 1000-byte objects. The two lower
curves are the same as in Figure 6.

Allocator Fixed 25-byte Zipfian 0 - 8 KB
Slab 8737 982
Log 11411 1125

Improvement 30.6% 14.6%

Table 3: Average number of objects stored per megabyte of
cache in memcached, with its normal slab allocator and with
a log-structured allocator. The “Fixed” column shows sav-
ings from reduced metadata (there is no fragmentation, since
the 25-byte objects fit perfectly in one of the slab allocator’s
buckets). The “Zipfian” column shows savings from eliminat-
ing internal fragmentation in buckets. All experiments ran on
a 16-core E5-2670 system with both client and server on the
same machine to minimize network overhead. Memcached
was given 2 GB of slab or log space for storing objects, and
the slab rebalancer was enabled. YCSB [15] was used to gen-
erate the access patterns. Each run wrote 100 million objects
with Zipfian-distributed key popularity and either fixed 25-
byte or Zipfian-distributed sizes between 0 and 8 KB. Results
were averaged over 5 runs.

paction (since there is no backup I/O to conserve) and had
the server run the combined cleaner on in-memory seg-
ments only. Figure 11 shows that without replication, log-
structured memory supports significantly higher through-
put: RAMCloud’s single writer thread scales to nearly
600K 1,000-byte operations per second. Under very high
memory pressure throughput drops by 20-50% depending
on access locality. At this object size, one writer thread
and two cleaner threads suffice to handle between one
quarter and one half of a 10 gigabit Ethernet link’s worth
of write requests.

Second, we modified the popular memcached [2]
1.4.15 object caching server to use RAMCloud’s log and
cleaner instead of its slab allocator. To make room for
new cache entries, we modified the log cleaner to evict
cold objects as it cleaned, rather than using memcached’s
slab-based LRU lists. Our policy was simple: segments

Allocator Throughput (Writes/s x1000) % CPU Cleaning
Slab 259.9 ± 0.6 0%
Log 268.0 ± 0.6 5.37 ± 0.3 %

Table 4: Average throughput and percentage of CPU used
for cleaning under the same Zipfian write-only workload as
in Table 3. Results were averaged over 5 runs.

12 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

A B C D F

A
gg

re
ga

te
 O

pe
ra

tio
ns

/s
 (M

ill
io

ns
)

YCSB Workloads

HyperDex 1.0rc4
Redis 2.6.14

RAMCloud 75%
RAMCloud 90%

RAMCloud 75% Verbs
RAMCloud 90% Verbs

Figure 12: Performance of HyperDex, RAMCloud, and
Redis under the default YCSB [15] workloads B, C, and D
are read-heavy workloads, while A and F are write-heavy;
workload E was omitted because RAMCloud does not sup-
port scans. Y-values represent aggregate average through-
put of 24 YCSB clients running on 24 separate nodes (see
Table 2). Each client performed 100 million operations on
a data set of 100 million keys. Objects were 1 KB each
(the workload default). An additional 12 nodes ran the stor-
age servers. HyperDex and Redis used kernel-level sockets
over Infiniband. The “RAMCloud 75%” and “RAMCloud
90%” bars were measured with kernel-level sockets over In-
finiband at 75% and 90% memory utilisation, respectively
(each server’s share of the 10 million total records corre-
sponded to 75% or 90% of log memory). The “RAMCloud
75% Verbs” and “RAMCloud 90% Verbs” bars were mea-
sured with RAMCloud’s “kernel bypass” user-level Infini-
band transport layer, which uses reliably-connected queue
pairs via the Infiniband “Verbs” API. Each data point is aver-
aged over 3 runs.

were selected for cleaning based on how many recent
reads were made to objects in them (fewer requests indi-
cate colder segments). After selecting segments, 75% of
their most recently accessed objects were written to sur-
vivor segments (in order of access time); the rest were
discarded. Porting the log to memcached was straight-
forward, requiring only minor changes to the RAMCloud
sources and about 350 lines of changes to memcached.

Table 3 illustrates the main benefit of log-structured
memory in memcached: increased memory efficiency.
By using a log we were able to reduce per-object meta-
data overheads by 50% (primarily by eliminating LRU list
pointers, like MemC3 [20]). This meant that small ob-
jects could be stored much more efficiently. Furthermore,
using a log reduced internal fragmentation: the slab allo-
cator must pick one of several fixed-size buckets for each
object, whereas the log can pack objects of different sizes
into a single segment. Table 4 shows that these benefits
also came with no loss in throughput and only minimal
cleaning overhead.

8.7 How does RAMCloud compare to other systems?

Figure 12 compares the performance of RAMCloud to
HyperDex [18] and Redis [3] using the YCSB [15] bench-
mark suite. All systems were configured with triple repli-
cation. Since HyperDex is a disk-based store, we config-
ured it to use a RAM-based file system to ensure that no

operations were limited by disk I/O latencies, which the
other systems specifically avoid. Both RAMCloud and
Redis wrote to SSDs (Redis’ append-only logging mecha-
nism was used with a 1s fsync interval). It is worth noting
that Redis is distributed with jemalloc [19], whose frag-
mentation issues we explored in Section 2.

RAMCloud outperforms HyperDex in every case, even
when running at very high memory utilization and de-
spite configuring HyperDex so that it does not write to
disks. RAMCloud also outperforms Redis, except in
write-dominated workloads A and F when kernel sock-
ets are used. In these cases RAMCloud is limited by
RPC latency, rather than allocation speed. In particular,
RAMCloud must wait until data is replicated to all back-
ups before replying to a client’s write request. Redis, on
the other hand, offers no durability guarantee; it responds
immediately and batches updates to replicas. This unsafe
mode of operation means that Redis is much less reliant
on RPC latency for throughput.

Unlike the other two systems, RAMCloud was opti-
mized for high-performance networking. For fairness,
the “RAMCloud 75%” and “RAMCloud 90%” bars de-
pict performance using the same kernel-level sockets as
Redis and HyperDex. To show RAMCloud’s full poten-
tial, however, we also included measurements using the
Infiniband “Verbs” API, which permits low-latency ac-
cess to the network card without going through the ker-
nel. This is the normal transport used in RAMCloud; it
more than doubles read throughput, and matches Redis’
write throughput at 75% memory utilisation (RAMCloud
is 25% slower than Redis for workload A at 90% uti-
lization). Since Redis is less reliant on latency for per-
formance, we do not expect it to benefit substantially if
ported to use the Verbs API.

9 LFS Cost-Benefit Revisited
Like LFS [32], RAMCloud’s combined cleaner uses

a cost-benefit policy to choose which segments to
clean. However, while evaluating cleaning techniques for
RAMCloud we discovered a significant flaw in the orig-
inal LFS policy for segment selection. A small change
to the formula for segment selection fixes this flaw and
improves cleaner performance by 50% or more at high
utilization under a wide range of access localities (e.g.,
the Zipfian and uniform access patterns in Section 8.1).
This improvement applies to any implementation of log-
structured storage.

LFS selected segments to clean by evaluating the fol-
lowing formula for each segment and choosing the seg-
ments with the highest ratios of benefit to cost:

benefit

cost
=

(1 − u) × objectAge

1 + u

In this formula, u is the segment’s utilization (fraction of
data still live), and objectAge is the age of the youngest
data in the segment. The cost of cleaning a segment is

USENIX Association 12th USENIX Conference on File and Storage Technologies 13

 0

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50 60 70 80 90 100

W
rit

e
C

os
t

Disk Utilization (%)

New Simulator (Youngest File Age)
Original Simulator

New Simulator (Segment Age)

Figure 13: An original LFS simulation from [31]’s Figure
5-6 compared to results from our reimplemented simulator.
The graph depicts how the I/O overhead of cleaning under a
particular synthetic workload (see [31] for details) increases
with disk utilization. Only by using segment age were we
able to reproduce the original results (note that the bottom
two lines coincide).

determined by the number of bytes that must be read or
written from disk (the entire segment must be read, then
the live bytes must be rewritten). The benefit of cleaning
includes two factors: the amount of free space that will
be reclaimed (1− u), and an additional factor intended to
represent the stability of the data. If data in a segment is
being overwritten rapidly then it is better to delay cleaning
so that u will drop; if data in a segment is stable, it makes
more sense to reclaim the free space now. objectAge was
used as an approximation for stability. LFS showed that
cleaning can be made much more efficient by taking all
these factors into account.

RAMCloud uses a slightly different formula for seg-
ment selection:

benefit

cost
=

(1 − u) × segmentAge

u

This differs from LFS in two ways. First, the cost has
changed from 1 + u to u. This reflects the fact that
RAMCloud keeps live segment contents in memory at all
times, so the only cleaning cost is for rewriting live data.

The second change to RAMCloud’s segment selection
formula is in the way that data stability is estimated; this
has a significant impact on cleaner performance. Using
object age produces pathological cleaning behavior when
there are very old objects. Eventually, some segments’
objects become old enough to force the policy into clean-
ing the segments at extremely high utilization, which is
very inefficient. Moreover, since live data is written to
survivor segments in age-order (to segregate hot and cold
data and make future cleaning more efficient), a vicious
cycle ensues because the cleaner generates new segments
with similarly high ages. These segments are then cleaned
at high utilization, producing new survivors with high
ages, and so on. In general, object age is not a reliable
estimator of stability. For example, if objects are deleted
uniform-randomly, then an objects’s age provides no in-
dication of how long it may persist.

To fix this problem, RAMCloud uses the age of the seg-
ment, not the age of its objects, in the formula for segment

selection. This provides a better approximation to the sta-
bility of the segment’s data: if a segment is very old, then
its overall rate of decay must be low, otherwise its u-value
would have dropped to the point of it being selected for
cleaning. Furthermore, this age metric resets when a seg-
ment is cleaned, which prevents very old ages from ac-
cumulating. Figure 13 shows that this change improves
overall write performance by 70% at 90% disk utilization.
This improvement applies not just to RAMCloud, but to
any log-structured system.

Intriguingly, although Sprite LFS used youngest object
age in its cost-benefit formula, we believe that the LFS
simulator, which was originally used to develop the cost-
benefit policy, inadvertently used segment age instead.
We reached this conclusion when we attempted to repro-
duce the original LFS simulation results and failed. Our
initial simulation results were much worse than those re-
ported for LFS (see Figure 13); when we switched from
objectAge to segmentAge, our simulations matched
those for LFS exactly. Further evidence can be found
in [26], which was based on a descendant of the original
LFS simulator and describes the LFS cost-benefit policy
as using the segment’s age. Unfortunately, source code is
no longer available for either of these simulators.

10 Future Work
There are additional opportunities to improve the per-

formance of log-structured memory that we have not yet
explored. One approach that has been used in many other
storage systems is to compress the data being stored. This
would allow memory to be used even more efficiently, but
it would create additional CPU overheads both for reading
and writing objects. Another possibility is to take advan-
tage of periods of low load (in the middle of the night,
for example) to clean aggressively in order to generate as
much free space as possible; this could potentially reduce
the cleaning overheads during periods of higher load.

Many of our experiments focused on worst-case syn-
thetic scenarios (for example, heavy write loads at very
high memory utilization, simple object size distributions
and access patterns, etc.). In doing so we wanted to stress
the system as much as possible to understand its limits.
However, realistic workloads may be much less demand-
ing. When RAMCloud begins to be deployed and used
we hope to learn much more about its performance under
real-world access patterns.

11 Related Work
DRAM has long been used to improve performance in

main-memory database systems [17, 21], and large-scale
Web applications have rekindled interest in DRAM-based
storage in recent years. In addition to special-purpose sys-
tems like Web search engines [9], general-purpose storage
systems like H-Store [25] and Bigtable [12] also keep part
or all of their data in memory to maximize performance.

RAMCloud’s storage management is superficially sim-

14 12th USENIX Conference on File and Storage Technologies USENIX Association

ilar to Bigtable [12] and its related LevelDB [4] li-
brary. For example, writes to Bigtable are first logged to
GFS [22] and then stored in a DRAM buffer. Bigtable
has several different mechanisms referred to as “com-
pactions”, which flush the DRAM buffer to a GFS file
when it grows too large, reduce the number of files on
disk, and reclaim space used by “delete entries” (anal-
ogous to tombstones in RAMCloud and called “dele-
tion markers” in LevelDB). Unlike RAMCloud, the pur-
pose of these compactions is not to reduce backup I/O,
nor is it clear that these design choices improve mem-
ory efficiency. Bigtable does not incrementally remove
delete entries from tables; instead it must rewrite them en-
tirely. LevelDB’s generational garbage collection mech-
anism [5], however, is more similar to RAMCloud’s seg-
mented log and cleaning.

Cleaning in log-structured memory serves a function
similar to copying garbage collectors in many common
programming languages such as Java and LISP [24, 37].
Section 2 has already discussed these systems.

Log-structured memory in RAMCloud was influenced
by ideas introduced in log-structured file systems [32].
Much of the nomenclature and general techniques are
shared (log segmentation, cleaning, and cost-benefit se-
lection, for example). However, RAMCloud differs in
its design and application. The key-value data model,
for instance, allows RAMCloud to use simpler metadata
structures than LFS. Furthermore, as a cluster system,
RAMCloud has many disks at its disposal, which reduces
contention between cleaning and regular log appends.

Efficiency has been a controversial topic in log-
structured file systems [34, 35]. Additional techniques
were introduced to reduce or hide the cost of cleaning [11,
26]. However, as an in-memory store, RAMCloud’s use
of a log is more efficient than LFS. First, RAMCloud need
not read segments from disk during cleaning, which re-
duces cleaner I/O. Second, RAMCloud may run its disks
at low utilization, making disk cleaning much cheaper
with two-level cleaning. Third, since reads are always
serviced from DRAM they are always fast, regardless of
locality of access or placement in the log.

RAMCloud’s data model and use of DRAM as the loca-
tion of record for all data are similar to various “NoSQL”
storage systems. Redis [3] is an in-memory store that sup-
ports a “persistence log” for durability, but does not do
cleaning to reclaim free space, and offers weak durability
guarantees. Memcached [2] stores all data in DRAM, but
it is a volatile cache with no durability. Other NoSQL sys-
tems like Dynamo [16] and PNUTS [14] also have simpli-
fied data models, but do not service all reads from mem-
ory. HyperDex [18] offers similar durability and consis-
tency to RAMCloud, but is a disk-based system and sup-
ports a richer data model, including range scans and effi-
cient searches across multiple columns.

12 Conclusion
Logging has been used for decades to ensure durabil-

ity and consistency in storage systems. When we began
designing RAMCloud, it was a natural choice to use a log-
ging approach on disk to back up the data stored in main
memory. However, it was surprising to discover that log-
ging also makes sense as a technique for managing the
data in DRAM. Log-structured memory takes advantage
of the restricted use of pointers in storage systems to elim-
inate the global memory scans that fundamentally limit
existing garbage collectors. The result is an efficient and
highly incremental form of copying garbage collector that
allows memory to be used efficiently even at utilizations
of 80-90%. A pleasant side effect of this discovery was
that we were able to use a single technique for managing
both disk and main memory, with small policy differences
that optimize the usage of each medium.

Although we developed log-structured memory for
RAMCloud, we believe that the ideas are generally appli-
cable and that log-structured memory is a good candidate
for managing memory in DRAM-based storage systems.

13 Acknowledgements
We would like to thank Asaf Cidon, Satoshi Mat-

sushita, Diego Ongaro, Henry Qin, Mendel Rosenblum,
Ryan Stutsman, Stephen Yang, the anonymous review-
ers from FAST 2013, SOSP 2013, and FAST 2014, and
our shepherd, Randy Katz, for their helpful comments.
This work was supported in part by the Gigascale Sys-
tems Research Center and the Multiscale Systems Cen-
ter, two of six research centers funded under the Fo-
cus Center Research Program, a Semiconductor Research
Corporation program, by C-FAR, one of six centers of
STARnet, a Semiconductor Research Corporation pro-
gram, sponsored by MARCO and DARPA, and by the
National Science Foundation under Grant No. 0963859.
Additional support was provided by Stanford Experimen-
tal Data Center Laboratory affiliates Facebook, Mellanox,
NEC, Cisco, Emulex, NetApp, SAP, Inventec, Google,
VMware, and Samsung. Steve Rumble was supported by
a Natural Sciences and Engineering Research Council of
Canada Postgraduate Scholarship.

References
[1] Google performance tools, Mar. 2013. http://goog-

perftools.sourceforge.net/.

[2] memcached: a distributed memory object caching system, Mar.
2013. http://www.memcached.org/.

[3] Redis, Mar. 2013. http://www.redis.io/.

[4] leveldb - a fast and lightweight key/value database library
by google, Jan. 2014. http://code.google.com/p/
leveldb/.

[5] Leveldb file layouts and compactions, Jan. 2014. http:
//leveldb.googlecode.com/svn/trunk/doc/
impl.html.

[6] APPAVOO, J., HUI, K., SOULES, C. A. N., WISNIEWSKI, R. W.,
DA SILVA, D. M., KRIEGER, O., AUSLANDER, M. A., EDEL-

USENIX Association 12th USENIX Conference on File and Storage Technologies 15

SOHN, D. J., GAMSA, B., GANGER, G. R., MCKENNEY, P.,
OSTROWSKI, M., ROSENBURG, B., STUMM, M., AND XENI-
DIS, J. Enabling autonomic behavior in systems software with hot
swapping. IBM Syst. J. 42, 1 (Jan. 2003), 60–76.

[7] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (New York, NY,
USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[8] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time
garbage collector with low overhead and consistent utilization.
In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (New York, NY, USA,
2003), POPL ’03, ACM, pp. 285–298.

[9] BARROSO, L. A., DEAN, J., AND HÖLZLE, U. Web search for
a planet: The google cluster architecture. IEEE Micro 23, 2 (Mar.
2003), 22–28.

[10] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: a scalable memory allocator for multi-
threaded applications. In Proceedings of the ninth international
conference on Architectural support for programming languages
and operating systems (New York, NY, USA, 2000), ASPLOS IX,
ACM, pp. 117–128.

[11] BLACKWELL, T., HARRIS, J., AND SELTZER, M. Heuristic
cleaning algorithms in log-structured file systems. In Proceedings
of the USENIX 1995 Technical Conference (Berkeley, CA, USA,
1995), TCON’95, USENIX Association, pp. 277–288.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 205–218.

[13] CHENG, P., AND BLELLOCH, G. E. A parallel, real-time garbage
collector. In Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation (New York,
NY, USA, 2001), PLDI ’01, ACM, pp. 125–136.

[14] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1 (August 2008), 1277–
1288.

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud comput-
ing (New York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[16] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on operating systems principles (New York,
NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.

[17] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
techniques for main memory database systems. In Proceedings
of the 1984 ACM SIGMOD international conference on manage-
ment of data (New York, NY, USA, 1984), SIGMOD ’84, ACM,
pp. 1–8.

[18] ESCRIVA, R., WONG, B., AND SIRER, E. G. Hyperdex: a dis-
tributed, searchable key-value store. In Proceedings of the ACM
SIGCOMM 2012 conference on Applications, technologies, archi-
tectures, and protocols for computer communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 25–36.

[19] EVANS, J. A scalable concurrent malloc (3) implementation for
freebsd. In Proceedings of the BSDCan Conference (Apr. 2006).

[20] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
compact and concurrent memcache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX conference
on Networked Systems Design and Implementation (Berkeley, CA,
USA, 2013), NSDI’13, USENIX Association, pp. 371–384.

[21] GARCIA-MOLINA, H., AND SALEM, K. Main memory database
systems: An overview. IEEE Trans. on Knowl. and Data Eng. 4
(December 1992), 509–516.

[22] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles (New York, NY, USA, 2003), SOSP
’03, ACM, pp. 29–43.

[23] HERTZ, M., AND BERGER, E. D. Quantifying the perfor-
mance of garbage collection vs. explicit memory management.
In Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions (New York, NY, USA, 2005), OOPSLA ’05, ACM, pp. 313–
326.

[24] JONES, R., HOSKING, A., AND MOSS, E. The Garbage Col-
lection Handbook: The Art of Automatic Memory Management,
1st ed. Chapman & Hall/CRC, 2011.

[25] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P. C., MADDEN, S., STONE-
BRAKER, M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-store:
a high-performance, distributed main memory transaction process-
ing system. Proc. VLDB Endow. 1 (August 2008), 1496–1499.

[26] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M., WANG,
R. Y., AND ANDERSON, T. E. Improving the performance of
log-structured file systems with adaptive methods. SIGOPS Oper.
Syst. Rev. 31, 5 (Oct. 1997), 238–251.

[27] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Paral-
lel and Distributed Computing and Systems (Las Vegas, NV, Oct.
1998), pp. 509–518.

[28] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Proceedings of the 10th
USENIX conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2013), NSDI’13, USENIX Associa-
tion, pp. 385–398.

[29] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTERHOUT,
J., AND ROSENBLUM, M. Fast crash recovery in ramcloud. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2011), SOSP ’11, ACM,
pp. 29–41.

[30] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., ONGARO, D., PARULKAR, G., ROSENBLUM, M., RUM-
BLE, S. M., STRATMANN, E., AND STUTSMAN, R. The case
for ramcloud. Commun. ACM 54 (July 2011), 121–130.

[31] ROSENBLUM, M. The design and implementation of a log-
structured file system. PhD thesis, Berkeley, CA, USA, 1992. UMI
Order No. GAX93-30713.

[32] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Trans. Comput.
Syst. 10 (February 1992), 26–52.

[33] RUMBLE, S. M. Memory and Object Management in RAMCloud.
PhD thesis, Stanford, CA, USA, 2014.

[34] SELTZER, M., BOSTIC, K., MCKUSICK, M. K., AND STAELIN,
C. An implementation of a log-structured file system for unix.
In Proceedings of the 1993 Winter USENIX Technical Conference
(Berkeley, CA, USA, 1993), USENIX’93, USENIX Association,
pp. 307–326.

16 12th USENIX Conference on File and Storage Technologies USENIX Association

[35] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H., CHANG,
J., MCMAINS, S., AND PADMANABHAN, V. File system log-
ging versus clustering: a performance comparison. In Proceedings
of the USENIX 1995 Technical Conference (Berkeley, CA, USA,
1995), TCON’95, USENIX Association, pp. 249–264.

[36] TENE, G., IYENGAR, B., AND WOLF, M. C4: the continuously
concurrent compacting collector. In Proceedings of the interna-
tional symposium on Memory management (New York, NY, USA,
2011), ISMM ’11, ACM, pp. 79–88.

[37] WILSON, P. R. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Manage-
ment (London, UK, UK, 1992), IWMM ’92, Springer-Verlag,
pp. 1–42.

[38] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA,
J., MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND STO-
ICA, I. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2012), NSDI’12, USENIX Associa-
tion.

[39] ZORN, B. The measured cost of conservative garbage collection.
Softw. Pract. Exper. 23, 7 (July 1993), 733–756.

USENIX Association 12th USENIX Conference on File and Storage Technologies 17

Strata: Scalable High-Performance Storage on Virtualized Non-volatile
Memory

Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan,
Daniel Stodden, Geoffrey Lefebvre, Daniel Ferstay, and Andrew Warfield

Coho Data
{firstname.lastname}@cohodata.com

Abstract
Strata is a commercial storage system designed around
the high performance density of PCIe flash storage. We
observe a parallel between the challenges introduced by
this emerging flash hardware and the problems that were
faced with underutilized server hardware about a decade
ago. Borrowing ideas from hardware virtualization, we
present a novel storage system design that partitions
functionality into an address virtualization layer for high
performance network-attached flash, and a hosted envi-
ronment for implementing scalable protocol implemen-
tations. Our system targets the storage of virtual machine
images for enterprise environments, and we demonstrate
dynamic scale to over a million IO operations per second
using NFSv3 in 13u of rack space, including switching.

1 Introduction

Flash-based storage devices are fast, expensive and de-
manding: a single device is capable of saturating a
10Gb/s network link (even for random IO), consuming
significant CPU resources in the process. That same de-
vice may cost as much as (or more than) the server in
which it is installed1. The cost and performance char-
acteristics of fast, non-volatile media have changed the
calculus of storage system design and present new chal-
lenges for building efficient and high-performance data-
center storage.

This paper describes the architecture of a commercial
flash-based network-attached storage system, built using
commodity hardware. In designing the system around
PCIe flash, we begin with two observations about the ef-
fects of high-performance drives on large-scale storage
systems. First, these devices are fast enough that in most
environments, many concurrent workloads are needed to

1Enterprise-class PCIe flash drives in the 1TB capacity range cur-
rently carry list prices in the range of $3-5K USD. Large-capacity,
high-performance cards are available for list prices of up to $160K.

fully saturate them, and even a small degree of process-
ing overhead will prevent full utilization. Thus, we must
change our approach to the media from aggregation to
virtualization. Second, aggregation is still necessary to
achieve properties such as redundancy and scale. How-
ever, it must avoid the performance bottleneck that would
result from the monolithic controller approach of a tradi-
tional storage array, which is designed around the obso-
lete assumption that media is the slowest component in
the system. Further, to be practical in existing datacenter
environments, we must remain compatible with existing
client-side storage interfaces and support standard enter-
prise features like snapshots and deduplication.

In this paper we explore the implications of these two ob-
servations on the design of a scalable, high-performance
NFSv3 implementation for the storage of virtual machine
images. Our system is based on the building blocks of
PCIe flash in commodity x86 servers connected by 10
gigabit switched Ethernet. We describe two broad tech-
nical contributions that form the basis of our design:

1. A delegated mapping and request dispatch inter-
face from client data to physical resources through
global data address virtualization, which allows
clients to directly address data while still providing
the coordination required for online data movement
(e.g., in response to failures or for load balancing).

2. SDN-assisted storage protocol virtualization that
allows clients to address a single virtual proto-
col gateway (e.g., NFS server) that is transparently
scaled out across multiple real servers. We have
built a scalable NFS server using this technique, but
it applies to other protocols (such as iSCSI, SMB,
and FCoE) as well.

At its core, Strata uses device-level object storage and
dynamic, global address-space virtualization to achieve
a clean and efficient separation between control and data
paths in the storage system. Flash devices are split into

1

18 12th USENIX Conference on File and Storage Technologies USENIX Association

Device Virtualization Layer (§4)

Network Attached Disks (NADs)

Responsibility: Virtualize a PCIe flash device into multiple address

spaces and allow direct client access with controlled sharing.

Protocol Virtualization Layer (§6)

Scalable Protocol Presentation

Responsibility: Allow the transparently scalable implementation of

traditional IP- and Ethernet-based storage protocols.

Scalable NFSv3

Presents a single external NFS IP address, integrates with SDN

switch to transparently scale and manage connections across

controller instances hosted on each microArray.

CLOS (Coho Log-structured Object Store)

Implements a flat object store, virtualizing the PCIe flash

device’s address space and presents an OSD-like interface to

clients.

libDataPath

NFSv3 instance on each microarray links as a dispatch library.

Data path descriptions are read from a cluster-wide registry

and instantiated as dispatch state machines. NFS forwards

requests through these SMs, interacting directly with NADs.

Central services update data paths in the face of failure, etc.

Global Address Space Virtualization Layer (§3,5)

Delegated Data Paths

Responsibility: Compose device level objects into richer storage

primitives. Allow clients to dispatch requests directly to NADs

while preserving centralized control over placement,

reconfiguration, and failure recovery.

Layer name, core abstraction, and responsibility: Implementation in Strata:

Figure 1: Strata network storage architecture.

virtual address spaces using an object storage-style inter-
face, and clients are then allowed to directly communi-
cate with these address spaces in a safe, low-overhead
manner. In order to compose richer storage abstrac-
tions, a global address space virtualization layer allows
clients to aggregate multiple per-device address spaces
with mappings that achieve properties such as striping
and replication. These delegated address space map-
pings are coordinated in a way that preserves direct client
communications with storage devices, while still allow-
ing dynamic and centralized control over data placement,
migration, scale, and failure response.

Serving this storage over traditional protocols like NFS
imposes a second scalability problem: clients of these
protocols typically expect a single server IP address,
which must be dynamically balanced over multiple
servers to avoid being a performance bottleneck. In or-
der to both scale request processing and to take advan-
tage of full switch bandwidth between clients and stor-
age resources, we developed a scalable protocol presen-
tation layer that acts as a client to the lower layers of our
architecture, and that interacts with a software-defined
network switch to scale the implementation of the proto-
col component of a storage controller across arbitrarily
many physical servers. By building protocol gateways
as clients of the address virtualization layer, we preserve
the ability to delegate scale-out access to device storage
without requiring interface changes on the end hosts that
consume the storage.

2 Architecture

The performance characteristics of emerging storage
hardware demand that we completely reconsider storage
architecture in order to build scalable, low-latency shared

persistent memory. The reality of deployed applications
is that interfaces must stay exactly the same in order for
a storage system to have relevance. Strata’s architecture
aims to take a step toward the first of these goals, while
keeping a pragmatic focus on the second.

Figure 1 characterizes the three layers of Strata’s archi-
tecture. The goals and abstractions of each layer of the
system are on the left-hand column, and the concrete em-
bodiment of these goals in our implementation is on the
right. At the base, we make devices accessible over an
object storage interface, which is responsible for virtual-
izing the device’s address space and allowing clients to
interact with individual virtual devices. This approach
reflects our view that system design for these storage de-
vices today is similar to that of CPU virtualization ten
years ago: devices provide greater performance than is
required by most individual workloads and so require a
lightweight interface for controlled sharing in order to
allow multi-tenancy. We implement a per-device object
store that allows a device to be virtualized into an ad-
dress space of 2128 sparse objects, each of which may be
up to 2

64 bytes in size. Our implementation is similar
in intention to the OSD specification, itself motivated by
network attached secure disks [17]. While not broadly
deployed to date, device-level object storage is receiv-
ing renewed attention today through pNFS’s use of OSD
as a backend, the NVMe namespace abstraction, and in
emerging hardware such as Seagate’s Kinetic drives [37].
Our object storage interface as a whole is not a significant
technical contribution, but it does have some notable in-
terface customizations described in Section 4. We refer
to this layer as a Network Attached Disk, or NAD.

The middle layer of our architecture provides a global
address space that supports the efficient composition of

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 19

IO processors that translate client requests on a virtual
object into operations on a set of NAD-level physical ob-
jects. We refer to the graph of IO processors for a partic-
ular virtual object as its data path, and we maintain the
description of the data path for every object in a global
virtual address map. Clients use a dispatch library to
instantiate the processing graph described by each data
path and perform direct IO on the physical objects at
the leaves of the graph. The virtual address map is ac-
cessed through a coherence protocol that allows central
services to update the data paths for virtual objects while
they are in active use by clients. More concretely, data
paths allow physical objects to be composed into richer
storage primitives, providing properties such as striping
and replication. The goal of this layer is to strike a bal-
ance between scalability and efficiency: it supports direct
client access to device-level objects, without sacrificing
central management of data placement, failure recovery,
and more advanced storage features such as deduplica-
tion and snapshots.

Finally, the top layer performs protocol virtualization to
allow clients to access storage over standard protocols
(such as NFS) without losing the scalability of direct re-
quests from clients to NADs. The presentation layer is
tightly integrated with a 10Gb software-defined Ethernet
switching fabric, allowing external clients the illusion of
connecting to a single TCP endpoint, while transparently
and dynamically balancing traffic to that single IP ad-
dress across protocol instances on all of the NADs. Each
protocol instance is a thin client of the layer below, which
may communicate with other protocol instances to per-
form any additional synchronization required by the pro-
tocol (e.g., to maintain NFS namespace consistency).

The mapping of these layers onto the hardware that our
system uses is shown in Figure 2. Requests travel from
clients into Strata through an OpenFlow-enabled switch,
which dispatches them according to load to the appropri-
ate protocol handler running on a MicroArray (µArray)
— a small host configured with flash devices and enough
network and CPU to saturate them, containing the soft-
ware stack representing a single NAD. For performance,
each of the layers is implemented as a library, allowing a
single process to handle the flow of requests from client
to media. The NFSv3 implementation acts as a client of
the underlying dispatch layer, which transforms requests
on virtual objects into one or more requests on physical
objects, issued through function calls to local physical
objects and by RPC to remote objects. While the focus
of the rest of this paper is on this concrete implementa-
tion of scale-out NFS, it is worth noting that the design
is intended to allow applications the opportunity to link
directly against the same data path library that the NFS
implementation uses, resulting in a multi-tenant, multi-

VMware

ESX Host

VMware

ESX Host

VMware

ESX Host

Virtual NFS server 10.150.1.1

Protocol Virtualizaiton

(Scalable NFSv3)

Arrows show NFS

connections and

associated requests.

Middle host connection

omited for clarity.

Global Address Space

Virtualization

(libDataDispatch)

Device Virtualization

(CLOS)

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

10Gb SDN Switch

Figure 2: Hardware view of a Strata deployment

presentation storage system with a minimum of network
and device-level overhead.

2.1 Scope of this Work

There are three aspects of our design that are not consid-
ered in detail within this presentation. First, we only dis-
cuss NFS as a concrete implementation of protocol vir-
tualization. Strata has been designed to host and support
multiple protocols and tenants, but our initial product re-
lease is specifically NFSv3 for VMware clients, so we
focus on this type of deployment in describing the im-
plementation. Second, Strata was initially designed to be
a software layer that is co-located on the same physical
servers that host virtual machines. We have moved to a
separate physical hosting model where we directly build
on dedicated hardware, but there is nothing that prevents
the system from being deployed in a more co-located (or
“converged”) manner. Finally, our full implementation
incorporates a tier of spinning disks on each of the stor-
age nodes to allow cold data to be stored more econom-
ically behind the flash layer. However, in this paper we
configure and describe a single-tier, all-flash system to
simplify the exposition.

In the next sections we discuss three relevant aspects of
Strata—address space virtualization, dynamic reconfig-
uration, and scalable protocol support—in more detail.
We then describe some specifics of how these three com-
ponents interact in our NFSv3 implementation for VM
image storage before providing a performance evaluation
of the system as a whole.

3

20 12th USENIX Conference on File and Storage Technologies USENIX Association

3 Data Paths

Strata provides a common library interface to data that
underlies the higher-level, client-specific protocols de-
scribed in Section 6. This library presents a notion of
virtual objects, which are available cluster-wide and may
comprise multiple physical objects bundled together for
parallel data access, fault tolerance, or other reasons
(e.g., data deduplication). The library provides a su-
perset of the object storage interface provided by the
NADs (Section 4), with additional interfaces to man-
age the placement of objects (and ranges within objects)
across NADs, to maintain data invariants (e.g., replica-
tion levels and consistent updates) when object ranges
are replicated or striped, and to coordinate both concur-
rent access to data and concurrent manipulation of the
virtual address maps describing their layout.

To avoid IO bottlenecks, users of the data path inter-
face (which may be native clients or protocol gateways
such as our NFS server) access data directly. To do so,
they map requests from virtual objects to physical ob-
jects using the virtual address map. This is not simply
a pointer from a virtual object (id, range) pair to a set
of physical object (id, range) pairs. Rather, each vir-
tual range is associated with a particular processor for
that range, along with processor-specific context. Strata
uses a dispatch-oriented programming model in which a
pipeline of operations is performed on requests as they
are passed from an originating client, through a set of
transformations, and eventually to the appropriate stor-
age device(s). Our model borrows ideas from packet pro-
cessing systems such as X-Kernel [19], Scout [25], and
Click [21], but adapts them to a storage context, in which
modules along the pipeline perform translations through
a set of layered address spaces, and may fork and/or col-
lect requests and responses as they are passed.

The dispatch library provides a collection of request pro-
cessors, which can stand alone or be combined with other
processors. Each processor takes a storage request (e.g.,
a read or write request) as input and produces one or
more requests to its children. NADs expose isolated
sparse objects; processors perform translations that allow
multiple objects to be combined for some functional pur-
pose, and present them as a single object, which may in
turn be used by other processors. The idea of request-
based address translation to build storage features has
been used in other systems [24, 35, 36], often as the ba-
sis for volume management; Strata disentangles it from
the underlying storage system and treats it as a first-class
dispatch abstraction.

The composition of dispatch modules bears similarity to
Click [21], but the application in a storage domain car-
ries a number of differences. First, requests are gener-

ally acknowledged at the point that they reach a storage
device, and so as a result they differ from packet for-
warding logic in that they travel both down and then
back up through a dispatch stack; processors contain
logic to handle both requests and responses. Second,
it is common for requests to be split or merged as they
traverse a processor — for example, a replication pro-
cessor may duplicate a request and issue it to multiple
nodes, and then collect all responses before passing a
single response back up to its parent. Finally, while pro-
cessors describe fast, library-based request dispatching
logic, they typically depend on additional facilities from
the system. Strata allows processor implementations ac-
cess to APIs for shared, cluster-wide state which may
be used on a control path to, for instance, store replica
configuration. It additionally provides facilities for back-
ground functionality such as NAD failure detection and
response. The intention of the processor organization is
to allow dispatch decisions to be pushed out to client im-
plementations and be made with minimal performance
impact, while still benefiting from common system-wide
infrastructure for maintaining the system and responding
to failures. The responsibilities of the dispatch library are
described in more detail in the following subsections.

3.1 The Virtual Address Map

/objects/112:
type=regular dispatch={object=111

type=dispatch}

/objects/111:
type=dispatch
stripe={stripecount=8 chunksize=524288

0={object=103 type=dispatch}
1={object=104 type=dispatch}}

/objects/103:
type=dispatch
rpl={policy=mirror storecount=2

{storeid=a98f2... state=in-sync}
{storeid=fc89f... state=in-sync}}

Figure 3: Virtual object to physical object range mapping

Figure 3 shows the relevant information stored in the vir-
tual address map for a typical object. Each object has
an identifier, a type, some type-specific context, and may
contain other metadata such as cached size or modifica-
tion time information (which is not canonical, for reasons
discussed below).

The entry point into the virtual address map is a regular
object. This contains no location information on its own,
but delegates to a top-level dispatch object. In Figure 3,
object 112 is a regular object that delegates to a dispatch
processor whose context is identified by object 111 (the
IDs are in reverse order here because the dispatch graph

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 21

is created from the bottom up, but traversed from the top
down). Thus when a client opens file 112, it instantiates
a dispatcher using the data in object 111 as context. This
context informs the dispatcher that it will be delegating
IO through a striped processor, using 2 stripes for the ob-
ject and a stripe width of 512K. The dispatcher in turn in-
stantiates 8 processors (one for each stripe), each config-
ured with the information stored in the object associated
with each stripe (e.g., stripe 0 uses object 103). Finally,
when the stripe dispatcher performs IO on stripe 0, it will
use the context in the object descriptor for object 103 to
instantiate a replicated processor, which mirrors writes
to the NADs listed in its replica set, and issues reads to
the nearest in sync replica (where distance is currently
simply local or remote).

In addition to the striping and mirroring processors de-
scribed here, the map can support other more advanced
processors, such as erasure coding, or byte-range map-
pings to arbitrary objects (which supports among other
things data deduplication).

3.2 Dispatch

IO requests are handled by a chain of dispatchers, each
of which has some common functionality. Dispatchers
may have to fragment requests into pieces if they span
the ranges covered by different subprocessors, or clone
requests into multiple subrequests (e.g., for replication),
and they must collect the results of subrequests and deal
with partial failures.

The replication and striping modules included in the
standard library are representative of the ways processors
transform requests as they traverse a dispatch stack. The
replication processor allows a request to be split and is-
sued concurrently to a set of replica objects. The request
address remains unchanged within each object, and re-
sponses are not returned until all replicas have acknowl-
edged a request as complete. The processor prioritizes
reading from local replicas, but forwards requests to re-
mote replicas in the event of a failure (either an error
response or a timeout). It imposes a global ordering on
write requests and streams them to all replicas in parallel.
It also periodically commits a light-weight checkpoint to
each replica’s log to maintain a persistent record of syn-
chronization points; these checkpoints are used for crash
recovery (Section 5.1.3).

The striping processor distributes data across a collection
of sparse objects. It is parameterized to take a stripe size
(in bytes) and a list of objects to act as the ordered stripe
set. In the event that a request crosses a stripe boundary,
the processor splits that request into a set of per-stripe re-
quests and issues those asynchronously, collecting the re-
sponses before returning. Static, address-based striping

is a relatively simple load balancing and data distribu-
tion mechanism as compared to placement schemes such
as consistent hashing [20]. Our experience has been that
the approach is effective, because data placement tends
to be reasonably uniform within an object address space,
and because using a reasonably large stripe size (we de-
fault to 512KB) preserves locality well enough to keep
request fragmentation overhead low in normal operation.

3.3 Coherence

Strata clients also participate in a simple coordination
protocol in order to allow the virtual address map for a
virtual object to be updated even while that object is in
use. Online reconfiguration provides a means for recov-
ering from failures, responding to capacity changes, and
even moving objects in response to observed or predicted
load (on a device basis — this is distinct from client load
balancing, which we also support through a switch-based
protocol described in Section 6.2).

The virtual address maps are stored in a distributed,
synchronized configuration database implemented over
Apache Zookeeper, which is also available for any low-
bandwidth synchronization required by services else-
where in the software stack. The coherence protocol is
built on top of the configuration database. It is currently
optimized for a single writer per object, and works as fol-
lows: when a client wishes to write to a virtual object, it
first claims a lock for it in the configuration database. If
the object is already locked, the client requests that the
holder release it so that the client can claim it. If the
holder does not voluntarily release it within a reasonable
time, the holder is considered unresponsive and fenced
from the system using the mechanism described in Sec-
tion 6.2. This is enough to allow movement of objects,
by first creating new, out of sync physical objects at the
desired location, then requesting a release of the object’s
lock holder if there is one. The user of the object will
reacquire the lock on the next write, and in the process
discover the new out of sync replica and initiate resyn-
chronization. When the new replica is in sync, the same
process may be repeated to delete replicas that are at un-
desirable locations.

4 Network Attached Disks

The unit of storage in Strata is a Network Attached Disk
(NAD), consisting of a balanced combination of CPU,
network and storage components. In our current hard-
ware, each NAD has two 10 gigabit Ethernet ports, two
PCIe flash cards capable of 10 gigabits of throughput
each, and a pair of Xeon processors that can keep up
with request load and host additional services alongside
the data path. Each NAD provides two distinct services.

5

22 12th USENIX Conference on File and Storage Technologies USENIX Association

First, it efficiently multiplexes the raw storage hardware
across multiple concurrent users, using an object stor-
age protocol. Second, it hosts applications that provide
higher level services over the cluster. Object rebalanc-
ing (Section 5.2.1) and the NFS protocol interface (Sec-
tion 6.1) are examples of these services.

At the device level, we multiplex the underlying storage
into objects, named by 128-bit identifiers and consisting
of sparse 2

64 byte data address spaces. These address
spaces are currently backed by a garbage-collected log-
structured object store, but the implementation of the ob-
ject store is opaque to the layers above and could be re-
placed if newer storage technologies made different ac-
cess patterns more efficient. We also provide increased
capacity by allowing each object to flush low priority or
infrequently used data to disk, but this is again hidden
behind the object interface. The details of disk tiering,
garbage collection, and the layout of the file system are
beyond the scope of this paper.

The physical object interface is for the most part a tradi-
tional object-based storage device [37, 38] with a CRUD
interface for sparse objects, as well as a few extensions
to assist with our clustering protocol (Section 5.1.2). It
is significantly simpler than existing block device inter-
faces, such as the SCSI command set, but is also intended
to be more direct and general purpose than even narrower
interfaces such as those of a key-value store. Providing
a low-level hardware abstraction layer allows the imple-
mentation to be customized to accommodate best prac-
tices of individual flash implementations, and also al-
lows more dramatic design changes at the media inter-
face level as new technologies become available.

4.1 Network Integration

As with any distributed system, we must deal with mis-
behaving nodes. We address this problem by tightly cou-
pling with managed Ethernet switches, which we discuss
at more length in Section 6.2. This approach borrows
ideas from systems such as Sane [8] and Ethane [7],
in which a managed network is used to enforce isola-
tion between independent endpoints. The system inte-
grates with both OpenFlow-based switches and software
switching at the VMM to ensure that Strata objects are
only addressable by their authorized clients.

Our initial implementation used Ethernet VLANs, be-
cause this form of hardware-supported isolation is in
common use in enterprise environments. In the current
implementation, we have moved to OpenFlow, which
provides a more flexible tunneling abstraction for traffic
isolation.

We also expose an isolated private virtual network for

out-of-band control and management operations internal
to the cluster. This allows NADs themselves to access
remote objects for peer-wise resynchronization and reor-
ganization under the control of a cluster monitor.

5 Online Reconfiguration

There are two broad categories of events to which Strata
must respond in order to maintain its performance and
reliability properties. The first category includes faults
that occur directly on the data path. The dispatch library
recovers from such faults immediately and automatically
by reconfiguring the affected virtual objects on behalf of
the client. The second category includes events such as
device failures and load imbalance. These are handled by
a dedicated cluster monitor which performs large-scale
reconfiguration tasks to maintain the health of the system
as a whole. In all cases, reconfiguration is performed
online and has minimal impact on client availability.

5.1 Object Reconfiguration

A number of error recovery mechanisms are built directly
into the dispatch library. These mechanisms allow clients
to quickly recover from failures by reconfiguring individ-
ual virtual objects on the data path.

5.1.1 IO Errors

The replication IO processor responds to read errors in
the obvious way: by immediately resubmitting failed re-
quests to different replicas. In addition, clients maintain
per-device error counts; if the aggregated error count for
a device exceeds a configurable threshold, a background
task takes the device offline and coordinates a system-
wide reconfiguration (Section 5.2.2).

IO processors respond to write errors by synchronously
reconfiguring virtual objects at the time of the failure.
This involves three steps. First, the affected replica is
marked out of sync in the configuration database. This
serves as a global, persistent indication that the replica
may not be used to serve reads because it contains poten-
tially stale data. Second, a best-effort attempt is made to
inform the NAD of the error so that it can initiate a back-
ground task to resynchronize the affected replica. This
allows the system to recover from transient failures al-
most immediately. Finally, the IO processor allocates a
special patch object on a separate device and adds this to
the replica set. Once a replica has been marked out of
sync, no further writes are issued to it until it has been
resynchronized; patches prevent device failures from im-
peding progress by providing a temporary buffer to ab-
sorb writes under these degraded conditions. With the
patch object allocated, the IO processor can continue to

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 23

meet the replication requirements for new writes while
out of sync replicas are repaired in the background. A
replica set remains available as long as an in sync replica
or an out of sync replica and all of its patches are avail-
able.

5.1.2 Resynchronization

In addition to providing clients direct access to devices
via virtual address maps, Strata provides a number of
background services to maintain the health of individ-
ual virtual objects and the system as a whole. The most
fundamental of these is the resync service, which pro-
vides a background task that can resynchronize objects
replicated across multiple devices.

Resync is built on top of a special NAD resync API
that exposes the underlying log structure of the object
stores. NADs maintain a Log Serial Number (LSN) with
every physical object in their stores; when a record is
appended to an object’s log, its LSN is monotonically in-
cremented. The IO processor uses these LSNs to impose
a global ordering on the changes made to physical ob-
jects that are replicated across stores and to verify that
all replicas have received all updates.

If a write failure causes a replica to go out of sync,
the client can request the system to resynchronize the
replica. It does this by invoking the resync RPC on
the NAD which hosts the out of sync replica. The server
then starts a background task which streams the miss-
ing log records from an in sync replica and applies them
to the local out of sync copy, using the LSN to identify
which records the local copy is missing.

During resync, the background task has exclusive write
access to the out of sync replica because all clients have
been reconfigured to use patches. Thus the resync task
can chase the tail of the in sync object’s log while clients
continue to write. When the bulk of the data has been
copied, the resync task enters a final stop-and-copy phase
in which it acquires exclusive write access to all repli-
cas in the replica set, finalizes the resync, applies any
client writes received in the interim, marks the replica as
in sync in the configuration database, and removes the
patch.

It is important to ensure that resync makes timely
progress to limit vulnerability to data loss. Very heavy
client write loads may interfere with resync tasks and, in
the worst case, result in unbounded transfer times. For
this reason, when an object is under resync, client writes
are throttled and resync requests are prioritized.

5.1.3 Crash Recovery

Special care must be taken in the event of an unclean
shutdown. On a clean shutdown, all objects are released
by removing their locks from the configuration database.
Crashes are detected when replica sets are discovered
with stale locks (i.e., locks identifying unresponsive IO
processors). When this happens, it is not safe to assume
that replicas marked in sync in the configuration database
are truly in sync, because a crash might have occured
midway through a the configuration database update; in-
stead, all the replicas in the set must be queried directly
to determine their states.

In the common case, the IO processor retrieves the LSN
for every replica in the set and determines which replicas,
if any, are out of sync. If all replicas have the same LSN,
then no resynchronization is required. If different LSNs
are discovered, then the replica with the highest LSN is
designated as the authoritative copy, and all other repli-
cas are marked out of sync and resync tasks are initiated.

If a replica cannot be queried during the recovery pro-
cedure, it is marked as diverged in the configuration
database and the replica with the highest LSN from the
remaining available replicas is chosen as the authorita-
tive copy. In this case, writes may have been committed
to the diverged replica that were not committed to any
others. If the diverged replica becomes available again
some time in the future, these extra writes must be dis-
carded. This is achieved by rolling the replica back to its
last checkpoint and starting a resync from that point in its
log. Consistency in the face of such rollbacks is guaran-
teed by ensuring that objects are successfully marked out
of sync in the configuration database before writes are
acknowledged to clients. Thus write failures are guar-
anteed to either mark replicas out of sync in the config-
uration database (and create corresponding patches) or
propagate back to the client.

5.2 System Reconfiguration

Strata also provides a highly-available monitoring ser-
vice that watches over the health of the system and co-
ordinates system-wide recovery procedures as necessary.
Monitors collect information from clients, SMART di-
agnostic tools, and NAD RPCs to gauge the status of the
system. Monitors build on the per-object reconfigura-
tion mechanisms described above to respond to events
that individual clients don’t address, such as load imbal-
ance across the system, stores nearing capacity, and de-
vice failures.

7

24 12th USENIX Conference on File and Storage Technologies USENIX Association

5.2.1 Rebalance

Strata provides a rebalance facility which is capable of
performing system-wide reconfiguration to repair broken
replicas, prevent NADs from filling to capacity, and im-
prove load distribution across NADs. This facility is in
turn used to recover from device failures and expand onto
new hardware.

Rebalance proceeds in two stages. In the first stage, the
monitor retrieves the current system configuration, in-
cluding the status of all NADs and virtual address map of
every virtual object. It then constructs a new layout for
the replicas according to a customizable placement pol-
icy. This process is scriptable and can be easily tailored
to suit specific performance and durability requirements
for individual deployments (see Section 7.3 for some
analysis of the effects of different placement policies).
The default policy uses a greedy algorithm that consid-
ers a number of criteria designed to ensure that replicated
physical objects do not share fault domains, capacity im-
balances are avoided as much as possible, and migration
overheads are kept reasonably low. The new layout is
formulated as a rebalance plan describing what changes
need to be applied to individual replica sets to achieve
the desired configuration.

In the second stage, the monitor coordinates the execu-
tion of the rebalance plan by initiating resync tasks on
individual NADs to effect the necessary data migration.
When replicas need to be moved, the migration is per-
formed in three steps:

1. A new replica is added to the destination NAD

2. A resync task is performed to transfer the data

3. The old replica is removed from the source NAD

This requires two reconfiguration events for the replica
set, the first to extend it to include the new replica, and
the second to prune the original after the resync has com-
pleted. The monitor coordinates this procedure across all
NADs and clients for all modified virtual objects.

5.2.2 Device Failure

Strata determines that a NAD has failed either when it
receives a hardware failure notification from a respon-
sive NAD (such as a failed flash device or excessive error
count) or when it observes that a NAD has stopped re-
sponding to requests for more than a configurable time-
out. In either case, the monitor responds by taking the
NAD offline and initiating a system-wide reconfiguration
to repair redundancy.

The first thing the monitor does when taking a NAD of-
fline is to disconnect it from the data path VLAN. This is

a strong benefit of integrating directly against an Ether-
net switch in our environment: prior to taking corrective
action, the NAD is synchronously disconnected from the
network for all request traffic, avoiding the distributed
systems complexities that stem from things such as over-
loaded components appearing to fail and then returning
long after a timeout in an inconsistent state. Rather than
attempting to use completely end-host mechanisms such
as watchdogs to trigger reboots, or agreement protocols
to inform all clients of a NAD’s failure, Strata disables
the VLAN and requires that the failed NAD reconnect on
the (separate) control VLAN in the event that it returns
to life in the future.

From this point, the recovery logic is straight for-
ward. The NAD is marked as failed in the configura-
tion database and a rebalance job is initiated to repair
any replica sets containing replicas on the failed NAD.

5.2.3 Elastic Scale Out

Strata responds to the introduction of new hardware
much in the same way that it responds to failures. When
the monitor observes that new hardware has been in-
stalled, it uses the rebalance facility to generate a layout
that incorporates the new devices. Because replication is
generally configured underneath striping, we can migrate
virtual objects at the granularity of individual stripes, al-
lowing a single striped file to exploit the aggregated per-
formance of many devices. Objects, whether whole files
or individual stripes, can be moved to another NAD even
while the file is online, using the existing resync mech-
anism. New NADs are populated in a controlled man-
ner to limit the impact of background IO on active client
workloads.

6 Storage Protocols

Strata supports legacy protocols by providing an execu-
tion runtime for hosting protocol servers. Protocols are
built as thin presentation layers on top of the dispatch
interfaces; multiple protocol instances can operate side
by side. Implementations can also leverage SDN-based
protocol scaling to transparently spread multiple clients
across the distributed runtime environment.

6.1 Scalable NFS

Strata is designed so that application developers can fo-
cus primarily on implementing protocol specifications
without worrying much about how to organize data on
disk. We expect that many storage protocols can be im-
plemented as thin wrappers around the provided dispatch
library. Our NFS implementation, for example, maps
very cleanly onto the high-level dispatch APIs, providing

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 25

only protocol-specific extensions like RPC marshalling
and NFS-style access control. It takes advantage of the
configuration database to store mappings between the
NFS namespace and the backend objects, and it relies
exclusively on the striping and replication processors to
implement the data path. Moreover, Strata allows NFS
servers to be instantiated across multiple backend nodes,
automatically distributing the additional processing over-
head across backend compute resources.

6.2 SDN Protocol Scaling

Scaling legacy storage protocols can be challenging, es-
pecially when the protocols were not originally designed
for a distributed back end. Protocol scalability limita-
tions may not pose significant problems for traditional
arrays, which already sit behind relatively narrow net-
work interfaces, but they can become a performance bot-
tleneck in Strata’s distributed architecture.

A core property that limits scale of access bandwidth of
conventional IP storage protocols is the presentation of
storage servers behind a single IP address. Fortunately,
emerging “software defined” network (SDN) switches
provide interfaces that allow applications to take more
precise control over packet forwarding through Ethernet
switches than has traditionally been possible.

Using the OpenFlow protocol, a software controller is
able to interact with the switch by pushing flow-specific
rules onto the switch’s forwarding path. OpenFlow rules
are effectively wild-carded packet filters and associated
actions that tell a switch what to do when a matching
packet is identified. SDN switches (our implementation
currently uses an Arista Networks 7050T-52) interpret
these flow rules and push them down onto the switch’s
TCAM or L2/L3 forwarding tables.

By manipulating traffic through the switch at the gran-
ularity of individual flows, Strata protocol implementa-
tions are able to present a single logical IP address to
multiple clients. Rules are installed on the switch to trig-
ger a fault event whenever a new NFS session is opened,
and the resulting exception path determines which pro-
tocol instance to forward that session to initially. A ser-
vice monitors network activity and migrates client con-
nections as necessary to maintain an even workload dis-
tribution.

The protocol scaling API wraps and extends the conven-
tional socket API, allowing a protocol implementation
to bind to and listen on a shared IP address across all
of its instances. The client load balancer then monitors
the traffic demands across all of these connections and
initiates flow migration in response to overload on any
individual physical connection.

In its simplest form, client migration is handled entirely
at the transport layer. When the protocol load balancer
observes that a specific NAD is overloaded, it updates
the routing tables to redirect the busiest client workload
to a different NAD. Once the client’s traffic is diverted, it
receives a TCP RST from the new NAD and establishes
a new connection, thereby transparently migrating traffic
to the new NAD.

Strata also provides hooks for situations where appli-
cation layer coordination is required to make migra-
tion safe. For example, our NFS implementation reg-
isters a pre-migration routine with the load balancer,
which allows the source NFS server to flush any pending,
non-idempotent requests (such as create or remove)
before the connection is redirected to the destination
server.

7 Evaluation

In this section we evaluate our system both in terms of
effective use of flash resources, and as a scalable, reli-
able provider of storage for NFS clients. First, we estab-
lish baseline performance over a traditional NFS server
on the same hardware. Then we evaluate how perfor-
mance scales as nodes are added and removed from the
system, using VM-based workloads over the legacy NFS
interface, which is oblivious to cluster changes. In addi-
tion, we compare the effects of load balancing and object
placement policy on performance. We then test reliabil-
ity in the face of node failure, which is a crucial feature of
any distributed storage system. We also examine the rela-
tion between CPU power and performance in our system
as a demonstration of the need to balance node power
between flash, network and CPU.

7.1 Test environment

Evaluation was performed on a cluster of the maximum
size allowed by our 48-port switch: 12 NADs, each of
which has two 10 gigabit Ethernet ports, two 800 GB In-
tel 910 PCIe flash cards, 6 3 TB SATA drives, 64 GB of
RAM, and 2 Xen E5-2620 processors at 2 GHz with 6
cores/12 threads each, and 12 clients, in the form of Dell
PowerEdge R420 servers running ESXi 5.0, with two 10
gigabit ports each, 64 GB of RAM, and 2 Xeon E5-2470
processors at 2.3 GHz with 8 cores/16 threads each. We
configured the deployment to maintain two replicas of
every stored object, without striping (since it unneces-
sarily complicates placement comparisons and has little
benefit for symmetric workloads). Garbage collection is
active, and the deployment is in its standard configura-
tion with a disk tier enabled, but the workloads have been
configured to fit entirely within flash, as the effects of

9

26 12th USENIX Conference on File and Storage Technologies USENIX Association

Server Read IOPS Write IOPS
Strata 40287 9960
KNFS 23377 5796

Table 1: Random IO performance on Strata versus
KNFS.

cache misses to magnetic media are not relevant to this
paper.

7.2 Baseline performance

To provide some performance context for our architec-
ture versus a typical NFS implementation, we compare
two minimal deployments of NFS over flash. We set
Strata to serve a single flash card, with no replication
or striping, and mounted it loopback. We ran a fio [34]
workload with a 4K IO size 80/20 read-write mix at a
queue depth of 128 against a fully allocated file. We then
formatted the flash card with ext4, exported it with the
linux kernel NFS server, and ran the same test. The re-
sults are in Table 1. As the table shows, we offer good
NFS performance at the level of individual devices. In
the following section we proceed to evaluate scalability.

Seconds
0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140

IO
PS

 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

Figure 4: IOPS over time, read-only workload.

7.3 Scalability

In this section we evaluate how well performance scales
as we add NADs to the cluster. We begin each test by de-
ploying 96 VMs (8 per client) into a cluster of 2 NADs.
We choose this number of VMs because ESXi limits the
queue depth for a VM to 32 outstanding requests, but we
do not see maximum performance until a queue depth of
128 per flash card. The VMs are each configured to run
the same fio workload for a given test. In Figure 4, fio
generates 4K random reads to focus on IOPS scalabil-
ity. In Figure 5, fio generates an 80/20 mix of reads and
writes at 128K block size in a Pareto distribution such

that 80% of requests go to 20% of the data. This is meant
to be more representative of real VM workloads, but with
enough offered load to completely saturate the cluster.

Seconds
0 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320 4680 5040 5400 5760 6120 6480 6840

IO
PS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Figure 5: IOPS over time, 80/20 R/W workload.

As the tests run, we periodically add NADs, two at a
time, up to a maximum of twelve2. When each pair of
NADs comes online, a rebalancing process automatically
begins to move data across the cluster so that the amount
of data on each NAD is balanced. When it completes,
we run in a steady state for two minutes and then add
the next pair. In both figures, the periods where rebal-
ancing is in progress are reflected by a temporary drop
in performance (as the rebalance process competes with
client workloads for resources), followed by a rapid in-
crease in overall performance when the new nodes are
marked available, triggering the switch to load-balance
clients to them. A cluster of 12 NADs achieves over
1 million IOPS in the IOPS test, and 10 NADs achieve
70,000 IOPS (representing more than 9 gigabytes/second
of throughput) in the 80/20 test.

We also test the effect of placement and load balancing
on overall performance. If the location of a workload
source is unpredictable (as in a VM data center with vir-
tual machine migration enabled), we need to be able to
migrate clients quickly in response to load. However,
if the configuration is more static or can be predicted
in advance, we may benefit from attempting to place
clients and data together to reduce the network over-
head incurred by remote IO requests. As discussed in
Section 5.2.1, the load-balancing and data migration fea-
tures of Strata make both approaches possible. Figure 4
is the result of an aggressive local placement policy, in
which data is placed on the same NAD as its clients, and
both are moved as the number of devices changes. This
achieves the best possible performance at the cost of con-
siderable data movement. In contrast, Figure 6 shows the

2ten for the read/write test due to an unfortunate test harness prob-
lem

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 27

Seconds
0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140 7560

IO
PS

 0

100000

200000

300000

400000

Figure 6: IOPS over time, read-only workload with ran-
dom placement

performance of an otherwise identical test configuration
when data is placed randomly (while still satisfying fault
tolerance and even distribution constraints), rather than
being moved according to client requests. The pareto
workload (Figure 5) is also configured with the default
random placement policy, which is the main reason that
it does not scale linearly: as the number of nodes in-
creases, so does the probability that a request will need
to be forwarded to a remote NAD.

7.4 Node Failure

As a counterpoint to the scalability tests run in the pre-
vious section, we also tested the behaviour of the cluster
when a node is lost. We configured a 10 NAD cluster
with 10 clients hosting 4 VMs each, running the 80/20
Pareto workload described earlier. Figure 7 shows the
behaviour of the system during this experiment. After
the VMs had been running for a short time, we powered
off one of the NADs by IPMI, waited 60 seconds, then
powered it back on. During the node outage, the system
continued to run uninterrupted but with lower through-
put. When the node came back up, it spent some time
resynchronizing its objects to restore full replication to
the system, and then rejoined the cluster. The client load
balancer shifted clients onto it and throughput was re-
stored (within the variance resulting from the client load
balancer’s placement decisions).

7.5 Protocol overhead

The benchmarks up to this point have all been run in-
side VMs whose storage is provided by a virtual disk
that Strata exports by NFS to ESXi. This configuration
requires no changes on the part of the clients to scale
across a cluster, but does impose overheads. To quan-
tify these overheads we wrote a custom fio engine that

Seconds
0 60 120 180 240 300 360 420

G
B/

s

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7: Aggregate bandwidth for 80/20 clients during
failover and recovery

CPU IOPS Freq (Cores) Price
E5-2620 127K 2 GHz (6) $406
E5-2640 153K (+20%) 2.5 GHz (6) $885
E5-2650v2 188K (+48%) 2.6 GHz (8) $1166
E5-2660v2 183K (+44%) 2.2 GHz (10) $1389

Table 2: Achieved IOPS on an 80/20 random 4K work-
load across 2 MicroArrays

is capable of performing IO directly against our native
dispatch interface (that is, the API by which our NFS
protocol gateway interacts with the NADs). We then
compared the performance of a single VM running a ran-
dom 4k read fio workload (for maximum possible IOPS)
against a VMDK exported by NFS to the same workload
run against our native dispatch engine. In this experi-
ment, the VMDK-based experiment produced an average
of 50240 IOPS, whereas direct access achieved 54060
IOPS, for an improvement of roughly 8%.

7.6 Effect of CPU on Performance

A workload running at full throttle with small requests
completely saturates the CPU. This remains true de-
spite significant development effort in performance de-
bugging, and a great many improvements to minimize
data movement and contention. In this section we re-
port the performance improvements resulting from faster
CPUs. These results are from random 4K NFS requests
in an 80/20 readwrite mix at 128 queue depth over four
10Gb links to a cluster of two NADs, each equipped with
2 physical CPUs.

Table 2 shows the results of these tests. In short, it is
possible to “buy” additional storage performance under
full load by upgrading the CPUs into a more “balanced”
configuration. The wins are significant and carry a non-
trivial increase in the system cost. As a result of this

11

28 12th USENIX Conference on File and Storage Technologies USENIX Association

experimentation, we elected to use a higher performance
CPU in the shipping version of the product.

8 Related Work

Strata applies principles from prior work in server virtu-
alization, both in the form of hypervisor [5, 32] and lib-
OS [14] architectures, to solve the problem of sharing
and scaling access to fast non-volatile memories among
a heterogeneous set of clients. Our contributions build
upon the efforts of existing research in several areas.

Recently, researchers have begin to investigate a broad
range of system performance problems posed by stor-
age class memory in single servers [3], including current
PCIe flash devices [30], next generation PCM [1], and
byte addressability [13]. Moneta [9] proposed solutions
to an extensive set of performance bottlenecks over the
PCIe bus interface to storage, and others have investi-
gated improving the performance of storage class mem-
ory through polling [33], and avoiding system call over-
heads altogether [10]. We draw from this body of work
to optimize the performance of our dispatch library, and
use this baseline to deliver a high performance scale-out
network storage service. In many cases, we would ben-
efit further from these efforts—for example, our imple-
mentation could be optimized to offload per-object ac-
cess control checks, as in Moneta-D [10]. There is also a
body of work on efficiently using flash as a caching layer
for slower, cheaper storage in the context of large file
hosting. For example, S-CAVE [23] optimizes cache uti-
lization on flash for multiple virtual machines on a single
VMware host by running as a hypervisor module. This
work is largely complementary to ours; we support us-
ing flash as a caching layer and would benefit from more
effective cache management strategies.

Prior research into scale-out storage systems, such as
FAWN [2], and Corfu [4] has considered the impact of
a range of NV memory devices on cluster storage per-
formance. However, to date these systems have been de-
signed towards lightweight processors paired with sim-
ple flash devices. It is not clear that this balance is
the correct one, as evidenced by the tendency to eval-
uate these same designs on significantly more powerful
hardware platforms than they are intended to operate [4].
Strata is explicitly designed for dense virtualized server
clusters backed by performance-dense PCIe-based non-
volatile memory. In addition, like older commodity disk-
oriented systems including Petal [22, 29] and FAB [28],
prior storage systems have tended to focus on building
aggregation features at the lowest level of their designs,
and then adding a single presentation layer on top. Strata
in contrasts isolates shares each powerful PCIe-based
storage class memory as its underlying primitive. This

has allowed us to present a scalable runtime environment
in which multiple protocols can coexist as peers with-
out sacrificing the raw performance that today’s high per-
formance memory can provide. Many scale-out storage
systems, including NV-Heaps [12], Ceph/RADOS [31],
and even PNFS [18] are unable to support the legacy for-
mats in enterprise environments. Our agnosticism to any
particular protocol is similar to approach used by Ursa
Minor [16], which also boasted a versatile client library
protocol to share access to a cluster of magnetic disks.

Strata does not attempt to provide storage for datacenter-
scale environments, unlike systems including Azure [6],
FDS [26], or Bigtable [11]. Storage systems in this space
differ significantly in their intended workload, as they
emphasize high throughput linear operations. Strata’s
managed network would also need to be extended to
support datacenter-sized scale out. We also differ from
in-RAM approaches such a RAMCloud [27] and mem-
cached [15], which offer a different class of durability
guarantee and cost.

9 Conclusion

Storage system design faces a sea change resulting from
the dramatic increase in the performance density of its
component media. Distributed storage systems com-
posed of even a small number of network-attached flash
devices are now capable of matching the offered load
of traditional systems that would have required multiple
racks of spinning disks.

Strata is an enterprise storage architecture that responds
to the performance characteristics of PCIe storage de-
vices. Using building blocks of well-balanced flash,
compute, and network resources and then pairing the
design with the integration of SDN-based Ethernet
switches, Strata provides an incrementally deployable,
dynamically scalable storage system.

Strata’s initial design is specifically targeted at enterprise
deployments of VMware ESX, which is one of the dom-
inant drivers of new storage deployments in enterprise
environments today. The system achieves high perfor-
mance and scalability for this specific NFS environment
while allowing applications to interact directly with vir-
tualized, network-attached flash hardware over new pro-
tocols. This is achieved by cleanly partitioning our stor-
age implementation into an underlying, low-overhead
virtualization layer and a scalable framework for imple-
menting storage protocols. Over the next year, we intend
to extend the system to provide general-purpose NFS
support by layering a scalable and distributed metadata
service and small object support above the base layer of
coarse-grained storage primitives.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 29

References

[1] AKEL, A., CAULFIELD, A. M., MOLLOV, T. I.,
GUPTA, R. K., AND SWANSON, S. Onyx: a pro-
toype phase change memory storage array. In Pro-
ceedings of the 3rd USENIX conference on Hot
topics in storage and file systems (Berkeley, CA,
USA, 2011), HotStorage’11, USENIX Association,
pp. 2–2.

[2] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY,
M., PHANISHAYEE, A., TAN, L., AND VASUDE-
VAN, V. Fawn: a fast array of wimpy nodes. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (2009), SOSP ’09,
pp. 1–14.

[3] BAILEY, K., CEZE, L., GRIBBLE, S. D., AND
LEVY, H. M. Operating system implications of
fast, cheap, non-volatile memory. In Proceedings
of the 13th USENIX conference on Hot topics in
operating systems (Berkeley, CA, USA, 2011), Ho-
tOS’13, USENIX Association, pp. 2–2.

[4] BALAKRISHNAN, M., MALKHI, D., PRAB-
HAKARAN, V., WOBBER, T., WEI, M., AND
DAVIS, J. D. Corfu: a shared log design for flash
clusters. In Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implemen-
tation (2012), NSDI’12.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K.,
HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, I., AND WARFIELD, A. Xen and the art
of virtualization. In Proceedings of the nineteenth
ACM symposium on Operating systems principles
(2003), SOSP ’03, pp. 164–177.

[6] CALDER, B., WANG, J., OGUS, A., NILAKAN-
TAN, N., SKJOLSVOLD, A., MCKELVIE, S., XU,
Y., SRIVASTAV, S., WU, J., SIMITCI, H., HARI-
DAS, J., UDDARAJU, C., KHATRI, H., EDWARDS,
A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U.,
BHARDWAJ, D., DAYANAND, S., ADUSUMILLI,
A., MCNETT, M., SANKARAN, S., MANIVAN-
NAN, K., AND RIGAS, L. Windows azure storage:
a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles
(2011), SOSP ’11, pp. 143–157.

[7] CASADO, M., FREEDMAN, M. J., PETTIT, J.,
LUO, J., MCKEOWN, N., AND SHENKER, S.
Ethane: Taking control of the enterprise. In In SIG-
COMM Computer Comm. Rev (2007).

[8] CASADO, M., GARFINKEL, T., AKELLA, A.,
FREEDMAN, M. J., BONEH, D., MCKEOWN, N.,
AND SHENKER, S. Sane: a protection architec-
ture for enterprise networks. In Proceedings of the
15th conference on USENIX Security Symposium -
Volume 15 (Berkeley, CA, USA, 2006), USENIX-
SS’06, USENIX Association.

[9] CAULFIELD, A. M., DE, A., COBURN, J., MOL-
LOW, T. I., GUPTA, R. K., AND SWANSON,
S. Moneta: A high-performance storage array ar-
chitecture for next-generation, non-volatile mem-
ories. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microar-
chitecture (2010), MICRO ’43, pp. 385–395.

[10] CAULFIELD, A. M., MOLLOV, T. I., EISNER,
L. A., DE, A., COBURN, J., AND SWANSON,
S. Providing safe, user space access to fast, solid
state disks. In Proceedings of the seventeenth in-
ternational conference on Architectural Support for
Programming Languages and Operating Systems
(2012), ASPLOS XVII, pp. 387–400.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M., CHAN-
DRA, T., FIKES, A., AND GRUBER, R. E.
Bigtable: A distributed storage system for struc-
tured data. ACM Trans. Comput. Syst. 26, 2 (June
2008), 4:1–4:26.

[12] COBURN, J., CAULFIELD, A. M., AKEL, A.,
GRUPP, L. M., GUPTA, R. K., JHALA, R., AND
SWANSON, S. Nv-heaps: making persistent objects
fast and safe with next-generation, non-volatile
memories. In Proceedings of the sixteenth interna-
tional conference on Architectural support for pro-
gramming languages and operating systems (New
York, NY, USA, 2011), ASPLOS XVI, ACM,
pp. 105–118.

[13] CONDIT, J., NIGHTINGALE, E. B., FROST, C.,
IPEK, E., LEE, B., BURGER, D., AND COETZEE,
D. Better i/o through byte-addressable, persistent
memory. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (New
York, NY, USA, 2009), SOSP ’09, ACM, pp. 133–
146.

[14] ENGLER, D. R., KAASHOEK, M. F., AND
O’TOOLE, JR., J. Exokernel: an operating system
architecture for application-level resource manage-
ment. In Proceedings of the fifteenth ACM sym-
posium on Operating systems principles (1995),
SOSP ’95, pp. 251–266.

13

30 12th USENIX Conference on File and Storage Technologies USENIX Association

[15] FITZPATRICK, B. Distributed caching with mem-
cached. Linux J. 2004, 124 (Aug. 2004), 5–.

[16] GANGER, G. R., ABD-EL-MALEK, M., CRA-
NOR, C., HENDRICKS, J., KLOSTERMAN, A. J.,
MESNIER, M., PRASAD, M., SALMON, B., SAM-
BASIVAN, R. R., SINNAMOHIDEEN, S., STRUNK,
J. D., THERESKA, E., AND WYLIE, J. J. Ursa
minor: versatile cluster-based storage, 2005.

[17] GIBSON, G. A., AMIRI, K., AND NAGLE, D. F.
A case for network-attached secure disks. Tech.
Rep. CMU-CS-96-142, Carnegie-Mellon Univer-
sity.Computer science. Pittsburgh (PA US), Pitts-
burgh, 1996.

[18] HILDEBRAND, D., AND HONEYMAN, P. Ex-
porting storage systems in a scalable manner
with pnfs. In IN PROCEEDINGS OF 22ND
IEEE/13TH NASA GODDARD CONFERENCE
ON MASS STORAGE SYSTEMS AND TECH-
NOLOGIES (MSST (2005).

[19] HUTCHINSON, N. C., AND PETERSON, L. L. The
x-kernel: An architecture for implementing net-
work protocols. IEEE Trans. Softw. Eng. 17, 1 (Jan.
1991), 64–76.

[20] KARGER, D., LEHMAN, E., LEIGHTON, T., PAN-
IGRAHY, R., LEVINE, M., AND LEWIN, D.
Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the
world wide web. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing
(1997), STOC ’97, pp. 654–663.

[21] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI,
J., AND KAASHOEK, M. F. The click modular
router. ACM Trans. Comput. Syst. 18, 3 (Aug.
2000), 263–297.

[22] LEE, E. K., AND THEKKATH, C. A. Petal: dis-
tributed virtual disks. In Proceedings of the seventh
international conference on Architectural support
for programming languages and operating systems
(1996), ASPLOS VII, pp. 84–92.

[23] LUO, T., MA, S., LEE, R., ZHANG, X., LIU, D.,
AND ZHOU, L. S-cave: Effective ssd caching to
improve virtual machine storage performance. In
Parallel Architectures and Compilation Techniques
(2013), PACT ’13, pp. 103–112.

[24] MEYER, D. T., CULLY, B., WIRES, J., HUTCHIN-
SON, N. C., AND WARFIELD, A. Block mason. In
Proceedings of the First conference on I/O virtual-
ization (2008), WIOV’08.

[25] MOSBERGER, D., AND PETERSON, L. L. Making
paths explicit in the scout operating system. In Pro-
ceedings of the second USENIX symposium on Op-
erating systems design and implementation (1996),
OSDI ’96, pp. 153–167.

[26] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOF-
MANN, O., HOWELL, J., AND SUZUE, Y. Flat
datacenter storage. In Proceedings of the 10th
USENIX conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2012),
OSDI’12, USENIX Association, pp. 1–15.

[27] OUSTERHOUT, J., AGRAWAL, P., ERICKSON,
D., KOZYRAKIS, C., LEVERICH, J., MAZIÈRES,
D., MITRA, S., NARAYANAN, A., ONGARO,
D., PARULKAR, G., ROSENBLUM, M., RUMBLE,
S. M., STRATMANN, E., AND STUTSMAN, R.
The case for ramcloud. Commun. ACM 54, 7 (July
2011), 121–130.

[28] SAITO, Y., FRØLUND, S., VEITCH, A., MER-
CHANT, A., AND SPENCE, S. Fab: building
distributed enterprise disk arrays from commodity
components. In Proceedings of the 11th interna-
tional conference on Architectural support for pro-
gramming languages and operating systems (New
York, NY, USA, 2004), ASPLOS XI, ACM, pp. 48–
58.

[29] THEKKATH, C. A., MANN, T., AND LEE, E. K.
Frangipani: a scalable distributed file system. In
Proceedings of the sixteenth ACM symposium on
Operating systems principles (1997), SOSP ’97,
pp. 224–237.

[30] VASUDEVAN, V., KAMINSKY, M., AND ANDER-
SEN, D. G. Using vector interfaces to deliver mil-
lions of iops from a networked key-value storage
server. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing (New York, NY, USA,
2012), SoCC ’12, ACM, pp. 8:1–8:13.

[31] WEIL, S. A., WANG, F., XIN, Q., BRANDT,
S. A., MILLER, E. L., LONG, D. D. E., AND
MALTZAHN, C. Ceph: A scalable object-based
storage system. Tech. rep., 2006.

[32] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D.
Denali: A scalable isolation kernel. In Proceed-
ings of the Tenth ACM SIGOPS European Work-
shop (2002).

[33] YANG, J., MINTURN, D. B., AND HADY, F. When
poll is better than interrupt. In Proceedings of the
10th USENIX conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2012), FAST’12,
USENIX Association, pp. 3–3.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 31

[34] Flexible io tester. http://git.kernel.dk/?p=
fio.git;a=summary.

[35] Linux device mapper resource page. http://
sourceware.org/dm/.

[36] Linux logical volume manager (lvm2) resource
page. http://sourceware.org/lvm2/.

[37] Seagate kinetic open storage documenta-
tion. https://developers.seagate.
com/display/KV/Kinetic+Open+Storage+
Documentation+Wiki.

[38] Scsi object-based storage device commands -
2, 2011. http://www.incits.org/scopes/
1729.htm.

15

USENIX Association 12th USENIX Conference on File and Storage Technologies 33

Evaluating Phase Change Memory for Enterprise Storage Systems:
A Study of Caching and Tiering Approaches

Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, Lawrence Chiu
IBM Almaden Research

Abstract

Storage systems based on Phase Change Memory (PCM)
devices are beginning to generate considerable attention
in both industry and academic communities. But whether
the technology in its current state will be a commercially
and technically viable alternative to entrenched technolo-
gies such as flash-based SSDs remains undecided. To ad-
dress this it is important to consider PCM SSD devices
not just from a device standpoint, but also from a holistic
perspective.

This paper presents the results of our performance
study of a recent all-PCM SSD prototype. The aver-
age latency for a 4 KiB random read is 6.7 µs, which
is about 16× faster than a comparable eMLC flash SSD.
The distribution of I/O response times is also much nar-
rower than flash SSD for both reads and writes. Based on
the performance measurements and real-world workload
traces, we explore two typical storage use-cases: tier-
ing and caching. For tiering, we model a hypothetical
storage system that consists of flash, HDD, and PCM to
identify the combinations of device types that offer the
best performance within cost constraints. For caching,
we study whether PCM can improve performance com-
pared to flash in terms of aggregate I/O time and read
latency. We report that the IOPS/$ of a tiered storage
system can be improved by 12–66% and the aggregate
elapsed time of a server-side caching solution can be im-
proved by up to 35% by adding PCM.

Our results show that – even at current price points –
PCM storage devices show promising performance as a
new component in enterprise storage systems.

1 Introduction

In the last decade, solid-state storage technology has
dramatically changed the architecture of enterprise stor-
age systems. Flash memory based solid state drives
(SSDs) outperform hard disk drives (HDDs) along a

number of dimensions. When compared to HDDs, SSDs
have higher storage density, lower power consumption, a
smaller thermal footprint and orders of magnitude lower
latency. Flash storage has been deployed at various lev-
els in enterprise storage architecture ranging from a stor-
age tier in a multi-tiered environment (e.g., IBM Easy
Tier [15], EMC FAST [9]) to a caching layer within
the storage server (e.g., IBM XIV SSD cache [17]), to
an application server-side cache (e.g., IBM Easy Tier
Server [16], EMC XtreamSW Cache [10], NetApp Flash
Accel [24], FusionIO ioTurbine [11]). More recently,
several all-flash storage systems that completely elimi-
nate HDDs (e.g., IBM FlashSystem 820 [14], Pure Stor-
age [25]) have also been developed. However, flash
memory based SSDs come with their own set of concerns
such as durability and high-latency erase operations.

Several non-volatile memory technologies are being
considered as successors to flash. Magneto-resistive
Random Access Memory (MRAM [2]) promises even
lower latency than DRAM, but it requires improvements
to solve its density issues; the current MRAM designs do
not come close to flash in terms of cell size. Ferroelectric
Random Access Memory (FeRAM [13]) also promises
better performance characteristics than flash, but lower
storage density, capacity limitations, and higher cost
issues remain to be addressed. On the other hand,
Phase Change Memory (PCM [29]) is a more immi-
nent technology that has reached a level of maturity that
permits deployment at commercial scale. Micron an-
nounced mass production of a 128 Mbit PCM device in
2008 while Samsung announced the mass production of
512 Mbit PCM device follow-on in 2009. In 2012, Mi-
cron also announced in volume production of a 1 Gbit
PCM device.

PCM technology stores data bits by alternating the
phase of material between crystalline and amorphous.
The crystalline state represents a logical 1 while the
amorphous state represents a logical 0. The phase is al-
ternated by applying varying length current pulses de-

34 12th USENIX Conference on File and Storage Technologies USENIX Association

pending upon the phase to be achieved, representing
the write operation. Read operations involve applying
a small current and measuring the resistance of the ma-
terial.

Flash and DRAM technologies represent data by stor-
ing electric charge. Hence these technologies have dif-
ficulty scaling down to thinner manufacturing processes,
which may result in bit errors. On the other hand, PCM
technology is based on the phase of material rather than
electric charge and has therefore been regarded as more
scalable and durable than flash memory [28].

In order to evaluate the feasibility and benefits of
PCM technologies from a systems perspective, access
to accurate system-level device performance character-
istics is essential. Extrapolating material-level charac-
teristics to a system-level without careful consideration
may result in inaccuracies. For instance, a previously
published paper states that PCM write performance is
only 12× slower than DRAM based on the 150 ns set
operation time reported in [4]. However, the reported
write throughput from the referred publication [4] is only
2.5 MiB/s, and thus the statement that PCM write perfor-
mance is only 12× slower is misleading. The missing
link is that only two bits can be written during 200 µs on
the PCM chip because of circuit delay and power con-
sumption issues [4]. While we may conclude that PCM
write operations are 12× slower than DRAM write op-
erations, it is incorrect to conclude that a PCM device is
only 12× slower than a DRAM device for writes. This re-
inforces the need to consider PCM performance charac-
teristics from a system perspective based on independent
measurement in the right setting as opposed to simply
re-using device level performance characteristics.

Our first contribution is the result of our system-level
performance study based on a real prototype all-PCM
SSD from Micron. In order to conduct this study, we
have developed a framework that can measure I/O laten-
cies at nanosecond granularity for read and write oper-
ations. Measured over five million random 4 KiB read
requests, the PCM SSD device achieves an average la-
tency of 6.7 µs. Over one million random 4 KiB write
requests, the average latency of a PCM SSD device is
about 128.3 µs. We compared the performance of the
PCM SSD with an Enterprise Multi-Level Cell (eMLC)
flash based SSD. The results show that in comparison to
eMLC SSD, read latency is about 16× shorter, but write
latency is 3.5× longer on the PCM SSD device.

Our second contribution is an evaluation of the feasi-
bility and benefits of including a PCM SSD device as a
tier within a multi-tier enterprise storage system. Based
on the conclusions of our performance study, reads are
faster but writes are slower on PCM SSDs when com-
pared to flash SSDs, and at present PCM SSDs are priced
higher than flash SSD ($ / GB). Does a system built with

a PCM SSD offer any advantage over one without PCM
SSDs? We approach this issue by modeling a hypothet-
ical storage system that consists of three device types:
PCM SSDs, flash SSDs, and HDDs. We evaluate this
storage system using several real-world traces to identify
optimal configurations for each workload. Our results
show that PCM SSDs can remarkably improve the per-
formance of a tiered storage system. For instance, for a
one week retail workload trace, 30% PCM + 67% flash +
3% HDD combination has about 81% increased IOPS/$
from the best configuration without PCM, 94% flash +
6% HDD even when we assume that PCM SSD devices
are four times more expensive than flash SSDs.

Our third contribution is an evaluation of the feasibil-
ity and benefits of using a PCM SSD device as an ap-
plication server-side cache instead of or in combination
with flash. Today flash SSD based server-side caching
solutions are appearing in the industry [10, 11, 16, 24]
and also gaining attention in academia [12, 20]. What is
the impact of using the 16× faster (for reads) PCM SSD
instead of flash SSD as a server-side caching device? We
run cache simulations with real-world workload traces
from enterprise storage systems to evaluate this. Accord-
ing to our observations, a combination of flash and PCM
SSDs can provide better aggregate I/O time and read la-
tency than a flash only configuration.

The rest of the paper is structured as follows: Sec-
tion 2 provides a brief background and discusses related
work. We present our measurement study on a real all-
PCM prototype SSD in Section 3. Section 4 describes
our model and analysis for a hypothetical tiered storage
system with PCM, flash, and HDD devices. Section 5
covers the use-case for server-side caching with PCM.
We present a discussion of the observations in Section 6
and conclude in Section 7.

2 Background and related work

There are two possible approaches to using PCM devices
in systems: as storage or as memory. The storage ap-
proach is a natural option considering the non-volatile
characteristics of PCM, and there are several very inter-
esting studies based on real PCM devices.

In 2008, Kim, et al. proposed a hybrid Flash
Translation Layer (FTL) architecture, and con-
ducted experiments with a real 64 MiB PCM device
(KPS1215EZM) [19]. We believe that the PCM chip
was based on 90 nm technology, published in early
2007 [22]. The paper reported 80 ns and 10 µs as word
(16 bits) access time for read and write, respectively.
Better write performance numbers are found in Sam-
sung’s 2007 90 nm PCM paper [22]: 0.58 MB/s in ×2
division-write mode, 4.64 MB/s in ×16 accelerated
write mode.

USENIX Association 12th USENIX Conference on File and Storage Technologies 35

Table 1: A PCM SSD prototype: Micron built an all-
PCM SSD prototype with their newest 45 nm PCM chips.

Usable Capacity 64 GiB
System Interface PCIe gen2 x8

Minimum Access Size 4 KiB
Seq. Read BW. (128 KiB) 2.6 GiB/s

Seq. Write BW. (128 KiB) 100-300 MiB/s

In 2011, a prototype all-PCM 10 GB SSD was
built by researchers from the University of California,
San Diego [1]. This SSD, named Onyx, was based
on Micron’s first-generation P8P 16 MiB PCM chips
(NP8P128A13B1760E). On the chip, a read operation
for 16 bytes takes 314 ns (48.6 MB/s), and a write op-
eration for 64 bytes requires 120 µs (0.5 MB/s). Onyx
drives many PCM chips concurrently, and provides 38 µs
and 179 µs for 4 KiB read and write latencies, respec-
tively. The Onyx design corroborates the potential of
PCM as a storage device which allows massive paral-
lelization to improve the limited write throughput of to-
day’s PCM chips. In 2012, another paper was published
based on a different prototype PCM SSD built by Mi-
cron [3], using the same Micron 90 nm PCM chip used in
Onyx. This prototype PCM SSD provides 12 GB capac-
ity, and takes 20 µs and 250 µs for 4 KiB read and write,
respectively, excluding software overhead. This device
shows better read performance and worse write perfor-
mance than the one presented in Oynx. The authors com-
pare the PCM SSD with Fusion IO’s Single-Level Cell
(SLC) flash SSD, and point out that PCM SSD is about
2× faster for read, and 1.6× slower for write than the
compared flash SSD.

Alternatively, PCM devices can be used as mem-
ory [18, 21, 23, 26, 27]. The main challenge in using
PCM devices as a memory device is that writes are too
slow. In PCM technology, high heat (over 600◦C) is ap-
plied to a storage cell to change the phase to store data.
The combination of quick heating and cooling results in
the amorphous phase, and this operation is referred to as
a reset operation. The set operation requires a longer
cooling time to switch to the crystalline phase, and write
performance is determined by the time required for a set
operation. In several papers, PCM’s set operation time
is used as an approximation for the write performance
for a simulated PCM device. However, care needs to be
taken to differentiate among material, chip-level and de-
vice level performance. Set and reset operation times
describe material level performance, which is often very
different from chip level performance. For example, in
Bedeschi et al. [4], the set operation time is 150 ns, but
reported write throughput is only 2.5 MB/s because only
two bits can be written concurrently, and there is an ad-

Workload Generator

PCI−e SSD

Device Driver

Linux (RHEL 6.3)

Storage Software Stack

Fine−grained I/O latencyStatistics

MeasurementCollector

Figure 1: Measurement framework: we modified both the
Linux kernel and the device driver to collect I/O latencies
in nanosecond units. We also use an in-house workload
generator and a statistics collector.

ditional circuit delay of 50 ns. Similarly, the chip level
performance differs from the device level (SSD) perfor-
mance. In the rest of the paper, our performance mea-
surements address device level performance based on a
recent PCM SSD prototype device based on newer 45 nm
chips from Micron.

3 PCM SSD performance

In this section we describe our methodology and results
for the characterization of system-level performance of a
PCM SSD device. Table 1 summarizes the main features
of the prototype PCM SSD device used for this study.

In order to collect fine-grained I/O latency measure-
ments, we have patched the kernel of Red Hat Enterprise
Linux 6.3. Our kernel patch enables measurement of I/O
response times at nanosecond granularity. We have also
modified the drivers of the SSD devices to measure the
elapsed time from the arrival of an I/O request at the
SSD to its completion (at the SSD). Therefore, the I/O
latency measured by our method includes minimal soft-
ware overhead.

Figure 1 shows our measurement framework. The sys-
tem consists of a workload generator, a modified storage
stack within the Linux kernel that can measure I/O laten-
cies at nanosecond granularity, a statistics collector, and
a modified device driver that measures the elapsed time
for an I/O request. For each I/O request generated by the
workload generator, the device driver measures the time
required to service the request and passes that informa-
tion back to the Linux kernel. The modified Linux kernel
keeps the data in two different forms: a histogram (for
long term statistics) and a fixed length log (for precise

36 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180 200

P
e

rc
e

n
ta

g
e

Latency (µs)
Mean 6.7µs

Maximum 194.9µs
Standard deviation 1.5µs

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100

 0 20 40 60 80 100 120 140 160 180 200

lo
g

 s
c
a

le

(a) PCM SSD

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160 180 200

P
e

rc
e

n
ta

g
e

Latency (µs)
Mean 108.0µs

Maximum 54.7ms
Standard deviation 76.2µs

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100

 0 20000 40000 60000

lo
g

 s
c
a

le

(b) eMLC SSD

Figure 2: 4 KiB random read latencies for five million samples: PCM SSD shows about 16× faster average, much
smaller maximum, and also much narrower distribution than eMLC SSD.

data collection). Periodically, the collected information
is passed to an external statistics collector, which stores
the data in a file.

For the purpose of comparison, we use an eMLC flash-
based PCI-e SSD providing 1.8 TiB user capacity. To
capture the performance characteristics at extreme con-
ditions, we precondition both the PCM and the eMLC
flash SSDs using the following steps: 1) Perform raw
formatting using tools provided by SSD vendors. 2) Fill
the whole device (usable capacity) with random data, se-
quentially. 3) Run full random, 20% write, 80% read I/O
requests with 256 concurrent streams for one hour.

3.1 I/O Latency

Immediately after the preconditioning is complete we set
the workload generator to issue one million 4 KiB sized
random write requests with a single thread. We collect
write latency for each request and the collected data is
periodically retrieved and written to a performance log
file. After one million writes complete, we set the work-
load generator to issue five million 4 KiB sized random
read requests by using a single thread. Read latencies are
collected using the same method.

Figure 2 shows the distributions of collected read la-
tencies for the PCM SSD (Figure 2(a)) and the eMLC
SSD (Figure 2(b)). The X-axis represents the measured
read latency, and the Y-axis represents the percentage of
data samples. Each graph has a smaller graph embedded,
which presents the whole data range with a log scaled Y-
axis.

Several important results can be observed from the
graphs. First, the average latency of the PCM SSD device
is only 6.7 µs, which is about 16× faster than the eMLC
flash SSD’s average read latency of 108.0 µs. This num-
ber is much improved from the prior PCM SSD proto-
types (Onyx: 38 µs [1], 90 nm Micron: 20 µs [3]). Sec-
ond, the PCM SSD latency measurements show much
smaller standard deviation (1.5 µs, 22% of mean) than
the eMLC flash SSD’s measurements (76.2 µs, 71% of
average). Finally, the maximum latency is also much
smaller on the PCM SSD (194.9 µs) than on the eMLC
flash SSD (54.7 ms).

Figure 3 shows the latency distribution graphs for
4 KiB random writes. Interestingly, eMLC flash SSD
(Figure 3(b)) shows a very short average write response
time of only 37.1 µs. We believe that this is due to the
RAM buffer within the eMLC flash SSD. Note that over
240 µs latency was measured for 4 KiB random writes
even on Fusion IO’s SLC flash SSD [3]. According to
our investigation, the PCM SSD prototype does not im-
plement RAM based write buffering, and the measured
write latency is 128.3 µs (Figure 3(a)). Even though
this latency number is about 3.5× longer than the eMLC
SSD’s average, it is still much better than the perfor-
mance measurements from previous PCM prototypes.
Previous measurements reported for 4 KiB write laten-
cies are 179 µs and 250 µs in Onyx [1] and 90 nm PCM
SSDs [3], respectively. As in the case of reads, for stan-
dard deviation and maximum value measurements the
PCM SSD outperforms the eMLC SSD; the PCM SSD’s
standard deviation is only 2% of the average and the

USENIX Association 12th USENIX Conference on File and Storage Technologies 37

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400

P
e

rc
e

n
ta

g
e

Latency (µs)
Mean 128.3µs

Maximum 378.2µs
Standard deviation 2.2µs

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0 50 100 150 200 250 300 350 400

lo
g

 s
c
a

le

(a) PCM SSD

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300 350 400

P
e

rc
e

n
ta

g
e

Latency (µs)
Mean 37.1µs

Maximum 17.2ms
Standard deviation 153.2µs

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

lo
g

 s
c
a

le

(b) eMLC SSD

Figure 3: 4 KiB random write latencies for one million samples: PCM SSD shows about 3.5× slower mean, but its
maximum and distribution are smaller and narrower than eMLC SSD.

 0
 20

 40
 60

 80
 100 0

 100
 200

 300
 400

 500
 600

 0

 100

 200

 300

 400

 500

IO
P

S
 (

K
)

Write Percentage

Q-Depth

 0

 100

 200

 300

 400

 500

 0
 20

 40
 60

 80
 100 0

 100
 200

 300
 400

 500
 600

 0

 100

 200

 300

 400

 500

IO
P

S
 (

K
)

Write Percentage

Q-Depth

 0

 100

 200

 300

 400

 500

(a) PCM SSD (b) eMLC SSD

Figure 4: Asynchronous IOPS: I/O request handling capability for different read and write ratios and for different
degree of parallelism.

maximum latency is 378.2 µs while the eMLC flash SSD
shows 153.2 µs standard deviation (413% of the average)
and 17.2 ms maximum latency value. These results lead
us to conclude that the PCM SSD performance is more
consistent and hence predictable than that of the eMLC
flash SSD.

Micron provided this feedback on our measurements:
this prototype SSD uses a PCM chip architecture that
was designed for code storage applications, and thus
has limited write bandwidth. Micron expects future de-
vices targeted at this application to have lower write la-
tency. Furthermore, the write performance measured in
the drive is not the full capability of PCM technology.
Additional work is ongoing to improve the write charac-
teristics of PCM.

3.2 Asynchronous I/O

In this test, we observe the number of I/Os per second
(IOPS) while varying the read and write ratio and the
degree of parallelism. In Figure 4, two 3-dimensional
graphs show the measured results. The X-axis represents
the percentage of writes, the Y-axis represents the queue
depth (i.e. number of concurrent IO requests issued), and
the Z-axis represents the IOPS measured. The most ob-
vious difference between the two graphs occurs when the
queue depth is low and all requests are reads (lower left
corner of the graphs). At this point, the PCM SSD shows
much higher IOPS than the eMLC flash SSD. For the
PCM SSD, performance does not vary much with varia-
tion in queue depth. However, on the eMLC SSD, IOPS
increases with increase in queue depth. In general, the

38 12th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: The parameters for tiering simulation

PCM eMLC 15K HDD

4 KiB R. Lat. 6.7 µs 108.0 µs 5 ms
4 KiB W. Lat. 128.3 µs 37.1 µs 5 ms
Norm. Cost 24 6 1

PCM SSD shows smoother surfaces when varying the
read / write ratio. It again supports our finding that the
PCM SSD is more predictable than the eMLC flash SSD.

4 Workload simulation for storage tiering

The results of our measurements on PCM SSD device
performance show that the PCM SSD improves read per-
formance by 16×, but shows about 3.5× slower write
performance than eMLC flash SSD. Will such a storage
device be useful for building enterprise storage systems?
Current flash SSD and HDD tiered storage systems max-
imize performance per dollar (price-performance ratio)
by placing hot data on faster flash SSD storage and cold
data on cheaper HDD devices. Based on PCM SSD de-
vice performance, an obvious approach is to place hot,
read intensive data on PCM devices; hot, write intensive
data on flash SSD devices; and cold data on HDD to max-
imize performance per dollar. But do real-world work-
loads demonstrate such workload distribution character-
istics? In order to address this question, we first model
a hypothetical tiered storage system consisting of PCM
SSD, flash SSD and HDD devices. Next we apply to our
model several real-world workload traces collected from
enterprise tiered storage systems consisting of flash SSD
and HDD devices. Our goal is to understand whether
there is any advantage to using PCM SSD devices based
on the characteristics exhibited by real workload traces.

Table 2 shows the parameters used for our modeling.
For PCM and flash SSDs, we use the data collected from
our measurements. For the HDD device we use 5 ms
for both 4 KiB random read and write latencies [7]. We
compare the various alternative configurations using per-
formance per dollar as a metric. In order to use this met-
ric, we need price estimates for the storage devices. We
assume that a PCM device is 4× more expensive than
eMLC flash, and eMLC flash is 6× more expensive than
15 K RPM HDD. The flash-HDD price assumption is
based on today’s (June 2013) market prices from Dell’s
web page [6, 8]. We prefer the Dell’s prices to Newegg’s
or Amazon’s because we want to use prices for enter-
prise class devices. The PCM-flash price assumption is
based on an opinion from an expert who prefers to re-
main anonymous; it is our best effort considering that
the 45 nm PCM device is not available in the market yet.

We present two methodologies for evaluating PCM ca-
pabilities for a tiering approach: static optimal tiering
and dynamic tiering. Static optimal tiering assumes static
and optimal data placement based on complete knowl-
edge about a given workload. While this methodology
provides a simple back-of-the-envelope calculation to
evaluate the effectiveness of PCM, we acknowledge that
this assumption may be unrealistic and that data place-
ments need to adapt dynamically to runtime changes in
workload characteristics.

Accordingly, our second evaluation methodology is
a simulation-based technique to evaluate PCM deploy-
ments in a dynamic tiered setting. Dynamic tiering as-
sumes that data migrations are reactive and dynamic in
nature and in response to changes in workload charac-
teristics and system conditions. The simulated system
begins with no prior knowledge about the workload. The
simulation algorithm then periodically gathers I/O statis-
tics, learns workload behavior and migrates data to ap-
propriate locations in response to workload characteris-
tics.

4.1 Evaluation metric
For a given workload observation window and a hypo-
thetical storage composed of X% of PCM, Y% of flash,
and Z% of HDD, we calculate the IOPS/$ metric using
the following steps:
Step 1. From a given workload during the observation
window, aggregate the total amount of read and write I/O
traffic at an extent (1 GiB) granularity. An extent is the
unit of data migration in tiered storage environment. In
our analysis, the extent size is set to 1 GiB accordingly to
the configuration of the real-world tiered storage systems
from which our workload traces were collected.
Step 2. Let ReadLat.HDD, ReadLat.Flash and
ReadLat.PCM represent the read latencies of HDD,
flash and PCM devices respectively. Similarly, let
WriteLat.HDD, WriteLat.Flash and WriteLat.PCM rep-
resent the write latencies. Let ReadAmountExtent and
WriteAmountExtent represent the amount of read and
write traffic given to the extent under consideration. For
each extent, calculate ScoreExtent using the following
equations:
ScorePCM = (ReadLat.HDD −ReadLat.PCM)×ReadAmountExtent+

(WriteLat.HDD −WriteLat.PCM)×WriteAmountExtent

ScoreFlash = (ReadLat.HDD −ReadLat.Flash)×ReadAmountExtent+

(WriteLat.HDD −WriteLat.Flash)×WriteAmountExtent

ScoreExtent = MAX(ScorePCM ,ScoreFlash)

Step 3. Sort extents by ScoreExtent in descending order.
Step 4. Assign a tier for each extent based on Algo-
rithm 1. This algorithm can fail if either (1) HDD is the
best choice, or (2) we run out of HDD space, but that will
never happen with our configuration parameters.

USENIX Association 12th USENIX Conference on File and Storage Technologies 39

Algorithm 1 Data placement algorithm
for e in SortedExtentsByScore do

tgtTier ← (e.scorePCM > e.scoreFlash)?PCM : FLASH
if (tgtTier. f reeExt > 0) then

e.tier ← tgtTier
tgtTier. f reeExt ← tgtTier. f reeExt −1

else
tgtTier ← (tgtTier == PCM)?FLASH : PCM
if (tgtTier. f reeExt > 0) then

e.tier ← tgtTier
tgtTier. f reeExt ← tgtTier. f reeExt −1

else
e.tier ← HDD

end if
end if

end for

Step 5. Aggregate the amount of read and write I/O
traffic for PCM, flash, and HDD tiers based on the data
placement.
Step 6. Calculate expected average latency based on the
amount of read and write traffic received by each storage
media type and the parameters in Table 2.
Step 7. Calculate expected average IOPS as 1 / expected
average latency.
Step 8. Calculate normalized cost based on the percent-
age of storage: for example, the normalized cost for an
all-HDD configuration is 1, and the normalized cost for a
50% PCM + 50% flash configuration is (24×0.5)+(6×
0.5) = 15.
Step 9. Calculate performance-price ratio = IOPS/$ as
expected average IOPS (from Step 7) / normalized cost
(from Step 8).

The value obtained from Step 9 represents the IOPS
per normalized cost – a higher value implies better per-
formance per dollar. We repeat this calculation for every
possible combination of PCM, flash, and HDD to find
the most desirable combination for a given workload.

4.2 Simulation methodology

In the case of the static optimal placement methodology,
the entire workload duration is treated as a single obser-
vation window and we assume unlimited migration band-
width. The dynamic tiering methodology uses a two-
hour workload observation window before making mi-
gration decisions and assumes a migration bandwidth of
41 MiB/s according to the configurations of real-world
tiered storage systems from which we collected work-
load traces. Our experimental evaluation shows that uti-
lizing PCM can result in a significant performance im-
provement. We compare the results from the static opti-
mal methodology and the dynamic tiering methodology
using the evaluation metric described in Section 4.1.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (16.1 TiB)

Read

Write

Amount of Read Amount of Write

252.7 TiB

45.0 TiB

(a) CDF and I/O amount

(b) 3D IOPS/$ by dynamic tiering

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

HDD 100% Flash 100% PCM 100% PCM 30%
Flash 67%
HDD 3%

PCM 22%
Flash 78%

IO
P

S
/$

200

1,713 1,661

Static Optimal Placement
3,220 Dynamic Tiering

2,757

(c) IOPS/$ for key configuration points

Figure 5: Simulation result for the retail store trace: this
workload is very friendly for PCM; read dominant and
highly skewed spatially – PCM (22%) + flash (78%) con-
figuration can make the best IOPS/$ value (2,757) in dy-
namic tiering simulation.

4.3 Result 1: Retail store

The first trace is a one week trace collected from an enter-
prise storage system used for online transactions at a re-
tail store. Figure 5(a) shows the cumulative distribution
as well as the total amount of read and write I/O traffic:
the total storage capacity accessed during this duration is
16.1 TiB, the total amount of read traffic is 252.7 TiB,
and the total amount of write traffic is 45.0 TiB. As can
be seen from the distribution, the workload is heavily
skewed, with 20% of the storage capacity receiving 83%
of the read traffic and 74% of the write traffic. The dis-
tribution also exhibits a heavy skew toward reads, with
nearly six times more reads than writes.

Figures 5 (b) and (c) show the modeling results.
Graph (b) represents performance price ratios obtained
by dynamic tiering simulation on a 3-dimensional sur-
face, and graph (c) shows the same performance–price
values (IOPS/$) for several important data points: all-
HDD, all-flash, all-PCM, the best configuration for static
optimal data placement, and the best configuration for

40 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (15.9 TiB)

Read

Write

Amount of Read Amount of Write

68.3 TiB

17.5 TiB

(a) CDF and I/O amount

(b) 3D IOPS/$ by dynamic tiering

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

HDD 100% Flash 100% PCM 100% PCM 17%
Flash 40%
HDD 43%

PCM 10%
Flash 90%

IO
P

S
/$

200

1,782
1,320

Static Optimal Placement
3,148

Dynamic Tiering
1,995

(c) IOPS/$ for key configuration points

Figure 6: Simulation result for the bank trace: this work-
load is less friendly for PCM than the retail workload –
PCM (10%) + flash (90%) configuration can make the
best IOPS/$ value (1,995) in dynamic tiering simulation.

dynamic tiering. Note that for the first three homo-
geneous storage configurations, there is no difference
between static and dynamic simulation results. The
best combination using static data placement consists of
PCM (30%) + flash (67%) + HDD (3%), and the calcu-
lated IOPS/$ value is 3,220, which is about 81% higher
than the best combination without PCM: 94% flash +
6% HDD yielding 1,777 IOPS/$; the best combination
from dynamic tiering simulation consists of PCM (22%)
+ flash (78%), and the obtained IOPS/$ value is 2,757.
This value is about 61% higher than the best combina-
tion without PCM: 100% flash yielding 1,713 IOPS/$.

4.4 Result 2: Bank
The second trace is a one week trace from a bank. The
total storage capacity accessed is 15.9 TiB, the total
amount of read traffic is 68.3 TiB, and the total amount
of write traffic is 17.5 TiB as shown in Figure 6(a). Read
to write ratio is 3.9 : 1, and the degree of skew toward
reads is less than the previous retail store trace (Fig-
ure 5(a)). Approximately 20% of the storage capacity

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (51.5 TiB)

Read

Write Amount of Read Amount of Write

144.6 TiB

14.5 TiB

(a) CDF and I/O amount

(b) 3D IOPS/$ by dynamic tiering

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

HDD 100% Flash 100% PCM 100% PCM 82%
Flash 10%
HDD 8%

PCM 96%
Flash 4%

IO
P

S
/$

200

1,782

2,344

Static Optimal Placement
4,045

Dynamic Tiering
2,726

(c) IOPS/$ for key configuration points

Figure 7: Simulation result for the telecommunication
company trace: this workload is less spatially skewed,
but the amount of read is about 10× of the amount of
write – PCM (96%) + flash (4%) configuration can make
the best IOPS/$ value (2,726) in dynamic tiering simula-
tion.

receives about 76% of the read traffic and 56% of the
write traffic.

Figures 6(b) and (c) show the modeling results. The
best combination using static data placement consists of
PCM (17%) + flash (40%) + HDD (43%), and the calcu-
lated IOPS/$ value is 3,148, which is about 14% higher
than the best combination without PCM: 57% flash +
43% HDD yielding 2,772; the best combination from
dynamic tiering simulation consists of PCM (10%) +
flash (90%), and the obtained IOPS/$ value is 1,995.
This value is about 12% higher than the best combina-
tion without PCM: 100% flash yielding 1,782 IOPS/$.

4.5 Result 3: Telecommunication company

The last trace is a one week trace from a telecommuni-
cation provider. The total accessed storage capacity is
51.5 TiB, the total amount of read traffic is 144.6 TiB,
and the total amount of write traffic is about 14.5 TiB.
As shown in Figure 7(a), this workload is less spatially

USENIX Association 12th USENIX Conference on File and Storage Technologies 41

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Best without PCM

Default PCM param.

 2xFaster PCM read

2xSlower PCM read

2xFaster PCM write

2xSlower PCM write

2xCheap.PCM price

2xExp.PCM price

IO
P

S
/$

F
:1

0
0

%

P
:2

2
%

 F
:7

8
%

P
:2

2
%

 F
:7

8
%

P
:2

1
%

 F
:7

9
%

P
:2

5
%

 F
:7

5
%

P
:2

0
%

 F
:8

0
%

P
:3

8
%

 F
:6

2
%

P
:5

%
 F

:9
5

%

1,713

+61%
+71%

+45%

+88%

+64%

+126%

+12%

Figure 8: The best IOPS/$ for Retail store workload with
varied PCM parameters

skewed than the retail and bank workloads; approxi-
mately 20% of the storage capacity receives about 52%
of the read traffic and 23% of the write traffic. But read
to write ratio is about 10 : 1, which is the most read dom-
inant among the three workloads.

According to Figures 7(b) and (c), the best combina-
tion from static data placement consists of PCM (82%)
+ flash (10%) + HDD (8%), and calculated IOPS/$ value
is 4,045, which is about 2.2× better than the best com-
bination without PCM: 84% flash + 16% HDD yielding
1,853; the best combination from dynamic tiering simu-
lation consists of PCM (96%) + flash (4%), and the ob-
tained IOPS/$ value is 2,726. This value is about 66%
higher than the best combination without PCM: 100%
flash yielding 1,641 IOPS/$.

4.6 Sensitivity analysis for tiering
The simulation parameters are based on our best effort
estimation of market price and the current state of PCM
technologies, or based on discussions with experts. How-
ever, PCM technology and its markets are still evolv-
ing, and there are uncertainties about its characteristics
and pricing. To understand the sensitivity of our simu-
lation results to PCM parameters, we tried six variations
of PCM parameters in three aspects: read performance,
write performance, and price. For each aspect, we tried
half-size and double-size values. For instance, we tested
4.35 µs and 13.4 µs instead of the original 6.7 µs for
PCM 4 KiB read latency.

Figure 8 shows the highest IOPS/$ value for varying
PCM parameters. We observe that our IOPS/$ measure is
most sensitive to PCM price. If PCM is only twice as ex-
pensive as flash while maintaining its read and write per-
formance, the PCM (38%) + flash (62%) configuration
can yield about 126% higher IOPS/$ (3,878); if PCM is
8× more expensive than flash, PCM (5%) + flash (95%)
configuration yields 1,921, which is 12% higher than the
IOPS/$ value from the best configuration without PCM.

Interestingly, the configuration with twice slower

PCM write latency yields an IOPS/$ of 2,806, which
is slightly higher than the baseline value (2,757). That
may happen because the dynamic tiering algorithm is
not perfect. With the static optimal placement method,
2× longer PCM write latency results in 3,216, which is
lower than the original value of 3,220.

4.7 Summary of tiering simulation

Based on the results above, we observe that PCM can in-
crease IOPS/$ value by 12% (bank) to 66% (telecommu-
nication company) even assuming that PCM is 4× more
expensive than flash. These results suggest that PCM has
high potential as a new component for enterprise storage
systems in a multi-tiered environment.

5 Workload simulation for server caching

Server-side caching is gaining popularity in enterprise
storage systems today [5, 10, 11, 12, 16, 20, 24]. By
placing frequently accessed data close to the application
on a locally attached (flash) cache, network latencies are
eliminated and speedup is achieved. The remote storage
node benefits from decreased contention and the overall
system throughput increases.

At first glance PCM SSD seems to be promising for
server-side caching, considering the 16× faster read time
compared to eMLC flash SSD. But given that PCM is
more expensive and slower for write than flash, will PCM
be a cost effective alternative? To address this ques-
tion we use a second set of real-world traces to simu-
late caching performance. The prior set of traces used
for tiered storage simulation could not be used to evalu-
ate cache performance since the traces were summarized
spatially and temporally at a coarse granularity. Three
new IO-by-IO traces are used: 1) a 24 hour trace from a
manufacturing company, 2) a 36 hours trace from a me-
dia company, and 3) a 24 hour trace from a medical ser-
vice company. We chose three cache friendly workloads
– highly skewed and read intensive – since our goal was
to compare PCM and flash for server-side caching sce-
narios.

5.1 Cache simulation

We built a cache simulator using an LRU cache replace-
ment scheme, 4 KiB page size, and write-through policy,
which are the typical choices for enterprise server-side
caching solutions. The simulator supports both single
tier and hybrid (i.e. multi-tier) cache devices to test a
configuration using PCM as a first level cache and flash
as a second level cache. Our measurements (Table 2) are
used for PCM and flash SSDs, and for networked storage

42 12th USENIX Conference on File and Storage Technologies USENIX Association

Table 3: Networked storage related parameters from [12]

Network base latency 8.2 µs / packet
Network data latency 1 ns / bit

File server fast read 92 µs / 4 KiB
File server slow read 7,952 µs / 4 KiB

File server write 92 µs / 4 KiB
File server fast read rate 90%

Table 4: Cache simulation parameters

PCM eMLC Net. Storage

4 KiB R. Lat. 6.7 µs 108.0 µs 919.0 µs
4 KiB W. Lat. 128.3 µs 37.1 µs 133.0 µs
Norm. Cost 4 1 –

we use 919 µs and 133 µs for 4 KiB read and write, re-
spectively. These numbers are based on the timing model
parameters (Table 3) from previous work [12]; network
overhead for 4 KiB is calculated as 41.0 µs (8.2 µs base
latency + (4,096 × 8) bits × 1 ns), write time is 133 µs
(write time 92 µs + network overhead 41 µs), and read
time is 919 µs (90% × fast read time 92 µs + 10% ×
slow read time 7,952 µs + network overhead 41 µs).

The simulator captures the total number of read and
write I/Os to the caching device and the networked stor-
age separately, and then calculates average read latency
as our evaluation metric; with write-through policy, write
latency cannot be improved.

We vary the cache size from 64 GiB to a size that is
large enough to hold the entire dataset. We then calcu-
late the average read latency for all-flash and all-PCM
configurations.

Next, we compare the cache performance for all-PCM,
all-flash, and PCM and flash hybrid combinations having
the same cost.

5.2 Result 1: Manufacturing company

The first trace is from the storage server of a manufactur-
ing company, running an On-Line Transaction Process-
ing (OLTP) database on a ZFS file system.

Figure 9(a) shows the cumulative distribution as well
as the total amount of read and write I/O traffic for this
workload. The total accessed capacity (during 24 hours)
is 246.5 GiB, the total amount of read traffic is 3.8 TiB,
and the total amount of write traffic is 1.1 TiB. The work-
load exhibits strong skew: 20% of the storage capacity
receives 80% of the read traffic and 84% of the write
traffic.

Figure 9(b) shows the average read latency (Y-axis)
for flash and PCM with different cache sizes. From the

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (246.5 GiB)

Write

Read

Amount of Read Amount of Write

3.8 TiB

1.1 TiB

(a) CDF and I/O amount

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 64 GiB 128 GiB 256 GiB

A
v
e

ra
g

e
 R

e
a

d
 L

a
t.

 (
µ

s
)

Cache Size

187.7

151.0
141.4

104.5
(-44%)

59.5
(-61%) 47.7

(-66%)

Flash
PCM

(b) Average read latency

 0

 50

 100

 150

 200

 250

 300

 350

Flash64G

PCM16G

P8G+F32G

P4G+F48G

 Flash128G

PCM32G

P16G+F64G

P8G+F96G

 Flash256G

PCM64G

P32G+F128G

P16G+F192G
A

v
e
ra

g
e
 R

e
a
d
 L

a
t.
 (

µ
s
)

+29.3%

+1.5%

-38.3%

(c) Average read latency for even cost configurations

Figure 9: Cache simulation result for manufacturing
company trace

results, we see that PCM can provide an improvement of
44–66% over flash. Note that this figure assumes equal
amount of PCM and flash and hence the PCM caching
solution results in 4 times higher cost than an all-flash
setup (Table 4).

Next, Figures 9(c) shows average read latency for
cost-aware configurations. The results are divided into
three groups. Within each group, we vary the ratio of
PCM and flash while keeping the cost constant. For
the first two groups, all-flash configurations (64 GiB,
128 GiB flash) show superior results to any configura-
tion with PCM. For the third group (256 GiB flash), the
32 GiBPCM + 128 GiB f lash combination shows about
38% shorter average read latency than an all-flash con-
figuration.

5.3 Result 2: Media company

The second trace is from the storage server of a media
company, also running an OLTP database.

The cumulative distribution and the total amount of
read and write I/O traffic are shown in Figure 10(a).
The total accessed storage capacity is 4.0 TiB, the total
amount of read traffic is 5.7 TiB, and the total amount of
write traffic is 82.1 GiB. This workload is highly skewed
and read intensive. Compared to other workloads, this
workload has a larger working set size and a longer tail,

USENIX Association 12th USENIX Conference on File and Storage Technologies 43

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (4.0 TiB)

Read

Write

Amount of Read Amount of Write

5.7 TiB

82.1 GiB

(a) CDF and I/O amount

 0

 50

 100

 150

 200

 250

 300

 64 GiB 128 GiB 256 GiB 512 GiB 1 TiB

A
v
e

ra
g

e
 R

e
a

d
 L

a
t.

 (
µ

s
)

Cache Size

208.4 205.1 200.2 194.4 193.9

129.9
(-38%)

125.8
(-39%)

119.9
(-40%)

112.7
(-42%)

112.1
(-42%)

Flash
PCM

(b) Average read latency

 0

 50

 100

 150

 200

 250

Flash64G

PCM16G

P8G+F32G

P4G+F48G

 Flash128G

PCM32G

P16G+F64G

P8G+F96G

 Flash256G

PCM64G

P32G+F128G

P16G+F192G

A
v
e
ra

g
e
 R

e
a
d
 L

a
t.
 (

µ
s
)

-35.8% -35.5% -35.5%

(c) Average read latency for even cost configurations

Figure 10: Cache simulation result for media company
trace

which results in a higher proportion of cold misses.
Figure 10(b) shows average read latency (Y-axis) for

different cache configurations ranging from 64 GiB to
1 TiB. Because of the large number of cold misses, the
improvements are less then those observed for the first
workload: 38–42% shorter read latency than flash.

Figures 10(c) shows the simulation results for cost-
aware configurations. Again, the results are divided into
three groups. Within each group, we vary the ratio of
PCM and flash while keeping the cost constant. Unlike
the previous workload (manufacturing company), PCM
reduces read latency in all three groups by about 35%
compared to flash.

5.4 Result 3: Medical database

The last trace was captured from a front-line patient man-
agement system. Traces were captured over a period of
24 hours, and in total 760.6 GiB of storage space was
touched. The amount of read traffic (3.2 TiB) is about
10× more than the amount of write traffic (321.5 GiB),
and read requests are highly skewed as shown in Fig-
ure 11(a).

Figure 11(b) shows the aggregate I/O time (Y-axis)
with 64 GiB to 512 GiB cache sizes. We observe that
PCM can provide 37–44% shorter read latency than
flash.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t
(%

)

Portion (%) of total accessd capacity (760.6 GiB)

Read

Write

Amount of Read Amount of Write

3.2 TiB

321.5 GiB

(a) CDF and I/O amount

 0

 50

 100

 150

 200

 250

 64 GiB 128 GiB 256 GiB 512 GiB

A
v
e

ra
g

e
 R

e
a

d
 L

a
t.

 (
µ

s
)

Cache Size

211.4 205.4 194.1 188.6
133.6
(-37%)

126.2
(-39%) 112.4

(-42%)
105.6
(-44%)

Flash
PCM

(b) Average read latency

 0

 50

 100

 150

 200

 250

Flash64G

PCM16G

P8G+F32G

P4G+F48G

 Flash128G

PCM32G

P16G+F64G

P8G+F96G

 Flash256G

PCM64G

P32G+F128G

P16G+F192G
A

v
e
ra

g
e
 R

e
a
d
 L

a
t.
 (

µ
s
)

-26.4% -30.6%
-33.7%

(c) Average read latency for even cost configurations

Figure 11: Cache simulation result for medical database
trace

 0

 20

 40

 60

 80

 100

 120

 140

 160

Flash256G

P32G+F128G

 2xFaster PCM read

2xSlower PCM read

2xFaster PCM write

2xSlower PCM write

2xCheap.(P64G+F128G)

2xExp.(P16G+F128G)

A
v
e

ra
g

e
 R

e
a

d
 L

a
t.

 (
µ

s
)

141.4

-37% -40%
-34%

-46%

-24%

-48%

-18%

Figure 12: The average read latency for manufacturing
company trace with varied PCM parameters

For the cost-aware configurations, PCM can improve
read latency by 26.4–33.7% (Figure 11(d)) compared to
configurations without PCM.

5.5 Sensitivity analysis for caching
Similar to the study of tiering in Section 4.6, we run
sensitivity analysis for server caching as well. We test
six variations of PCM parameters: (1) 2× shorter PCM
read latency (4.35 µs), (2) 2× longer PCM read latency
(13.4 µs), (3) 2× shorter PCM write latency (64.15 µs),
(4) 2× longer PCM write latency (256.6 µs), (5) 2×
cheaper normalized PCM cost (12), and finally (6) 2×
more expensive normalized PCM cost (48). We pick the
manufacturing company trace and its best configuration

44 12th USENIX Conference on File and Storage Technologies USENIX Association

(PCM 32 GiB + flash 128 GiB).
Figure 12 shows the simulated average read latencies

for varied configurations. The same trend is shown as
observed from the result for tiering (Figure 8); price cre-
ates the biggest impacts; even when performing half as
well as our measured device, PCM still achieves 18–34%
shorter average read latencies than all flash configura-
tion.

5.6 Summary of caching simulation

Our cache simulation study with real-world storage ac-
cess traces has demonstrated that PCM can improve ag-
gregate I/O time by up to 66% (manufacturing company
trace) compared to a configuration that uses the same
size of flash. With cost-aware configurations, we show
that PCM can improve average read latency up to 38%
(again, manufacturing company trace) compared to the
flash only configuration.

From our results, we observe that the result from the
first workload (manufacturing) is different from the re-
sults of the second (media) and third (medical). While
configurations with PCM offer significant performance
improvement over any combination without PCM in the
second and third workloads, we observe that that is true
only for larger cache sizes in the first workload (i.e. Fig-
ures 9(c). This can be attributed to the varying degrees
of skewing in the workloads. The first workload exhibits
less skew (for read I/Os) than the second and third work-
loads and hence has a larger working-set size. As a result,
by increasing the cache size to capture the entire working
set for the first workload (data point PCM 32 GiB + flash
128 GiB), we are eventually able to achieve a configura-
tion that captures the active working-set.

These results point to the fact that PCM-based caching
options are a viable, cost-effective option to flash-based
server-side caches, given a fitting workload profile. Con-
sequently, analysis of workload characteristics is re-
quired to identify critical parameters such as proportion
of writes, skew and working set size.

6 Limitations and discussion

Our study into the applicability of PCM devices in real-
istic enterprise storage settings has provided several in-
sights. But we acknowledge that our analysis does have
several limitations: First, since our evaluation is based
on a simulation, it may not accurately represent system
conditions. Second, from our asynchronous I/O test (see
section 3.2), we observe that the prototype PCM device
does not exploit I/O parallelism much, unlike the eMLC
flash SSD. This means that it may not be fair to say that
the PCM SSD is 16× faster than the eMLC SSD for read,

because the eMLC SSD can handle multiple read I/O re-
quests concurrently. It is a fair concern if we ignore the
capacity of the SSDs. The eMLC flash SSD has 1.8 TiB
capacity while the PCM SSD has only 64 GiB capacity.
We assume that as the capacity of PCM SSD increases,
its parallel I/O handling capability will increase as well.
Finally, in order to understand long-term architectural
implications, longer evaluation runs may be required for
performance characterization.

In this study, we approach PCM as storage rather than
memory, and our evaluation is focused on average per-
formance improvements. However, we believe that the
PCM technology may be capable of much more. As
shown in our I/O latency measurement study, PCM can
provide well-bounded I/O response times. These per-
formance characteristics will prove to be very useful to
provide Quality of Service (QoS) and multi-tenancy fea-
tures. We leave exploration of these directions to future
work.

7 Conclusion

Emerging workloads seem to have an ever-increasing ap-
petite for storage performance. Today, enterprise storage
systems are actively adopting flash technology. However,
we must continue to explore the possibilities of next gen-
eration non-volatile memory technologies to address in-
creasing application demands as well as to enable new
applications. As PCM technology matures and produc-
tion at scale begins, it is important to understand its ca-
pabilities, limitations and applicability.

In this study, we explore the opportunities for PCM
technology within enterprise storage systems. We com-
pare the latest PCM SSD prototype to an eMLC flash
SSD to understand the performance characteristics of the
PCM SSD as another storage tier, given the right work-
load mixture. We conduct a modeling study to analyze
the feasibility of PCM devices in a tiered storage envi-
ronment.

8 Acknowledgments

We first thank our shepherd Steven Hand and anonymous
reviewers. We appreciate Micron for providing their
PCM prototype hardware for our evaluation study and
answering our questions. We also thank Hillery Hunter,
Michael Tsao, and Luis Lastras for helping our experi-
ments, and Paul Muench, Ohad Rodeh, Aayush Gupta,
Maohua Lu, Richard Freitas, Yang Liu for their valuable
comments and help.

USENIX Association 12th USENIX Conference on File and Storage Technologies 45

References
[1] AKEL, A., CAULFIELD, A. M., MOLLOV, T. I., GUPTA, R. K.,

AND SWANSON, S. Onyx: a protoype phase change memory
storage array. In Proceedings of the 3rd USENIX conference on
Hot topics in storage and file systems (Berkeley, CA, USA, 2011),
HotStorage’11, USENIX Association, pp. 2–2.

[2] AKERMAN, J. Toward a universal memory. Science 308, 5721
(2005), 508–510.

[3] ATHANASSOULIS, M., BHATTACHARJEE, B., CANIM, M.,
AND ROSS, K. A. Path Processing using Solid State Storage.
In Proceedings of the 3rd International Workshop on Acceler-
ating Data Management Systems Using Modern Processor and
Storage Architectures (ADMS 2012) (2012).

[4] BEDESCHI, F., RESTA, C., ET AL. An 8mb demonstrator for
high-density 1.8v phase-change memories. In VLSI Circuits,
2004. Digest of Technical Papers. 2004 Symposium on (2004),
pp. 442–445.

[5] BYAN, S., LENTINI, J., MADAN, A., PABON, L., CONDICT,
M., KIMMEL, J., KLEIMAN, S., SMALL, C., AND STORER,
M. Mercury: Host-side flash caching for the data center. In
Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th
Symposium on (2012), pp. 1–12.

[6] DELL. 300 gb 15,000 rpm serial attached scsi hotplug hard drive
for select dell poweredge servers / powervault storage.

[7] DELL. Dell Enterprise Hard Drive and Solid-State Drive Spec-
ifications. http://i.dell.com/sites/doccontent/

shared-content/data-sheets/en/Documents/

enterprise-hdd-sdd-specification.pdf.

[8] DELL. LSI Logic Nytro WrapDrive BLP4-1600 - Solid State
Drive -1.6 TB - Internal. http://accessories.us.dell.

com/sna/productdetail.aspx?sku=A6423584.

[9] EMC. FAST: Fully Automated Storage Tiering. http://www.

emc.com/storage/symmetrix-vmax/fast.htm.

[10] EMC. XtreamSW Cache: Intelligent caching software that lever-
ages server-based flash technology and write-through caching for
accelerated application performance with data protection. http:
//www.emc.com/storage/xtrem/xtremsw-cache.htm.

[11] FUSION-IO. ioTurbine: Turbo Boost Virtualization. http://

www.fusionio.com/products/ioturbine.

[12] HOLLAND, D. A., ANGELINO, E., WALD, G., AND SELTZER,
M. I. Flash caching on the storage client. In Proceedings of the
11th USENIX conference on USENIX annual technical confer-
ence (2013), USENIXATC’13, USENIX Association.

[13] HOYA, K., TAKASHIMA, D., ET AL. A 64mb chain feram with
quad-bl architecture and 200mb/s burst mode. In Solid-State Cir-
cuits Conference, 2006. ISSCC 2006. Digest of Technical Papers.
IEEE International (2006), pp. 459–466.

[14] IBM. IBM FlashSystem 820 and IBM FlashSystem 720. http:
//www.ibm.com/systems/storage/flash/720-820.

[15] IBM. IBM System Storage DS8000 Easy Tier. http://www.

redbooks.ibm.com/abstracts/redp4667.html.

[16] IBM. IBM System Storage DS8000 Easy Tier Server.
http://www.redbooks.ibm.com/Redbooks.nsf/

RedbookAbstracts/redp5013.html.

[17] IBM. IBM XIV Storage System. http://www.ibm.com/

systems/storage/disk/xiv.

[18] KIM, D., LEE, S., CHUNG, J., KIM, D. H., WOO, D. H., YOO,
S., AND LEE, S. Hybrid dram/pram-based main memory for
single-chip cpu/gpu. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE (2012), pp. 888–896.

[19] KIM, J. K., LEE, H. G., CHOI, S., AND BAHNG, K. I. A pram
and nand flash hybrid architecture for high-performance embed-
ded storage subsystems. In Proceedings of the 8th ACM interna-
tional conference on Embedded software (New York, NY, USA,
2008), EMSOFT ’08, ACM, pp. 31–40.

[20] KOLLER, R., MARMOL, L., SUNDARARAMAN, S., TALA-
GALA, N., AND ZHAO, M. Write policies for host-side flash
caches. In Proceedings of the 11th USENIX conference on File
and Storage Technologies (2013), FAST’13, USENIX Associa-
tion.

[21] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable dram alternative. In
Proceedings of the 36th annual international symposium on Com-
puter architecture (New York, NY, USA, 2009), ISCA ’09, ACM,
pp. 2–13.

[22] LEE, K.-J., ET AL. A 90nm 1.8v 512mb diode-switch pram with
266mb/s read throughput. In Solid-State Circuits Conference,
2007. ISSCC 2007. Digest of Technical Papers. IEEE Interna-
tional (2007), pp. 472–616.

[23] MOGUL, J. C., ARGOLLO, E., SHAH, M., AND FARABOSCHI,
P. Operating system support for nvm+dram hybrid main memory.
In Proceedings of the 12th conference on Hot topics in operating
systems (Berkeley, CA, USA, 2009), HotOS’09, USENIX Asso-
ciation, pp. 14–14.

[24] NETAPP. Flash Accel software improves application per-
formance by extending NetApp Virtual Storage Tier to en-
terprise servers. http://www.netapp.com/us/products/

storage-systems/flash-accel.

[25] PURESTORAGE. FlashArray, Meet the new 3rd-
generation FlashArray. http://www.purestorage.com/

flash-array/.

[26] QURESHI, M. K., FRANCESCHINI, M. M., JAGMOHAN, A.,
AND LASTRAS, L. A. Preset: improving performance of phase
change memories by exploiting asymmetry in write times. In Pro-
ceedings of the 39th Annual International Symposium on Com-
puter Architecture (Washington, DC, USA, 2012), ISCA ’12,
IEEE Computer Society, pp. 380–391.

[27] QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A. Scal-
able high performance main memory system using phase-change
memory technology. In Proceedings of the 36th annual inter-
national symposium on Computer architecture (New York, NY,
USA, 2009), ISCA ’09, ACM, pp. 24–33.

[28] RAOUX, S., BURR, G., BREITWISCH, M., RETTNER, C.,
CHEN, Y., SHELBY, R., SALINGA, M., KREBS, D., CHEN, S.-
H., LUNG, H. L., AND LAM, C. Phase-change random access
memory: A scalable technology. IBM Journal of Research and
Development 52, 4.5 (2008), 465–479.

[29] SIE, C. Memory Cell Using Bistable Resistivity in Amorphous
As-Te-Ge- Film. Iowa State University, 1969.

USENIX Association 12th USENIX Conference on File and Storage Technologies 47

Wear Unleveling:
Improving NAND Flash Lifetime by Balancing Page Endurance

Xavier Jimenez, David Novo and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland

Abstract

Flash memory cells typically undergo a few thousand
Program/Erase (P/E) cycles before they wear out. How-
ever, the programming strategy of flash devices and pro-
cess variations cause some flash cells to wear out signif-
icantly faster than others. This paper studies this vari-
ability on two commercial devices, acknowledges its un-
avoidability, figures out how to identify the weakest cells,
and introduces a wear unbalancing technique that let the
strongest cells relieve the weak ones in order to lengthen
the overall lifetime of the device. Our technique periodi-
cally skips or relieves the weakest pages whenever a flash
block is programmed. Relieving the weakest pages can
lead to a lifetime extension of up to 60% for a negligible
memory and storage overhead, while minimally affect-
ing (sometimes improving) the write performance. Fu-
ture technology nodes will bring larger variance to page
endurance, increasing the need for techniques similar to
the one proposed in this work.

1 Introduction

NAND flash is extensively used for general storage and
transfer of data in memory cards, USB flash drives, solid-
state drives, and mobile devices, such as MP3 players,
smartphones, tablets or netbooks. It features low power
consumption, high responsiveness and high storage den-
sity. However, flash technology also has several disad-
vantages. For instance, devices are physically organized
in a very specific manner, in blocks of pages of bits,
which results in a coarse granularity of data accesses.
The memory blocks must be erased before they are able
to program (i.e., write) their pages again, which results
in cumbersome out-of-place updates. More importantly,
flash memory cells can only experience a limited num-
ber of Program/Erase (P/E) cycles before they wear out.
The severity of these limitations is somehow mitigated
by a software abstraction layer, called a Flash Transla-

0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0 2000 4000 6000 8000 10000 12000 14000

B
it

er
ro

r
ra

te

Program/Erase cycles

Figure 1: Page degradation speed variation. These
data were generated by continuously writing random val-
ues into the 128 pages of a single block of flash. The
BER grows at widely different speeds among pages of
the same block. We suggest to reduce the stress on the
weakest pages in order to enhance the block endurance.

tion Layer (FTL), which interfaces between common file
systems and the flash device.

This paper proposes a technique to extend flash de-
vices’ lifetime that can be adopted by any FTL mapping
the data at the page level. It is also suitable for hybrid
mappings [13, 6, 12, 5], which combine page level map-
ping with other coarser granularities.

The starting point of our idea is the observation that
the various pages that constitute a block deteriorate at
significantly different speeds (see Figure 1). Conse-
quently, we detect the weakest pages (i.e., the pages de-
grading faster) to relieve them and improve the yield of
the block. In essence, to relieve a page means not pro-
gramming it during a P/E cycle. The idea has a similar
goal as wear leveling, which balances the wear of ev-
ery block. However, rather than balancing the wear, our
technique carefully unbalances it in order to transfer the
stress from weaker pages to stronger ones. This means

48 12th USENIX Conference on File and Storage Technologies USENIX Association

that every block of the device will be able to provide its
full capacity for a longer time.

The result is a device lifetime extension of up to 60%
for the experimented flash chips, at the expense of neg-
ligible storage and memory overheads, and with a stable
performance. Importantly, the increase of process varia-
tions of future technology nodes and the trend of includ-
ing a growing number of pages in a single block let us
envision an even more significant lifetime extension in
future flash memories.

2 Related Work

Flash lifetime is one of the main concerns of these de-
vices and is becoming even more worrisome today due to
the increasing variability and retention capability inher-
ent to smaller technology nodes. Most of the techniques
trying to improve the device lifetime focus on improving
the ECC robustness [15, 26], on reducing garbage col-
lection overheads [14, 25], or on improving traditional
wear-leveling techniques [20]. All of these contributions
are complementary to our technique.

Lue et al. suggest to add a built-in local heater on
the flash circuitry [16], which would heat cells at 800 ˚ C
for milliseconds to accelerate the healing of the accumu-
lated damage on the oxide layer that isolates the float-
ing gates. Based on prototyping and simulations, the
authors envision a flash cell endurance increase of sev-
eral orders magnitude. While the endurance improve-
ment is impressive, it would require significant efforts
and modifications in current flash architectures before
being available on the market. Furthermore, further anal-
ysis (e.g., power, temperature dissipation, cost) might re-
veal constraints that are only affordable for a niche mar-
ket, whereas our technique can be used today with off-
the-shelf NAND flash chips.

Wang and Wong [24] combine the healthy pages of
multiple bad blocks to form a smaller set of virtually
healthy blocks. In the same spirit, we revive Multi-Level
Cell (MLC) bad blocks in Single-Level Cell (SLC) mode
in a previous work [11]: writing a single bit per cell is
more robust and can sustain more stress before a cell be-
comes completely unusable. Both techniques wait for
blocks to turn bad before acting, which somehow limits
their potentials (17% lifetime extension at best); on the
other hand, by relieving early the weakest pages, we ben-
efit more from the strongest cells and thus show a better
lifetime improvement.

Pan et al. acknowledge the block endurance variance
and suggest to adapt classical wear-leveling algorithm to
compare blocks on their Bit Error Rate (BER) rather than
their P/E cycles count [20]. However, in order to moni-
tor a block BER, the authors assume homogeneous page
endurance and a negligible faulty bit count variance be-

Block
floating gate

WL0

WL1

WL2

WL3

WLN

...

BL0 BL1 ... BLM
(a) (b)

WL0

WL2

WL1

0
4

2
8

6
12

1
5

3
9

7
13

WL3

BLodd BLeven

10
16

11
17

(c)

WL0

WL2

WL1

WL3

1
4

3
6

5
8

0
2

LSB

MSB

Figure 2: Flash cells organization. Figure 2(a) shows
the organization of cells inside a block. A block is made
of cell strings for each bitline (BL). Each bit of an MLC
is mapped to a different page. Figures 2(b) and 2(c) show
two examples of cell-to-page mappings in 2-bit MLC
flash memories. For instance, in Figure 2(b), the LSB
and MSB of WL1 are mapped to pages 1 and 4, respec-
tively. The page numbering also gives the programming
order.

tween P/E cycles. For the two chips we studied, both
assumptions were not applicable and would require a
more complex approach to compare the BER of multiple
blocks. Furthermore, we observed a significantly larger
endurance variance on the page level than the block level.
Hence, by acting on the page endurance, our approach
has more room to expand the device lifetime.

In this work, for more efficiency, we restrict the relief
mechanism to data that is frequently updated, which is a
strategy shared with techniques proposing to allocating
those data in SLC-mode (i.e., programming only one bit
per cell) to reduce the write latency [9, 10]. In a previ-
ous work, we characterized the effect of the SLC-mode
and observed that it could write more data for the same
amount of wear compared to regular writes and provided
a lifetime improvement of up to 10% [10]. In this work,
we propose to go further in the lifetime extension.

3 NAND Flash

NAND flash memory cells are grouped into pages (typ-
ically 8–32 kB) and blocks of hundreds of pages. Fig-
ure 2(a) illustrates the cell organization of a NAND flash
block. In current flash architectures, more than one page
can share the same WordLine (WL). This is particularly
true for Multi-Level Cells (MLC), where the Least Sig-
nificant Bits and Most Significant Bits (LSB and MSB)
of a cell are mapped to different pages. Figures 2(b) and
2(c) show two cell-to-page mappings used in MLC flash
devices, All-BitLine (ABL) and interleaved, respectively.

Flash memories store information by using electron
tunneling to place and remove charges into floating gates.

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 49

A B C D

D0

D1

D3

D4
D5

D6
D7

D8

D9
D10

D11
D12
D13

D14
D15

D2

(a)
A B C D

D0

D2

D3

D5

D6
D7

D8

D9
D10

D11
D12
D13

D14
D15
D4
D1

(b)

A B C D

D0
D2
D3

D5

D6
D7

D8

D9
D10

D11
D12
D13

D14
D15
D4
D1

(c)
A B C D

D0
D2
D3

D5
D6

D7

D8

D9
D10D11

D12
D13

D14

D15

D4

D1

(d)

VALIDCLEAN INVALID RELIEVED

Figure 3: Pages state transitions. Figure (a) shows the
various page states found in typical flash storage: clean
when it has been freshly erased, valid when it holds valid
data, and invalid when its data has been updated else-
where. In Figure (b), data D1 and D4 are invalidated
from blocks A and B, and updated in block D. In Fig-
ure (c), block A is reclaimed by the garbage collector; its
remaining valid data are first copied to block D, before
block A gets erased. Figure (d) illustrates the mechanism
proposed in this work: we opportunistically relieve weak
pages to limit their cumulative stress.

The action of adding a charge to a cell is called program-
ming, whereas its removal is called erasing. Reading
and programming cells is performed on the page level,
whereas erasing must be performed on an entire block.
Furthermore, pages in a block must be programmed se-
quentially. The sequence is designed to minimize the
programming disturbance on neighboring pages, which
receive undesired voltage shifts despite not being se-
lected. In the sequences defined by both cell-to-page
mappings, the LSBs of WLi+1 are programmed before
the MSBs of WLi. In this manner, any interference oc-
curring between the WLi LSB and MSB program will be
inhibited after the WLi MSB is programmed [17].

Importantly, the flash cells have limited endurance:
they deteriorate with P/E cycles and become unreliable
after a certain number of such cycles. Interestingly, the
different pages of a block deteriorate at different rates, as
shown in Figure 1. This observation serves as motivation
for this work, which proposes a technique to reduce the
endurance difference by regularly relieving the weakest
pages.

3.1 Logical to Physical Translation

Flash Translation Layers (FTLs) hide the flash physical
aspects to the host system and map logical addresses to

FTL

Physical
Layer

Hot ColdWarm

in
va

lid

in
va

lid

in
va

lid

in
va

lid

in
va

lid

in
va

lid

in
va

lid

in
va

lid

relieved page

Logical
Layer

invalid pages clean pages

block

Figure 4: Flash Translation Layer example. An ex-
ample of page-level mapping distinguishing update fre-
quencies in three categories: hot, warm and cold. In this
work, we propose to idle the weakest pages when their
corresponding block is allocated to the hot partition. It
limits the capacity loss to a small portion of the storage
but still benefits from high update frequency to increase
page-relief opportunities.

physical flash locations to provide a simple interface sim-
ilar to classical magnetic disks. To do this, the FTL needs
to maintain the state of every page—typical states are
clean, valid, or invalid, as illustrated in Figure 3(a). Only
clean pages (i.e., erased) can be programmed. Invalid
and valid pages cannot be reprogrammed without being
erased before, which means the FTL must always have
clean pages available and will direct incoming writes to
them. Whenever data is written, the selected clean page
becomes valid and the old copy becomes invalid. This
is illustrated in Figure 3(b), where D1 and D4 have been
reallocated.

To enable our technique, we introduced a fourth page
state, relieved, to indicate pages to be relieved (i.e., not
programmed) during a P/E cycle. Relieving pages dur-
ing a P/E cycle is perfectly practical, because it does not
break the programming sequentiality constraint and does
not compromise the neighbors information. In fact, it
is electrically equivalent to programming a page to the
erase state (i.e., all 1’s). Hence, to the best of our knowl-
edge, any standard NAND flash architecture should sup-
port this technique.

3.2 Garbage Collection
The number of invalid pages grows as the device is writ-
ten. At some point, the FTL must trigger the reuse of in-
valid pages into clean pages. This reuse process is known
as garbage collection, which is illustrated in Figure 3(c),
where block A is selected as the victim.

3

50 12th USENIX Conference on File and Storage Technologies USENIX Association

Copying the remaining valid data of a victim block
represents a significant overhead, both in terms of per-
formance and lifetime. Therefore, it is crucial to select
the data that will be allocated onto the same block care-
fully in order provide an efficient storage system. Wu
and Zwaenepoel addressed this problem by regrouping
data with similar update frequencies [25]. Hot data have
a higher probability of being updated and invalidated
soon, resulting in hot blocks with a large number of in-
valid pages that reduce the garbage collection overhead.
Figure 4 shows an example FTL that identifies three dif-
ferent temperatures (i.e., update frequencies), labeled as
hot, warm, and cold. Literature is rich with heuristics to
identify hot data [12, 4, 9, 22, 21].

In the present study, we propose to relieve the weak-
est pages in order to balance their endurance with their
stronger neighbors. We have restricted the relieved pages
to the hottest partition in order to limit the resulting ca-
pacity loss to a small and contained part of the storage,
while benefiting from a large update frequency to better
exploit the presented effect. Following sections will fur-
ther analyze the costs and benefits of our approach, as
well as its challenges.

3.3 Block Endurance

While accumulating P/E cycles, a block becomes pro-
gressively less efficient in the retention of charges and its
BER increases exponentially. Typically, flash blocks are
considered unreliable after a specified number of P/E cy-
cles known as the endurance. Yet, it is well understood
that the endurance specified by manufacturers serves as
a certification but is hardly sufficient to evaluate the ac-
tual endurance of a block [8, 18]. A block endurance de-
pends on the following factors: First, the cell design and
technology will define its resistance to stress; this is gen-
erally a trade-off with performance and density. Second,
the endurance is associated with a retention time, that
is, how long data is guaranteed to remain readable after
being written; a longer retention time requirement will
require relatively healthy cells and limit the endurance
to lower values. Finally, ECCs are typically used to cor-
rect a limited number of errors within a page; the ECC
strength (i.e., number of correctable bits) influences the
block endurance. The ECC strength required to maintain
the endurance specified by manufacturers increases dras-
tically at every new technology nodes. A stronger ECC
grows in size and requires a more complex and longer er-
ror decoding process, which compromises read latency.
Additionally, the strength of an ECC is chosen accord-
ing to the weakest page of a block and, as suggested by
Figure 1, the chosen strength will only be justified for a
minority of pages. Our proposed balancing of page en-
durance within a block will reduce the BER of the weak-

est pages; therefore, our idea can either be used to re-
duce the ECC strength requirement or to extend the de-
vice lifetime. However, in this work, we only explore the
impact of our technique in device lifetime extension.

FTLs implement several techniques that maximize the
use of this limited endurance to guarantee a sufficient de-
vice lifetime and reliability. Typical wear-leveling algo-
rithms implemented in FTLs target the even distribution
of P/E counts over the blocks. Additionally, to avoid la-
tent errors, scrubbing [1, 23] may be used, which con-
sists in detecting data that accumulates too many errors
and rewriting it before it exceeds the ECC capability.

3.4 Bad Blocks
A block is considered bad whenever an erase or program
operation fails, or when the BER grows close to the ECC
capabilities. In the former case, an operation failure is
notified by a status register to the FTL, which reacts by
marking the failing block as bad. In the latter case, de-
spite a programming operation having been completed
successfully, a certain number of page cells might have
become too sensitive to neighboring programming dis-
turbances or have started to leak charges faster than the
specified retention time and will compromise the stored
data [17]. Henceforth, the FTL will stop using the block
and the flash device will die at the point in time when no
spare blocks remain to replace all failing blocks.

To study the degradation speed of the different pages
within a block, we conducted an experiment on a real
NAND flash chip in which we continuously programmed
pages with random data and monitored each page BER
by averaging their error counts over 100 P/E cycles. We
have already anticipated the results in Figure 1, which
shows how the number of error bits increases with the
number of P/E operations for all the pages in a particular
block. At some point in time, the weakest page (darker
line on the graph) will show a BER that is too high and
the entire block will be considered unreliable. Interest-
ingly, a large majority of the remaining pages could with-
stand a significant amount of extra writes before becom-
ing truly unreliable. Clearly, flash blocks suffer a prema-
ture death if no countermeasures are taken and our ap-
proach attempts to postpone the moment at which a page
block becomes bad by proactively relieving its weakest
pages. The following sections further study the degrada-
tion process of individual pages and detail the technique
that uses strong pages to relieve weak ones.

4 Relieving Pages

In this section we introduce the relief strategy and char-
acterize its effects from experiments on two real 30-nm
class NAND flash chips.

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 51

0

2e-05

4e-05

6e-05

8e-05

10e-05

12e-05

0 5000 10000 15000 20000 25000

B
it

er
ro

r
ra

te

Program/Erase cycles

Ref
Half relief
Full relief

25 25 50 5075

75

chip C1
0

2e-05

4e-05

6e-05

8e-05

10e-05

12e-05

0 2000 4000 6000 8000 10000 12000 14000

B
it

er
ro

r
ra

te

Program/Erase cycles

Ref
Half relief
Full relief

chip C2

25 25 50 50 75 7525 50 75

Figure 5: Measured effect of relieving pages. The degradation speed for various relief rates and types are measured
on both chips. The Ref curve reports the BER of the entire reference blocks, whereas for the relieved blocks, the BER
is only evaluated on the relieved page. The labels ‘25’, ‘50’, and ‘75’ indicate the corresponding relief rate in percent.
The BER is evaluated over a 100-cycle period.

4.1 Definition
We define a relief cycle on a page the fact of not pro-
gramming it between two erase cycles. Although re-
lieved pages are not programmed, they are still erased,
which, in addition to the disturbances coming from
neighbors undergoing normal P/E cycles, generates some
stress that we characterize in Section 4.2. In the case of
MLC, the cells are mapped to an LSB and MSB page
pair and can either be fully relieved, when both pages
are skipped, or half relieved, when only the MSB page
is skipped. The level of damage done to a cell during a
P/E cycle is correlated to the amount of charge injected
for programming; of course, more charges means more
damage to the cell. Therefore, a page will experience
minimal damage during a full relief cycle while a half
relief cycle will apply a stress level somewhere between
the full relief and a normal P/E cycle.

4.2 Understanding the Relieving Effect
In order to characterize the effects of relieving pages, we
selected two typical 32 Gb MLC chips from two differ-
ent manufacturers. We will refer them as C1 and C2;
their characteristics are summarized in Table 1. The read
latency, the block size, and the cell-to-page mapping ar-
chitecture are the most relevant differences between the
two chips. The C1 chip has slower reads and smaller
blocks than C2, and it implements the All-Bit Line (ABL)
architecture illustrated in Figure 2(b). The C2 chip im-
plements the interleaved architecture illustrated in Fig-
ure 2(c). We design an experiment to measure on our
flash chips how the relief rate impacts the page degrada-
tion speed. Accordingly, we selected a set of 28 blocks

Table 1: MLC NAND Flash Chips Characteristics

Features C1 C2

Total size 32 Gb 32 Gb
Pages per block 128 256
Page size 8 kB 8 kB
Spare bytes 448 448
Read latency 150 µs 40-60 µs
LSB write lat. 450 µs 450 µs
MSB write lat. 1,800 µs 1,500 µs
Erase latency 4 ms 3 ms
Architecture ABL interleaved

and divided them into seven sets of four blocks each.
One set is configured as a reference, where blocks are
always programmed normally—i.e., no page is ever re-
lieved. We allocate then three sets for each of the two
relief types (i.e., full and half), and each of these three
sets is relieved at a different frequency (25%, 50% and
75%). For each relieved block, only one LSB/MSB page
pair out of four is actually relieved, while the others
are always programmed normally. Therefore, the re-
lieved page pairs are isolated from each other by three
normally-programmed page pairs. Hence, we take into
account the impact of normal neighboring pages activity
on the relieved pages. Furthermore, within each four-
block relieved sets, we alternate the set of page pairs that
are actually relieved in order to evaluate evenly the relief
effects for every page pair physical position and discard
any measurement bias. Finally, every ten P/E cycles we
enforce a regular program cycle for every relieved blocks
(including relieved pages) in order to average out the ab-
sence of disturbance coming from relieved neighbors and
collect unbiased error counts for every page. Indeed,

5

52 12th USENIX Conference on File and Storage Technologies USENIX Association

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 e
nd

ur
an

ce

Relieving rate

C2 Full
C1 Full
C2 Half
C1 Half

αF=0.34
αF=0.39
αH=0.55
αH=0.61

Figure 6: Normalized page endurance vs. relief rate.
The graph shows how relieving pages extends their en-
durance. The endurance is normalized to the normal
page endurance, corresponding to a maximum BER of
10−4. For each chip, the relative stress of the full and half
relief type is extracted by fitting the measured points.

pages close to relieved pages experience less disturbance
and show a significantly lower BER.

Figure 5 shows the evolution of the average BER with
the number of P/E cycles for every set of blocks as mea-
sured on the chips. For the relieved sets, only the re-
lieved pages are considered for the average BER evalua-
tion. Clearly, the relief of pages slows down the degrada-
tion compared to regular cycles and extends the number
of possible P/E cycles before reaching a given BER.

In order to model the stress endured by pages undergo-
ing a full or half relief cycle, we first define the relation-
ship between page endurance and the stress experienced
during a P/E cycle. The endurance E of a page is in-
versely proportional to the stress ω that the page receives
during a P/E cycle:

E =
1
ω
. (1)

Considering a page being relieved with a relative stress
α at a given rate ρ , the resulting extended endurance EX
is expressed as the inverse of the average stress:

EX(ρ,α) =
1

(1−ρ)ω +ραω
=

E
(1−ρ)+ρα

. (2)

Assuming a maximum BER of 10−4 to define a page en-
durance, we show in Figure 6 the endurance of relieved
pages for the three relief rates measured, with the en-
durance normalized to the reference set. For each chip,
we also fit the data points to the model of Equation (2)
and report the extracted α parameters on the figure. Con-
sistently across the two chips, a full relief incurs less
damage to the cell than a half relief, which in turn in-
curs less damage than regular P/E cycles. Interestingly,
half reliefs are more efficient than full reliefs in term of
stress per written data: for example, for chip C1, the frac-
tion of stress associated to half and full relief cycles is

0K 5K 10K 15K 20K

Endurance in P/E cycles

P
ag

es

Reference

25% full relief

50% full relief

75% full relief

Figure 7: Measured page endurance distribution.
The clusters on the left and right correspond to MSB and
LSB pages, respectively. Both clusters endurance are ex-
tended homogeneously when relieved.

αH = 0.61 and αF = 0.39, respectively. Over two P/E
cycles, if an LSB/MSB page pair gets twice half relieved
or once fully relieved, two pages would have been writ-
ten in both cases but the cumulated stress would be larger
with a full relief:

2 ·αH = 1.22 < 1.39 = 1+αF. (3)

Furthermore, a half relief cycle consists in programming
solely the LSB of a LSB/MSB pair, and, intrinsically,
programming the LSB has a significantly smaller latency
than the MSB (see Table 1). Thus, a half relief is not only
more efficient for the same amount of written data, but it
also displays better performance.

Figure 7 provides further insight on the relief effect on
a page population. The figure shows the number of P/E
cycles tolerated by the different pages before reaching an
BER of 10−4 evaluated over 100 P/E cycles.

In the next sections we will discuss how relief cy-
cles can opportunistically be implemented into common
FTLs to balance the page endurance and improve the de-
vice lifetime.

5 Implementation in FTLs

In this section, we describe the implementation details
required to upgrade existing FTL with our technique.

5.1 Mitigating the Capacity Loss
Relieving pages during a P/E cycle temporarily reduces
the effective capacity of a block. Therefore, relieving
pages in a block-level mapped storage would be im-
practical. Conversely, performing it on blocks that are
mapped to the page level (or finer level) is straightfor-
ward. Consequently, in order to limit the total capac-
ity loss while still being able to frequently relieve pages,

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 53

we propose to exclusively enable relief cycles in blocks
that are allocated to the hottest partition, where the FTL
writes data identified as very likely to be updated soon.

Actually, the hot partition is an ideal candidate for our
technique because of two reasons: (1) hot data gener-
ally represent a small portion of the total device capacity
(e.g., less than 10%), which bounds the capacity loss to
a small fraction; also, (2) hot partitions usually receive
a significant fraction of the total writes (our evaluated
workloads show often more than 50% of writes identified
as hot), which provides plenty of opportunities to relieve
pages. Note that flash blocks are dynamically mapped to
the logical partitions, and thus, all of the physical blocks
in the device will eventually be allocated to the hottest
partition. Furthermore, classical wear-leveling mecha-
nisms will regularly swap cold blocks with hot blocks
in order to balance their P/E counts. Accordingly, our
technique has a global effect on the flash device despite
acting only on a small logical partition.

We will now describe two different approaches to bal-
ance the page endurance with our relief strategies. The
first one can be qualified as reactive, in that it will regu-
larly monitor the faulty bit count to identify weak pages.
The second one, which we call proactive, estimates be-
forehand what the endurance of every page will be and
sets up a relief plan that can be followed from the first
P/E cycle. Currently, manufacturers do not provide all
the information that would be required to directly spec-
ify the parameters needed for our techniques. Until then,
both techniques would require some characterization of
the chips to be used in order to extract parameters αF and
αH , and the page endurance distribution.

5.2 Identifying Weak Pages on the Fly

The reactive relief technique relies on the evolution of
the page BER to detect weakest pages as early as pos-
sible. The FTL must therefore periodically monitor the
amount of faulty bits per page which is very similar to
the scrubbing process [1]. This monitoring happens ev-
ery time that a cold (i.e., non-hot) block is selected by
the garbage collector. Concretely, we must read every
page and collect the error counts reported by the ECC
unit before erasing a block.

A simple approach to identify the weakest pages is to
detect which ones reach a particular error threshold first.
Assuming that an ECC can handle up to n faulty bits per
page, we can set an intermediate threshold k, with k < n,
that can be used to flag pages getting close to their en-
durance limit. The parameter n is given by the strength
of the ECC in place, while the parameter k must be cho-
sen to maximize the efficiency of the technique and will
depend on the page endurance variance. As soon as a
page reaches the threshold k, our heuristic will system-

atically relieve the corresponding LSB/MSB page pair
when it is allocated to the hot partition. In order to con-
trol the capacity loss, we also set a maximum amount of
pages to relieve per block; only the r first pages reach-
ing the threshold within a block will get relieved. For
our evaluation, we bound the relieved page count, r, to
25% of the block capacity. A larger r would increase
the range of pages that can be relieved but decrease the
efficiency of the buffer. Besides, the latest pages to be
identified as weak do not require a relief as aggressive
than the weakest ones. Hence, we propose to fully relieve
the rh first weak pages and to half relieve the remaining
r− rh pages. In our case, we found the best compromise
with rh equal to 5% and 10% of the block capacity for C1
and C2, respectively. Choosing efficiently rh for a new
chip requires the information on its page endurance dis-
tribution. The larger is its variance, the larger rh should
be.

The reactive approach requires extra storage for its
metadata. This overhead includes two bits per LSB/MSB
page pair, which will indicate whether any of the pages
has reached the k threshold and whether it should be fully
or half relieved, and a (redundant) counter indicating the
number of detected weak LSB/MSB page pairs so far.
Accordingly, 133 extra bits (128 bits for the flags and 5
bits for the counter) per block will need to be stored in a
device containing 128-page blocks. In the concrete case
of C1, for instance, this extra storage corresponds to an
insignificant amount of the total 458,752 spare bits that
are available for extra storage in every block. Addition-
ally, the FTL main memory will need to temporally store
the practically insignificant metadata of a single block to
be able to restore the metadata after erasing the block.
Overall, the extra storage needed by this technique ap-
pears to be negligible in typical flash devices.

The monitoring required by this technique needs the
FTL to read a whole block before erasing it, which adds
an overhead to the erasing time. The monitoring repre-
sents an overhead of 10% of the total time spent writ-
ing cold data, since flash read latency is typically ten
times smaller than write latency. However, the monitor-
ing process can often be performed in the background,
making this estimation—which we will use in all of our
experiments—quite conservative. If hiding the monitor-
ing in the background is not feasible or not sufficiently
effective, the FTL can also monitor the errors only every
several erase cycles. Accordingly, we evaluated how the
lifetime improvement is affected by a limited monitoring
frequency and observed that a monitoring frequency of
20% (i.e., blocks are monitored once every five P/E cy-
cles) provides sufficient information to sustain the same
lifetime extension than full monitoring. In substance,
while the process of identifying the weakest pages could
at worst require one page read per page written, simple

7

54 12th USENIX Conference on File and Storage Technologies USENIX Association

Plan 0 (ρ0=60%)

4000 cycles

Half rel. Full rel.Page #
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Plan 1 (ρ1=75%)

2000 cycles

Half rel. Full rel.

Plan 2 (ρ2=90%)

2000 cycles

Half rel. Full rel.
-
-
-

30%
-
-
-
-
-
-
-
-
-

90%
-
-

-
-
-
-
-

100%
-
-
-
-
-
-
-

10%
-
-

-
40%

-
-
-
-
-
-
-

30%
-
-
-
-
-
-

-
-
-

100%
-

100%
-
-
-
-
-
-
-

100%
-
-

-
60%

-
60%

-
60%

-
-
-

60%
-

100%
-

60%
-
-

-

-

-

-
-
-

-
-
-

-
-

40%

40%

40%

40%

40%

Figure 8: Example of a relief plan. The relief plan is
actually made of several plans, each valid for a given
amount of relief cycles. According to this plan, blocks
will follow Plan 0 during the first 4000 relief cycles then
move on to Plan 1 for the next 2000 relief cycles and so
on. A plan provides for each page its probability to be
relieved. In the example, page 5 is the weakest page and
is relieved to the maximum in Plan 0 and Plan 1.

techniques can reduce this overhead to negligible levels
without a loss in the effectiveness of the idea.

5.3 Relief Planning Ahead of Time
The reactive approach requires to identify the weakest
pages during operation and while significant deteriora-
tion has already occurred, which somehow limits the po-
tential for relief. More efficient would be to relieve the
weakest pages from the very first writes to the device.
Interestingly, previous work observed noticeable BER
correlation with the page number [7, 3]. Similarly, we
observe on our chips a significant correlation between a
page position in a block and its endurance. This correla-
tion is important enough to allow us to rank every page
per endurance. Thereby, we developed a proactive tech-
nique to exploit the relief potential more efficiently.

The proactive technique requires first a small analysis
of the flash chip that we consider. We must characterize
the endurance of LSB/MSB page pairs in every position
in a block, for a given BER. For each page pair, only
the shorter page endurance is considered. This informa-
tion can be extracted from a relatively small set of blocks
(e.g., 10 blocks). Thanks to this information, we will be
able to rank the page pairs by their endurance and know
which page should be relieved the most. Yet, building an
efficient relief plan would also require the knowledge of
how many times a block will be allocated to the hot parti-
tion during its lifetime, which corresponds to the amount
of opportunities to relieve its weakest pages. With this in-

formation, one could evaluate to what extent the weakest
page of a block can be relieved and how many times the
other pages should be relieved to meet the same extended
endurance. However, in practice, one cannot have this in-
formation ahead of time. Instead, we prepare a sequence
of plans targeting increasing hot allocation counts; Fig-
ure 8 gives an example of such a sequence. In this ex-
ample, Plan 0 contains the relief information for the first
4000 relief cycles. Once a block has been allocated to the
hot partition 4000 times, one moves to Plan 1 for the next
2000 relief cycles. The entries in the plans are probabil-
ities for a page to be either fully relieved, half relieved,
or normally programmed. Hence, when a block is allo-
cated to the hot partition, before programming a page,
one should first consult the plan and decide whether or
not the current page should be skipped.

To create such plans, sequentially starting from Plan 0,
we first refer to the page pairs endurance analysis to iden-
tify the weakest pair position w. Each Plan p is built as-
suming an intermediate hot allocation ratio ρp (e.g., 60%
for Plan 0) that grows from one plan to the next. The
higher it is, the more flexible the plan will be and ap-
plications with large hot ratios will largely benefit from
half relief cycles, while applications with low hot ratios
will not be relieved as aggressively as they should. Af-
ter choosing a ratio, we evaluate the maximum possible
endurance extension with full relief for the weakest page
pair w, ET,p = EX,w(ρp,αF). The expected number of re-
lief cycles for this Plan p is thus Lp = ρp ·EX,w minus the
total length of the previous plans. Hence in the example,
the hot allocation ratio ρ1 of Plan 1 would provide 2000
more relief cycle than Plan 0. Thereby, when a block ex-
ceeds 4000 relief cycles before turning bad, it means that
the actual ρ is larger than ρ0 and the block should move
on to the next plan, which targets a higher ρ .

Once the target endurance is set, for every page pair
i having an endurance Ei lower than ET,p, we compute
the number of relief cycles Ri that would be required for
them to align their endurance to ET,p. Setting

EX,i(ρi,α) =
Ei

(1−ρi)+ρiα
= ET (4)

and considering that ρi = Ri/ET , we simply obtain

Ri =
ET −Ei

1−α
. (5)

Here, α is the fraction of stress corresponding to half or
full relief cycles, or to a combination of the two, and we
still need to decide which type of relief to use.

As discussed in Section 4.2, half relief is most efficient
in terms of avoided stress per written data and in terms
of performance, and, hence, we will maximize its usage.
For every page i to be relieved, we evaluate with Equa-
tion (5) and α = αH the number of half relief cycles that

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 55

would be necessary to reach the endurance ET,p. If the
required number of half relief cycles is larger than the
number of relief cycles in this plan Lp, we are forced to
consider some full relief as well. Trivially, from Equa-
tion (5) and with Lp = Ri, we determine the fraction λ of
full relief cycles such that the average fraction of stress
is

α = λαF +(1−λ)αH = 1− ET −Ei

Lp
. (6)

To construct Plan p + 1, every page that was relieved,
even partially, according to Plan p will be set to the max-
imum relief rate (i.e., 100% full relief), and the above
process is repeated.

Similarly to the reactive approach, we restrict to r
the maximum number of relieved pages in order to limit
the potential performance drop. For the proactive tech-
nique, we can solely evaluate what would be the average
number of pages relieved per plan by summing every
page probability to get relieved. For example, in Fig-
ure 8, for Plan 0 the average number of relieved pages is
2 · (1+ 0.1)+ 0.3+ 0.9 = 3.4 pages out of 32 (remem-
ber that a full relief skips two pages). Limiting the aver-
age number of pages relieved will at some point bound
the target endurance. This is illustrated in Figure 8 with
Plan 2. Assuming that a maximum of eight pages on av-
erage is allowed, the original ET,2 would have required
the number of relieved pages to be larger than this. Hence
the ET,2 is reduced to meet the requirements, which re-
duces the relief rate of every page to meet the average
of eight relieved pages per cycle. The plan that requires
to reduce its original target endurance becomes the latest
plan. Once a block completed this last plan, it will sim-
ply stop having to relieve any page until the end of its
lifetime.

This technique requires to store the plans in the FTL
memory. Each plan has two entries for each LSB/MSB
pair and each entry can be encoded on 8 or 16 bits,
depending on the desired precision, resulting in 256–
512 Bytes per plan, which is negligible for most environ-
ments. Besides, the tables are largely sparse and could
be further reduced by means of classical compression
strategies (e.g., hash tables) to fit in memory sensitive
environments.

6 Experiments and Results

We evaluate here the expected lifetime extension achiev-
able with the two relief strategies presented. In the next
sections, we explain how we begin by combining error
traces acquired from real NAND flash chips with simu-
lation to obtain a first assessment of the improvements of
block endurance and, consequently, of device lifetime.
We then refine our experimental methodology by imple-
menting a trace-driven simulator and a couple of state-of-

the-art FTLs, and by evaluating more accurately the im-
pact of our technique. We use a number of benchmarks
to show not only the lifetime improvement but also the
minimal effect (often favorable) of our technique on ex-
ecution time.

6.1 Collecting Traces and Simulating Wear
To assess the impact of our technique, we first collected
real error traces from 100 blocks from each of our chips
that went through thousands of regular P/E cycles; we
collected the error count of every page at every P/E cy-
cle. We then used the collected traces to simulate what
would happen of the blocks when going through P/E cy-
cles during normal use of the device. At each simulated
P/E cycle, each block is either allocated to the hot parti-
tion (i.e., where pages can be relieved) or to the cold one,
depending on a hot-write probability; this parameter sim-
ulates the behaviour of an FTL and defines the probabil-
ity for a block to be allocated to the hot partition. When a
block is allocated to the cold partition, a normal P/E cy-
cle occurs: every page is considered programmed. When
a block is allocated to the hot partition, the weak pages
are relieved instead. The reactive approach uses the error
counts to determine pages as weak if they have reached
the predefined threshold k. The proactive approach, on
the other hand, relies solely on the relief plans prepared
in advance to determine the weak pages to be relieved.
While we simulate successive writes to the device, we
count how many times each page has been written and
to what extent it has been relieved. Whenever our real
traces tell us that one page of a block has reached a given
BER, considered as the maximum correctable BER, we
render the block as bad and stop using it. At the end, the
simulator reports the total amount of data that could be
written in each block—that is, the lifetime of the block
under a realistic usage of the device.

6.2 Block Lifetime Extension
We use our wear simulation method to first evaluate the
lifetime enhancement provided by our techniques at the
block level. In this context, we consider a block to be
bad as soon as one of its pages reaches the given BER.
Considering a 60% hot write ratio, Figure 9 shows the
lifetime of every block for both our flash chips assuming
a maximum BER of 10−4; it compares our proactive and
reactive techniques to the baseline. The blocks are or-
dered on the x-axis with the one with the lowest lifetime
on the left up to the one with the largest on the right. The
bottom curve is the lifetime of each block when stressed
normally, while the two curves on the top corresponds
to the lifetime when applying our techniques. The re-
lief effectiveness varies depending on the actual block,

9

56 12th USENIX Conference on File and Storage Technologies USENIX Association

Chip C1
0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

Li
fe

tim
e

in
 b

lo
ck

 w
rit

es

Blocks ordered by lifetime

proactive
reactive
baseline

Baseline lifetime

Reactive lifetime

Proactive lifetime

Chip C2
0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Li
fe

tim
e

in
 b

lo
ck

 w
rit

es

Blocks ordered by lifetime

proactive
reactive
baseline

Figure 9: Block lifetime improvement. The curves show the individual block lifetime, and the surface areas
the device lifetime, assuming it can cumulate up to 10% bad blocks. As expected, the proactive technique is more
efficient than the reactive one. Chip C1 has a relatively small page endurance variance, which limits the efficiency of
the proactive approach to 10% lifetime extension. Comparatively, C2 offers more room to exploit the relief mechanism
and allows the proactive approach to extend by 50% the lifetime. For these graphs, we assume a limit BER of 10−4 as
well as a 60% write frequency to the hot partition.

thereby the block ordering for the two curves is not nec-
essarily the same. The proactive approach is more effi-
cient, as it starts relieving pages much sooner than the
reactive approach. Yet, we believe that there is room to
improve our simple weak-page detection heuristic in or-
der to act sooner and be more efficient. Chip C1 shows
a relatively small page endurance variance, which limits
our techniques potential with a lifetime improvement of
10% maximum. This confirms the intuition that a larger
page endurance variability and a greater number of pages
per block (double for C2 compared to C1) increase the
benefit of the presented techniques. In the next section,
we translate the block lifetime extension into a device
lifetime extension.

6.3 Device Lifetime Extension

We now evaluate the lifetime extension for a set of blocks
when relieving the weakest pages. The three grey areas
of Figure 9 represent the total amount of data we could
write the device during its lifetime using the baseline
and our relief techniques. Assuming that the device dies
whenever 10% of its blocks turn bad, the ratio of a relief
gray area with the baseline area represents the additional
fraction of data that we could write: for C2, our reactive
and proactive techniques show a lifetime improvement of
more than 30% and 50%, respectively. These results are
obtained from a sample of 100 blocks, which are enough
to provide an error margin of less than 3% for a 95%
confidence level. From this figure, we can also make a
quantitative comparison between the error rate leveling

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

5e-05 10e-05 15e-05

Li
fe

tim
e

im
pr

ov
em

en
t

BER after which a block is considered unreliable

Chip C2
Chip C1

Figure 10: Lifetime improvement w.r.t. BER thresh-
old. The BER threshold that indicates when a block is
considered unreliable directly affects a device lifetime.
Large BER thresholds increase the baseline lifetime and
remove room to improvement at the cost of a more ex-
pensive ECC.

technique proposed by Pan et al. [20]. If we were to per-
fectly predict the endurance of every block, we would
have a device lifetime that is equal to each individual
block lifetime and which corresponds to the total area
below the baseline curve. Accordingly, we would get an
extra lifetime of 5% and 11% for C1 and C2, respec-
tively, which is an optimistic estimate, yet significantly
lower than what the proactive approach can bring.

We performed a sensitivity analysis on several param-
eters that might have an effect on the lifetime extension.
For the following results, we focus on the proactive strat-
egy. The proportion of bad blocks tolerated by a device
had negligible effect on the lifetime extension. As for the

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 57

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 li
fe

tim
e

(d
at

a
w

rit
te

n)

Hot data ratio

Estimate
ComboFTL

Rose

Figure 11: Lifetime improvement w.r.t. hot write ra-
tio. The curve gives the expected lifetime extension pro-
vided by the proactive technique on chip C2. The data
points represent results from benchmarks using two dif-
ferent FTLs. Those measurements take into account the
writes overhead caused by the hot partition capacity loss.
Apart from a couple of outliers, the results are consistent
with our expectations.

BER threshold, the effect on lifetime extension is mod-
erate, as illustrated in Figure 10. A larger BER gives
more time to benefit from relieving pages, but it also in-
creases the reference lifetime and makes the relative im-
provement smaller. Finally, the hot write ratio sets by
how much our technique can be exploited and has a sig-
nificant effect on the lifetime extension. The curve la-
beled “Estimate” in Figure 11 shows the lifetime of a de-
vice implementing the proactive technique (normalized
to the baseline lifetime) as a function of the hot write ra-
tio. We clearly see that the more writes are directed to
the hot partition, the better the relief properties can be
exploited, as one would expect. The data points on the
figure represent the normalized lifetime extension when
considering the actual execution of a set of benchmarks
with real FTLs, which will be introduced in the next sec-
tion; these measurements take into account all possible
overheads derived from the implementation of the relief
technique and match well the simpler estimate. All re-
sults show significant lifetime extensions for hot write ra-
tios larger than 40% which is, in fact, in the range where
most benchmarks (with very rare exceptions) are in prac-
tice.

6.4 Lifetime and Performance Evaluation

The temporary capacity reduction in the hot partition
produced by relieving pages decreases its efficiency and
is very likely to trigger more often the garbage collec-
tor. This effect is more critical for hybrid mapping FTLs
that rely on block-level mapping for the cold partition:
these FTLs will need to write a whole block even when
a single page needs to be evicted from the page-level

mapped hot partition (buffer partition) to the block-level
mapped cold partition. To refine our estimations and
understand the impact on performance, we developed a
trace-driven flash simulator and implemented two hybrid
FTLs, namely ComboFTL [9] and ROSE [5]. Both FTLs
have a hot partition that is mapped to the page level, how-
ever their cold partitions are mapped differently. ROSE
maps its cold data at the block level, while ComboFTL
divide its cold partition in sets of blocks, each being
mapped at the page level. Additionally, ComboFTL has
a warm partition; we will consider this third partition hot
as well, in the sense that pages of blocks allocated to
the warm partition will be subject to relief cycles when
appropriate. Thanks to the block level mapping, ROSE
requires significantly less memory than ComboFTL to
be implemented but pays the cost with an execution time
25% larger and a 20% smaller lifetime in average.

In our experimental setup, we assume a hot partition
allocating 5% of the total device size and we limit the
maximum ratio of relieved pages to 25%, which repre-
sents a maximal loss of 1.25% of the total device ca-
pacity. Hence, the page relief cost can either be con-
sidered as extra capacity requirement (1.25% here) or in
a garbage collection overhead that we will now evaluate
for two different FTLs.

We selected a large set of disk traces to be executed
by both FTLs. First the trace homesrv is a disk trace that
we collected during eight days on a small Linux home
server hosting various services (e.g., mail, file server,
web server). The traces fin1 and fin2 [2] are gathered
from OLTP applications running at two large financial
institutions. Lastly, we selected 15 traces that have a
significant amount of writes from the MSR Cambridge
traces [19]. In our simulation, we assume a total capacity
of 16 GBytes and a flash device with the characteristics
of C2 (see Table 1). While most of the traces were ac-
quired on disks of a larger capacity, their footprint are all
smaller and by considering only the referenced logical
blocks (2 MBytes for C2), every selected benchmark fit-
ted in the simulated disk. Importantly, when simulating
a smaller device, the hot partition size gets proportion-
ally scaled down, which effectively reduces the hot write
ratio and the potential of our approaches and renders the
following results conservative.

For the experiments, we considered again a maximum
BER of 10−4 and a bad blocks limit of 10%. We re-
port in Figure 12 the performance and lifetime results
for both chips and of both FTLs executing all the bench-
marks with the proactive technique. The results are nor-
malized to their baseline counterpart, that is implement-
ing the same FTL without relieving weak pages. (Note
that this makes the results for ComboFTL and ROSE not
comparable between themselves, but our purpose here is
not to compare different FTLs but rather to show that, ir-

11

58 12th USENIX Conference on File and Storage Technologies USENIX Association

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ho
m

es
rv

fin
1

fin
2

hm
0

m
ds

0
pr

n 0
pr

oj
0

pr
xy

0
pr

xy
1

rs
rc

h 0
sr

c1
2

sr
c2

0
st

g 0
st

g 1 ts
0

us
r 0

w
de

v 0
w

eb
0

ge
o

m
ea

n

N
or

m
al

iz
ed

 li
fe

tim
e

ex
te

ns
io

n ComboFTL
Rose

Chip C1

(a)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ho
m

es
rv

fin
1

fin
2

hm
0

m
ds

0
pr

n 0
pr

oj
0

pr
xy

0
pr

xy
1

rs
rc

h 0
sr

c1
2

sr
c2

0
st

g 0
st

g 1 ts
0

us
r 0

w
de

v 0
w

eb
0

ge
o

m
ea

n

N
or

m
al

iz
ed

 li
fe

tim
e

ex
te

ns
io

n

Chip C2

(b)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

ho
m

es
rv

fin
1

fin
2

hm
0

m
ds

0
pr

n 0
pr

oj
0

pr
xy

0
pr

xy
1

rs
rc

h 0
sr

c1
2

sr
c2

0
st

g 0
st

g 1 ts
0

us
r 0

w
de

v 0
w

eb
0

ge
o

m
ea

nN
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
he

ad Chip C1

(c)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

ho
m

es
rv

fin
1

fin
2

hm
0

m
ds

0
pr

n 0
pr

oj
0

pr
xy

0
pr

xy
1

rs
rc

h 0
sr

c1
2

sr
c2

0
st

g 0
st

g 1 ts
0

us
r 0

w
de

v 0
w

eb
0

ge
o

m
ea

nN
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
he

ad Chip C2

(d)

Figure 12: Performance and lifetime evaluation of our proactive technique for various benchmarks running on
both chips. (a) Our relief technique gets at most 10% lifetime extension for the chip C1, (b) whereas for C2 it gives
regularly an extra 50% lifetime, but for rare exceptions. In (c) and (d), we see that the execution time is stable for most
of the benchmarks despite the capacity loss in the hot buffer. Thanks to the half relief efficiency, several benchmarks
even sport a better performance.

respective of the particular FTL, our technique remains
perfectly effective). Most of the benchmarks result in a
hot write ratio larger than 50% and show a lifetime exten-
sion between 30% and 60% for C2. In particular, we ob-
served that ComboFTL frequently fails to correctly iden-
tify hot data from the prn0 trace; this results in a large
amount of garbage collection, a poor hot data ratio, and a
performance drop of 20% when relieving weak pages—
ROSE performs significantly better here. Overall, de-
spite this pathological case, the proactive relief technique
brings an average lifetime extension of 45% and a exe-
cution time improvement within 1%. The execution time
improvement comes thanks to the half relief efficiency,
which provides significantly smaller write latencies. In
summary, the proactive approach provides a significant
lifetime extension with a stable performance and a negli-
gible memory overhead.

7 Conclusion

In this paper, we exploit large variations in cell quality
and sensitivity occurring in modern flash devices to ex-

tend the device lifetime. We better exploit the endurance
of the strongest cells by putting more stress on them
while periodically relieving the weakest ones of their
duty. This gain comes at a moderate cost in memory re-
quirements and without any loss in performance. The
proposed techniques are a first attempt to benefit from
page-relief mechanisms. While we already show a life-
time improvement of up to 60% at practically no cost,
we believe that further investigation of the effects of our
method on data retention as well as research on other
wear unleveling techniques could help to further balance
the endurance of every page and block. In future flash
technology nodes, process variations will only become
more critical and we are convinced that techniques such
as the ones presented here could help overcome the up-
coming challenges.

References

[1] AUCLAIR, D., CRAIG, J., GUTERMAN, D., MANGAN, J.,
MEHROTRA, S., AND NORMAN, R. Soft errors handling in EEP-
ROM devices, Aug. 12 1997. US Patent 5,657,332.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 59

[2] BATES, K., AND MCNUTT, B. OLTP application I/O, June 2007.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[3] CAI, Y., HARATSCH, E., MUTLU, O., AND MAI, K. Error
patterns in MLC NAND flash memory: Measurement, character-
ization, and analysis. In Design, Automation & Test in Europe
Conf. & Exhibition (Dresden, Germany, Mar. 2012), pp. 521–26.

[4] CHANG, L.-P. A hybrid approach to NAND-flash-based solid-
state disks. IEEE Trans. Computers 59, 10 (Oct. 2010), 1337–49.

[5] CHIAO, M.-L., AND CHANG, D.-W. ROSE: A novel flash trans-
lation layer for NAND flash memory based on hybrid address
translation. IEEE Trans. Computers 60, 6 (June 2011), 753–66.

[6] CHO, H., SHIN, D., AND EOM, Y. I. KAST: K-associative sec-
tor translation for NAND flash memory in real-time systems. In
Design Automation and Test in Europe (Nice, France, Apr. 2009),
pp. 507–12.

[7] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,
S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Char-
acterizing flash memory: Anomalies, observations, and applica-
tions. In ACM/IEEE Int. Symp. Microarchitecture (New York,
NY, USA, Dec. 2009), pp. 24–33.

[8] HETZLER, S. R. Flash endurance and retention monitoring. In
Flash Memory Summit (Santa Clara, CA, USA, Aug. 2013).

[9] IM, S., AND SHIN, D. ComboFTL: Improving performance and
lifespan of MLC flash memory using SLC flash buffer. Journal
of Systems Architecture 56, 12 (Dec. 2010), 641–53.

[10] JIMENEZ, X., NOVO, D., AND IENNE, P. Software controlled
cell bit-density to improve NAND flash lifetime. In Design Au-
tomation Conf. (San Francisco, California, USA, June 2012),
pp. 229–34.

[11] JIMENEZ, X., NOVO, D., AND IENNE, P. Phœnix: Reviving
MLC blocks as SLC to extend NAND flash devices lifetime. In
Design, Automation & Test in Europe Conf. & Exhibition (Greno-
ble, France, Mar. 2013), pp. 226–29.

[12] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. LAST: Locality-
aware sector translation for NAND flash memory-based storage
systems. ACM SIGOPS Operating Systems Review 42, 6 (Oct.
2008), 36–42.

[13] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK,
S., AND SONG, H.-J. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Trans. Embedded
Computing Systems 6, 3 (July 2007).

[14] LIN, W., AND CHANG, L. Dual greedy: Adaptive garbage col-
lection for page-mapping solid-state disks. In Design, Automa-
tion & Test in Europe Conf. & Exhibition (Dresden, Germany,
Mar. 2012), pp. 117–22.

[15] LIU, R., YANG, C., AND WU, W. Optimizing NAND flash-
based SSDs via retention relaxation. Target 11, 10 (2012).

[16] LUE, H.-T., DU, P.-Y., CHEN, C.-P., CHEN, W.-C., HSIEH,
C.-C., HSIAO, Y.-H., SHIH, Y.-H., AND LU, C.-Y. Radically
extending the cycling endurance of flash memory (to >100M cy-
cles) by using built-in thermal annealing to self-heal the stress-
induced damage. In IEEE Int. Electron Devices Meeting (San
Francisco, California, USA, Dec. 2012), pp. 9.1.1–4.

[17] MICHELONI, R., CRIPPA, L., AND MARELLI, A. Inside NAND
Flash Memories. Springer, 2010.

[18] MOHAN, V., SIDDIQUA, T., GURUMURTHI, S., AND STAN,
M. R. How I learned to stop worrying and love flash endurance.
In Proc. USENIX Conf. Hot Topics in Storage and File Systems
(Boston, Massachusetts, USA, June 2010).

[19] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
off-loading: Practical power management for enterprise storage.
In Proc. USENIX Conf. File and Storage Technologies (San Jose,
California, USA, Feb. 2008), pp. 253–67.

[20] PAN, Y., DONG, G., AND ZHANG, T. Error rate-based wear-
leveling for NAND flash memory at highly scaled technology
nodes. IEEE Trans. Very Large Scale Integration Systems 21,
7 (July 2013), 1350–54.

[21] PARK, D., DEBNATH, B., NAM, Y., DU, D. H. C., KIM, Y.,
AND KIM, Y. HotDataTrap: a sampling-based hot data identi-
fication scheme for flash memory. In ACM Int. Symp. Applied
Computing (Riva del Garda, Italy, Mar. 2012), pp. 1610–17.

[22] PARK, J.-W., PARK, S.-H., WEEMS, C. C., AND KIM, S.-D. A
hybrid flash translation layer design for SLC-MLC flash memory
based multibank solid state disk. Microprocessors & Microsys-
tems 35, 1 (Feb. 2011), 48–59.

[23] SCHWARZ, T., XIN, Q., MILLER, E., LONG, D. D. E.,
HOSPODOR, A., AND NG, S. Disk scrubbing in large archival
storage systems. In IEEE Int. Symp. Modeling, Analysis, and Sim-
ulation of Computer and Telecommunications Systems (Volen-
dam, Netherlands, Oct. 2004), pp. 409–18.

[24] WANG, C., AND WONG, W.-F. Extending the lifetime of NAND
flash memory by salvaging bad blocks. In Design, Automation
& Test in Europe Conf. & Exhibition (Dresden, Germany, Mar.
2012), pp. 260–63.

[25] WU, M., AND ZWAENEPOEL, W. eNVy: a non-volatile, main
memory storage system. In Sixth Int. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (San
Jose, California, USA, Oct. 1994), pp. 86–97.

[26] ZAMBELLI, C., INDACO, M., FABIANO, M., DI CARLO, S.,
PRINETTO, P., OLIVO, P., AND BERTOZZI, D. A cross-layer ap-
proach for new reliability-performance trade-offs in MLC NAND
flash memories. In Design, Automation & Test in Europe Conf.
& Exhibition (Dresden, Germany, 2012), pp. 881–86.

13

USENIX Association 12th USENIX Conference on File and Storage Technologies 61

Lifetime Improvement of NAND Flash-based Storage Systems
Using Dynamic Program and Erase Scaling

Jaeyong Jeong∗, Sangwook Shane Hahn∗, Sungjin Lee†, and Jihong Kim∗

∗Dept. of CSE, Seoul National University, {jyjeong, shanehahn, jihong}@davinci.snu.ac.kr
†CSAIL, Massachusetts Institute of Technology, chamdoo@csail.mit.edu

Abstract
The cost-per-bit of NAND flash memory has been con-
tinuously improved by semiconductor process scaling
and multi-leveling technologies (e.g., a 10 nm-node TLC
device). However, the decreasing lifetime of NAND
flash memory as a side effect of recent advanced tech-
nologies is regarded as a main barrier for a wide adop-
tion of NAND flash-based storage systems. In this paper,
we propose a new system-level approach, called dynamic
program and erase scaling (DPES), for improving the
lifetime (particularly, endurance) of NAND flash mem-
ory. The DPES approach is based on our key observation
that changing the erase voltage as well as the erase time
significantly affects the NAND endurance. By slowly
erasing a NAND block with a lower erase voltage, we can
improve the NAND endurance very effectively. By mod-
ifying NAND chips to support multiple write and erase
modes with different operation voltages and times, DPES
enables a flash software to exploit the new tradeoff rela-
tionships between the NAND endurance and erase volt-
age/speed under dynamic program and erase scaling. We
have implemented the first DPES-aware FTL, called aut-
oFTL, which improves the NAND endurance with a neg-
ligible degradation in the overall write throughput. Our
experimental results using various I/O traces show that
autoFTL can improve the maximum number of P/E cy-
cles by 61.2% over an existing DPES-unaware FTL with
less than 2.2% decrease in the overall write throughput.

1 Introduction

NAND flash-based storage devices are increasingly pop-
ular from mobile embedded systems (e.g., smartphones
and smartpads) to large-scale high-performance enter-
prise servers. Continuing semiconductor process scal-
ing (e.g., 10 nm-node process technology) combined
with various recent advances in flash technology (such
as a TLC device [1] and a 3D NAND device [2]) is ex-
pected to further accelerate an improvement of the cost-

per-bit of NAND devices, enabling a wider adoption of
NAND flash-based storage systems. However, the poor
endurance of NAND flash memory, which deteriorates
further as a side effect of recent advanced technologies,
is still regarded as a main barrier for sustainable growth
in the NAND flash-based storage market. (We represent
the NAND endurance by the maximum number of pro-
gram/erase (P/E) cycles that a flash memory cell can tol-
erate while preserving data integrity.) Even though the
NAND density doubles every two years, the storage life-
time does not increase as much as expected in a recent
device technology [3]. For example, the NAND stor-
age lifetime was increased by only 20% from 2009 to
2011 because the maximum number of P/E cycles was
decreased by 40% during that period. In particular, in
order for NAND flash memory to be widely adopted in
high-performance enterprise storage systems, the deteri-
orating NAND endurance problem should be adequately
resolved.

Since the lifetime LC of a NAND flash-based stor-
age device with the total capacity C is proportional to
the maximum number MAXP/E of P/E cycles, and is in-
versely proportional to the total written data Wday per
day, LC (in days) can be expressed as follows (assuming
a perfect wear leveling):

LC =
MAXP/E ×C
Wday ×WAF

, (1)

where WAF is a write amplification factor which rep-
resents the efficiency of an FTL algorithm. Many ex-
isting lifetime-enhancing techniques have mainly fo-
cused on reducing WAF by increasing the efficiency
of an FTL algorithm. For example, by avoiding un-
necessary data copies during garbage collection, WAF
can be reduced [4]. In order to reduce Wday, vari-
ous architectural/system-level techniques were proposed.
For example, data de-duplication [5], data compres-
sion [6] and write traffic throttling [7] are such exam-
ples. On the other hand, few system/software-level tech-
niques were proposed for actively increasing the max-

62 12th USENIX Conference on File and Storage Technologies USENIX Association

imum number MAXP/E of P/E cycles. For example, a
recent study [8] suggests MAXP/E can be indirectly im-
proved by a self-recovery property of a NAND cell but
no specific technique was proposed yet.

In this paper, we propose a new approach, called dy-
namic program and erase scaling (DPES), which can sig-
nificantly improve MAXP/E . The key intuition of our ap-
proach, which is motivated by a NAND device physics
model on the endurance degradation, is that changing
the erase voltage as well as the erase time significantly
affects the NAND endurance. For example, slowly eras-
ing a NAND block with a lower erase voltage can im-
prove the NAND endurance significantly. By modify-
ing a NAND device to support multiple write and erase
modes (which have different voltage/speed and differ-
ent impacts on the NAND endurance) and allowing a
firmware/software module to choose the most appropri-
ate write and erase mode (e.g., depending on a given
workload), DPES can significantly increase MAXP/E .

The physical mechanism of the endurance degradation
is closely related to stress-induced damage in the tunnel
oxide of a NAND memory cell [9]. Since the probabil-
ity of stress-induced damage has an exponential depen-
dence on the stress voltage [10], reducing the stress volt-
age (particularly, the erase voltage) is an effective way
of improving the NAND endurance. Our measurement
results with recent 20 nm-node NAND chips show that
when the erase voltage is reduced by 14% during P/E cy-
cles, MAXP/E can increase on average by 117%. How-
ever, in order to write data to a NAND block erased with
the lower erase voltage (which we call a shallowly erased
block in the paper), it is necessary to form narrow thresh-
old voltage distributions after program operations. Since
shortening the width of a threshold voltage distribution
requires a fine-grained control during a program opera-
tion, the program time is increased if a lower erase volt-
age was used for erasing a NAND block.

Furthermore, for a given erase operation, since a nom-
inal erase voltage (e.g., 14 V) tends to damage the cells
more than necessary in the beginning period of an erase
operation [11], starting with a lower (than the nominal)
erase voltage and gradually increasing to the nominal
erase voltage can improve the NAND endurance. How-
ever, gradually increasing the erase voltage increases the
erase time. For example, our measurement results with
recent 20 nm-node NAND chips show that when the ini-
tial erase voltage of 10 V is used instead of 14 V during
P/E cycles, MAXP/E can increase on average by 17%. On
the other hand, the erase time is increased by 300%.

Our DPES approach exploits the above two tradeoff
relationships between the NAND endurance and erase
voltage/speed at the firmware-level (or the software level
in general) so that the NAND endurance is improved
while the overall write throughput is not affected. For ex-
ample, since the maximum performance of NAND flash

memory is not always needed in real workloads, a DPES-
based technique can exploit idle times between consec-
utive write requests for shortening the width of thresh-
old voltage distributions so that shallowly erased NAND
blocks, which were erased by lower erase voltages, can
be used for most write requests. Idle times can be also
used for slowing down the erase speed. If such idle times
can be automatically estimated by a firmware/system
software, the DPES-based technique can choose the most
appropriate write speed for each write request or select
the most suitable erase voltage/speed for each erase op-
eration. By aggressively selecting endurance-enhancing
erase modes (i.e., a slow erase with a lower erase volt-
age) when a large idle time is available, the NAND en-
durance can be significantly improved because less dam-
aging erase operations are more frequently used.

In this paper, we present a novel NAND endurance
model which accurately captures the tradeoff relation-
ship between the NAND endurance and erase volt-
age/speed under dynamic program and erase scaling.
Based on our NAND endurance model, we have im-
plemented the first DPES-aware FTL, called autoFTL,
which dynamically adjusts write and erase modes in
an automatic fashion, thus improving the NAND en-
durance with a negligible degradation in the overall
write throughput. In autoFTL, we also revised key
FTL software modules (such as garbage collector and
wear-leveler) to make them DPES-aware for maximiz-
ing the effect of DPES on the NAND endurance. Since
no NAND chip currently allows an FTL firmware to
change its program and erase voltages/times dynami-
cally, we evaluated the effectiveness of autoFTL with the
FlashBench emulation environment [12] using a DPES-
enabled NAND simulation model (which supports mul-
tiple write and erase modes). Our experimental results
using various I/O traces show that autoFTL can improve
MAXP/E by 61.2% over an existing DPES-unaware FTL
with less than 2.2% decrease in the overall write through-
put.

The rest of the paper is organized as follows. Section 2
briefly explains the basics of NAND operations related
to our proposed approach. In Section 3, we present the
proposed DPES approach in detail. Section 4 describes
our DPES-aware autoFTL. Experimental results follow
in Section 5, and related work is summarized in Sec-
tion 6. Finally, Section 7 concludes with a summary and
future work.

2 Background

In order to improve the NAND endurance, our proposed
DPES approach exploits key reliability and performance
parameters of NAND flash memory during run time. In
this section, we review the basics of various reliabil-
ity parameters and their impact on performance and en-

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 63

MP1 WP1 MP2 WP2 MP3 WP3

11 10 00 01

WVth

VRead

VthMRead

VRef0 VRef1 VRef2

Figure 1: An example of threshold voltage distributions
for multi-level NAND flash memory and primary relia-
bility parameters.

durance of NAND cells.

2.1 Threshold Voltage Distributions of
NAND Flash Memory

Multi-level NAND flash memory stores 2 bits in a cell
using four distinct threshold voltage levels (or states) as
shown in Figure 1. Four states are distinguished by dif-
ferent reference voltages, VRe f 0, VRe f 1 and VRe f 2. The
threshold voltage gap MPi between two adjacent states
and the width WPi of a threshold voltage distribution are
mainly affected by data retention and program time re-
quirements [13, 14], respectively. As a result, the total
width WVth of threshold voltage distributions should be
carefully designed to meet all the NAND requirements.
In order for flash manufacturers to guarantee the reliabil-
ity and performance requirements of NAND flash mem-
ory throughout its storage lifespan, all the reliability pa-
rameters, which are highly inter-related each other, are
usually fixed during device design times under the worst-
case operating conditions of a storage product.

However, if one performance/reliability requirement
can be relaxed under specific conditions, it is possible
to drastically improve the reliability or performance be-
havior of the storage product by exploiting tradeoff rela-
tionships among various reliability parameters. For ex-
ample, Liu et al. [13] suggested a system-level approach
that improves the NAND write performance when most
of written data are short-lived (i.e., frequently updated
data) by sacrificing MPi’s which affect the data reten-
tion capability1. Our proposed DPES technique exploits
WPi’s (which also affect the NAND write performance)
so that the NAND endurance can be improved.

2.2 NAND Program Operations
In order to form a threshold voltage distribution within
a desired region, NAND flash memory generally uses
the incremental step pulse programming (ISPP) scheme.
As shown in Figure 2(a), the ISPP scheme gradually in-
creases the program voltage by the VISPP step until all the
memory cells in a page are located in a desired threshold

1Since short-lived data do not need a long data retention time, MPi’s
are maintained loosely so that the NAND write performance can be
improved.

time

vo
lta

ge

Program
Verify

V

Loop

VISPP

TPROG

start
PGM

V end
PGM

(a) A conceptual timing diagram of the ISPP scheme.

0.0

1.0

2.0

3.0

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

VISPP scaling ratio

N
or

m
al

ize
d

 T
PR

O
G Increasing

WPi

Decreasing
WPi

(b) Normalized TPROG variations over different
VISPP scaling ratios.

Figure 2: An overview of the incremental step pulse pro-
gramming (ISPP) scheme for NAND flash memory.

voltage region. While repeating ISPP loops, once NAND
cells are verified to have been sufficiently programmed,
those cells are excluded from subsequent ISPP loops.

Since the program time is proportional to the number
of ISPP loops (which are inversely proportional to VISPP),
the program time TPROG can be expressed as follows:

TPROG ∝
V end

PGM −V start
PGM

VISPP
. (2)

Figure 2(b) shows normalized TPROG variations over dif-
ferent VISPP scaling ratios. (When a VISPP scaling ratio is
set to x%, VISPP is reduced by x% of the nominal VISPP.)
When a narrow threshold voltage distribution is needed,
VISPP should be reduced for a fine-grained control, thus
increasing the program time. Since the width of a thresh-
old voltage distribution is proportional to VISPP [14], for
example, if the nominal VISPP is 0.5 V and the width of a
threshold voltage distribution is reduced by 0.25 V, VISPP
also needs to be reduced by 0.25 V (i.e., a VISPP scaling
ratio is 0.5), thus increasing TPROG by 100%.

3 Dynamic Program and Erase Scaling

The DPES approach is based on our key observation that
slowly erasing (i.e., erase time scaling) a NAND block
with a lower erase voltage (i.e., erase voltage scaling)
significantly improves the NAND endurance. In this sec-
tion, we explain the effect of erase voltage scaling on im-
proving the NAND endurance and describe the dynamic
program scaling method for writing data to a shallowly
erased NAND block (i.e., a NAND block erased with

3

64 12th USENIX Conference on File and Storage Technologies USENIX Association

a lower erase voltage). We also present the concept of
erase time scaling and its effect on improving the NAND
endurance. Finally, we present a novel NAND endurance
model which describes the effect of DPES on the NAND
endurance based on an empirical measurement study us-
ing 20 nm-node NAND chips.

3.1 Erase Voltage Scaling and its Effect
on NAND Endurance

The time-to-breakdown TBD of the oxide layer decreases
exponentially as the stress voltage increases because
the higher stress voltage accelerates the probability of
stress-induced damage which degrades the oxide relia-
bility [10]. This phenomenon implies that the NAND
endurance can be improved by lowering the stress volt-
age (e.g., program and erase voltages) during P/E cycles
because the reliability of NAND flash memory primar-
ily depends on the oxide reliability [9]. Although the
maximum program voltage to complete a program oper-
ation is usually larger than the erase voltage, the NAND
endurance is mainly degraded during erase operations
because the stress time interval of an erase operation is
about 100 times longer than that of a program operation.
Therefore, if the erase voltage can be lowered, its impact
on the NAND endurance improvement can be significant.

In order to verify our observation, we performed
NAND cycling tests by changing the erase voltage. In
a NAND cycling test, program and erase operations are
repeated 3,000 times (which are roughly equivalent to
MAXP/E of a recent 20 nm-node NAND device [3]). Our
cycling tests for each case are performed with more than
80 blocks which are randomly selected from 5 NAND
chips. In our tests, we used the NAND retention BER
(i.e., a BER after 10 hours’ baking at 125 ◦C) as a mea-
sure for quantifying the wearing degree of a NAND chip
[9]. (This is a standard NAND retention evaluation pro-
cedure specified by JEDEC [15].) Figure 3(a) shows how
the retention BER changes, on average, as the number of
P/E cycles increases while varying erase voltages. We
represent different erase voltages using an voltage scal-
ing ratio r (0 ≤ r ≤ 1). When r is set to x, the erase volt-
age is reduced by (x× 100)% of the nominal erase volt-
age. The retention BERs were normalized over the re-
tention BER after 3K P/E cycles when the nominal erase
voltage was used. As shown in Figure 3(a), the more the
erase voltage is reduced (i.e., the higher r’s), the less the
retention BERs. For example, when the erase voltage is
reduced by 14% of the nominal erase voltage, the nor-
malized retention BER is reduced by 54% after 3K P/E
cycles over the nominal erase voltage case.

Since the normalized retention BER reflects the degree
of the NAND wearing, higher r’s lead to less endurance
degradations. Since different erase voltages degrade the
NAND endurance by different amounts, we introduce a

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6
P/E cycles [K]

r=0.00
r=0.07
r=0.14

Av
g.

 n
or

m
al

ize
d

BE
R

(a) Average BER variations
over different P/E cycles under
varying erase voltage scaling ra-
tios (r’s)

0.0

0.5

1.0

1.5

0.800.850.900.951.00

Ef
fe

ct
iv

e
w

ea
rin

g

Normalized erase voltage (1-r)

Median
Min.

Max.
75%
25%

(b) Effective wearing over differ-
ent erase voltage scaling ratios
(r’s)

Figure 3: The effect of lowering the erase voltage on the
NAND endurance.

new endurance metric, called effective wearing per PE
(in short, effective wearing), which represents the effec-
tive degree of NAND wearing after a P/E cycle. We
represent the effective wearing by a normalized reten-
tion BER after 3K P/E cycles2. Since the normalized
retention BER is reduced by 54% when the erase volt-
age is reduced by 14%, the effective wearing becomes
0.46. When the nominal erase voltage is used, the effec-
tive wearing is 1.

As shown in Figure 3(b), the effective wearing de-
creases near-linearly as r increases. Based on a linear
regression model, we can construct a linear equation for
the effective wearing over different r’s. Using this equa-
tion, we can estimate the effective wearing for a different
r. After 3K P/E cycles, for example, the total sum of the
effective wearing with the nominal erase voltage is 3K.
On the other hand, if the erase voltage was set to 14%
less than the nominal voltage, the total sum of the effec-
tive wearing is only 1.38K because the effective wearing
with r of 0.14 is 0.46. As a result, MAXP/E can be in-
creased more than twice as much when the erase voltage
is reduced by 14% over the nominal case. In this paper,
we will use a NAND endurance model with five different
erase voltage modes (as described in Section 3.5).

Since we did not have access to NAND chips from
different manufacturers, we could not prove that our test
results can be generalized. However, since our tests are
based on widely-known device physics which have been
investigated by many device engineers and researchers,
we are convinced that the consistency of our results
would be maintained as long as NAND flash memories
use the same physical mechanism (i.e., FN-tunneling) for
program and erase operations. We believe that our results
will also be effective for future NAND devices as long as

2In this paper, we use a linear approximation model which simpli-
fies the wear-out behavior over P/E cycles. Our current linear model
can overestimate the effective wearing under low erase voltage scaling
ratios while it can underestimate the effective wearing under high erase
voltage scaling ratios. We verified that, by the combinations of over-
/under-estimations of the effective wearing in our model, the current
linear model achieves a reasonable accuracy with an up to 10% overes-
timation [16] while supporting a simple software implementation.

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 65

Threshold voltage window

VRead

Vth

Threshold voltage window Vth

VRead

Saved
threshold voltage

margin

MPi WPi

MPi WPi

(WVth)

Erasing with a nominal erase voltage,

Erasing with a small erase voltage,

>

V nominal
ERASE

V small
ERASE

V nominal
ERASE V small

ERASE

Figure 4: An example of program voltage scaling for
writing data to a shallowly erased NAND block.

their operations are based on the FN-tunneling mecha-
nism. It is expected that current 2D NAND devices will
gradually be replaced by 3D NAND devices, but the ba-
sis of 3D NAND is still the FN-tunneling mechanism.

3.2 Dynamic Program Scaling
In order to write data to a shallowly erased NAND block,
it is necessary to change program bias conditions dy-
namically so that narrow threshold voltage distributions
can be formed after program operations. If a NAND
block was erased with a lower erase voltage, a thresh-
old voltage window for a program operation is reduced
by the decrease in the erase voltage because the value of
the erase voltage decides how deeply a NAND block is
erased. For example, as shown in Figure 4, if a NAND
block is shallowly erased with a lower erase voltage
V small

ERASE (which is lower than the nominal erase voltage
V nominal

ERASE), the width of a threshold voltage window is re-
duced by a saved threshold voltage margin ∆WVth (which
is proportional to the voltage difference between V nominal

ERASE
and V small

ERASE). Since threshold voltage distributions can be
formed only within the given threshold voltage window
when a lower erase voltage is used, a fine-grained pro-
gram control is necessary, thus increasing the program
time of a shallowly erased block.

In our proposed DPES technique, we use five different
erase voltage modes, EVmode0, · · · , EVmode4. EVmode0
uses the highest erase voltage V0 while EVmode4 uses the
lowest erase voltage V4. After a NAND block is erased,
when the erased block is programmed again, there is a
strict requirement on the minimum interval length of the
program time which depends on the erase voltage mode
used for the erased block. (As explained above, this min-
imum program time requirement is necessary to form
threshold voltage distributions within the reduced thresh-
old voltage window.) Figure 5(a) shows these minimum
program times for five erase voltage modes. For exam-
ple, if a NAND block were erased by EVmode4, where the
erase voltage is 89% of the nominal erase voltage, the

1.0

1.5

2.0

0.850.900.951.00

Normalized erase voltage (1-r)

N
or

m
al

ize
d

m
in

im
um

pr

og
ra

m
 ti

m
e

EVmode0

EVmode1

EVmode2

EVmode3

EVmode4

Deep
erase

Slow
write

Shallow
erase

Fast
write

(a) An example relationship between erase voltages and the
normalized minimum program times when the total sum of
effective wearing is in the range of 0.0 ∼ 0.5K.

0.0

0.2

0.4

0.6

1.0 1.5 2.0

V I
SP
P

sc
al

in
g

ra
tio

Wmode0

Wmode1

Normalized
program time

Wmode2

Wmode3

Wmode4

(b) VISPP scaling ratios

0.0

0.5

1.0

0 1 2 3

M
Pi

sc
al

in
g

ra
tio from measurements

A simplified
model

Total sum of the
effective wearing [K]

(c) MPi scaling ratios

Figure 5: The relationship between the erase voltage and
the minimum program time, and VISPP scaling and MPi
scaling for dynamic program scaling.

erased block would need at least twice longer program
time than the nominal program time. On the other hand,
if a NAND block were erased by EVmode0, where the
erase voltage is same as the nominal erase voltage, the
erased block can be programmed with the same nominal
program time.

In order to satisfy the minimum program time require-
ments of different EVmodei’s, we define five different
write modes, Wmode0, · · · , Wmode4 where Wmodei satisfies
the minimum program time requirement of the blocks
erased by EVmodei. Since the program time of Wmode j
is longer than that of Wmodei (where j > i), Wmodek,
Wmode(k+1), · · · , Wmode4 can be used when writing to the
blocks erased by EVmodek. Figure 5(b) shows how VISPP
should be scaled for each write mode so that the min-
imum program time requirement can be satisfied. The
program time is normalized over the nominal TPROG.

In order to form threshold voltage distributions within
a given threshold voltage window, a fine-grained pro-
gram control is necessary by reducing MPi’s and WPi’s.
As described in Section 2.2, we can reduce WPi’s by scal-
ing VISPP based on the program time requirement. Fig-
ure 5(b) shows the tradeoff relationship between the pro-
gram time and VISPP scaling ratio based on our NAND
characterization study. The program time is normalized
over the nominal TPROG. For example, in the case of
Wmode4, when the program time is two times longer than
the nominal TPROG, VISPP can be maximally reduced. Dy-
namic program scaling can be easily integrated into an

5

66 12th USENIX Conference on File and Storage Technologies USENIX Association

existing NAND controller with a negligible time over-
head (e.g., less than 1% of TPROG) and a very small space
overhead (e.g., 4 bits per block). On the other hand, in
conventional NAND chips, MPi is kept large enough to
preserve the data retention requirement under the worst-
case operating condition (e.g., 1-year data retention after
3,000 P/E cycles). However, since the data retention re-
quirement is proportional to the total sum of the effective
wearing [9], MPi can be relaxed by removing an unnec-
essary data retention capability. Figure 5(c) shows our
MPi scaling model over different total sums of the effec-
tive wearing based on our measurement results. In order
to reduce the management overhead, we change the MPi
scaling ratio every 0.5-K P/E cycle interval (as shown by
the dotted line in Figure 5(c)).

3.3 Erase Time Scaling and its Effect
on NAND Endurance

When a NAND block is erased, a high nominal erase
voltage (e.g., 14 V) is applied to NAND memory cells. In
the beginning period of an erase operation, since NAND
memory cells are not yet sufficiently erased, an exces-
sive high voltage (i.e., the nominal erase voltage plus the
threshold voltage in a programmed cell) is inevitably ap-
plied across the tunnel oxide. For example, if 14 V is
required to erase NAND memory cells, when an erase
voltage (i.e., 14 V) is applied to two programmed cells
whose threshold voltages are 0 V and 4 V, the total erase
voltages applied to two memory cells are 14 V and 18 V,
respectively [16]. As described in Section 3.1, since the
probability of damage is proportional to the erase volt-
age, the memory cell with a high threshold voltage is
damaged more than that with a low threshold voltage, re-
sulting in unnecessarily degrading the memory cell with
a high threshold voltage.

In order to minimize unnecessary damage in the begin-
ning period of an erase operation, it is an effective way
to start the erase voltage with a sufficiently low voltage
(e.g., 10 V) and gradually increase to the nominal erase
voltage [11]. For example, if we start with the erase volt-
age of 10 V, the memory cell whose threshold voltage
is 4 V may be partially erased because the erase voltage
is 14 V (i.e., 10 V plus 4 V) without excessive damage
to the memory cell. As we increase the erase voltage
in subsequent ISPE (incremental step pulse erasing [17])
loops, the threshold voltage in the cell is reduced by each
ISPE step, thus avoiding unnecessary damage during an
erase operation. In general, the lower the starting erase
voltage, the less damage to the cells.

However, as an erase operation starts with a lower
voltage than the nominal voltage, the erase time increases
because more erase loops are necessary for completing
the erase operation. Figure 6(a) shows how the effec-
tive wearing decreases, on average, as the erase time in-

0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.0

Ef
fe

ct
iv

e
w

ea
rin

g

Normalized erase time

ESmodefast

ESmodeslow

(a) Effective wearing variations
over different erase times

0.0

0.2

0.4

0.6

0.8

1.0

0.800.850.900.951.00

Ef
fe

ct
iv

e
w

ea
rin

g

Normalized erase voltage (1-r)

ESmodefast

ESmodeslow
-19%

(b) Effective wearing variations
over varying erase voltage scal-
ing ratios (r’s) under two different
erase time settings

Figure 6: The effect of erase time scaling on the NAND
endurance.

creases. The longer the erase time (i.e., the lower the
starting erase voltage), the less the effective wearing (i.e.,
the higher NAND endurance.). We represent the fast
erase mode by ESmode f ast and the slow erase mode by
ESmodeslow. Our measurement results with 20 nm-node
NAND chips show that if we increase the erase time by
300% by starting with a lower erase voltage, the effective
wearing is reduced, on average, by 19%. As shown in
Figure 6(b), the effect of the slow erase mode on improv-
ing the NAND endurance can be exploited regardless of
the erase voltage scaling ratio r. Since the erase voltage
modes are continuously changed depending on the pro-
gram time requirements, the endurance-enhancing erase
mode (i.e., the lowest erase voltage mode) cannot be used
under an intensive workload condition. On the other
hand, the erase time scaling can be effective even under
an intensive workload condition, if slightly longer erase
times do not affect the overall write throughput.

3.4 Lazy Erase Scheme
As explained in Section 3.2, when a NAND block
was erased with EVmodei, a page in the shallowly
erased block can be programmed using specific Wmode j’s
(where j ≥ i) only because the requirement of the saved
threshold voltage margin cannot be satisfied with a faster
write mode Wmodek (k < i). In order to write data with a
faster write mode to the shallowly erased NAND block,
the shallowly erased block should be erased further be-
fore it is written. We propose a lazy erase scheme which
additionally erases the shallowly erased NAND block,
when necessary, with a small extra erase time (i.e., 20%
of the nominal erase time). Since the effective wear-
ing mainly depends on the maximum erase voltage used,
erasing a NAND block by a high erase voltage in a lazy
fashion does not incur any extra damage than erasing it
with the initially high erase voltage3. Since a lazy erase

3Although it takes a longer erase time, the total sum of the effective
wearing by lazily erasing a shallowly erased block is less than that by
erasing with the initially high erase voltage. This can be explained in a

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 67

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1 1.5 2 2.5 3

Ef
fe

ct
iv

e
w

ea
rin

g

Total sum of
effective wearing [K]

Mode index i
of a EVmode

i

0
1
2
3
4

(a) The endurance model for
ESmode f ast .

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.5 1 1.5 2 2.5 3

Ef
fe

ct
iv

e
w

ea
rin

g

Total sum of
effective wearing [K]

0
1
2
3
4

Mode index i
of a EVmode

i

(b) The endurance model for
ESmodeslow.

Figure 7: The proposed NAND endurance model for
DPES-enabled NAND blocks.

cancels an endurance benefit of a shallow erase while in-
troducing a performance penalty, it is important to accu-
rately estimate the write speed of future write requests
so that correct erase modes can be selected when erasing
NAND blocks, thus avoiding unnecessary lazy erases.

3.5 NAND Endurance Model
Combining erase voltage scaling, program time scaling
and erase time scaling, we developed a novel NAND
endurance model that can be used with DPES-enabled
NAND chips. In order to construct a DPES-enabled
NAND endurance model, we calculate saved threshold
voltage margins for each combination of write modes (as
shown in Figure 5(b)) and MPi scaling ratios (as shown
in Figure 5(c)). Since the effective wearing has a near-
linear dependence on the erase voltage and time as shown
in Figures 3(b) and 6(b), respectively, the values of the
effective wearing for each saved threshold voltage mar-
gin can be estimated by a linear equation as described
in Section 3.1. All the data in our endurance model are
based on measurement results with recent 20 nm-node
NAND chips. For example, when the number of P/E cy-
cles is less than 500, and a block is slowly erased before
writing with the slowest write mode, a saved threshold
voltage margin can be estimated to 1.06 V (which corre-
sponds to the erase voltage scaling ratio r of 0.14 in Fig-
ure 6(b)). As a result, we can estimate the value of the
effective wearing as 0.45 by a linear regression model for
the solid line with squared symbols in Figure 6(b).

Figure 7 shows our proposed NAND endurance
model with five erase voltage modes (i.e., EVmode0 ∼
EVmode4) and two erase speed modes (i.e., ESmodeslow
and ESmode f ast). EVmode0 (which uses the largest erase
voltage) supports the fastest write mode (i.e., Wmode0)
with no slowdown in the write speed while EVmode4

similar fashion as why the erase time scaling is effective in improving
the NAND endurance as discussed in the previous section. The en-
durance gain from using two different starting erase voltages is higher
than the endurance loss from a longer erase time.

Utilization

Write Request

Logical-to-Physical
Mapping Table

NAND Flash Memory

Wear
Leveler

DPES Manager Garbage
Collector
Background
Foreground

Number of
pages

to be copied

Per-Block
Mode Table

NAND
Setting Table

EVmodej , ESmodek

Extended Mapping Table

DeviceSettings

Mode
Selector

NAND Endurance
Model

Circular
Buffer

Program Erase

Wmode
Selector

Emode
Selector

Wmodei

Read

Figure 8: An organizational overview of autoFTL.

(which uses the smallest erase voltage) supports only the
slowest write mode (i.e., Wmode4) with the largest wear-
ing gain. Similarly, ESmode f ast is the fast erase mode
with no additional wearing gain while ESmodeslow rep-
resents the slow erase mode with the improved wearing
gain. Our proposed NAND endurance model takes ac-
count of both VISPP scaling and MPi scaling described in
Figures 5(b) and 5(c).

4 Design and Implementation of AutoFTL

4.1 Overview
Based on our NAND endurance model presented in
Section 3.5, we have implemented autoFTL, the first
DPES-aware FTL, which automatically changes write
and erase modes depending on write throughput require-
ments. AutoFTL is based on a page-level mapping
FTL with additional modules for DPES support. Fig-
ure 8 shows an organizational overview of autoFTL. The
DPES manager, which is the core module of autoFTL,
selects a write mode Wmodei for a write request and de-
cides both an appropriate erase voltage mode EVmode j
and erase speed mode ESmodek for each erase opera-
tion. In determining appropriate modes, the mode selec-
tor bases its decisions on the estimated write throughput
requirement using a circular buffer. AutoFTL maintains
per-block mode information and NAND setting informa-
tion as well as logical-to-physical mapping information
in the extended mapping table. The per-block mode ta-
ble keeps track of the current write mode and the total
sum of the effective wearing for each block. The NAND
setting table is used to choose appropriate device settings
for the selected write and erase modes, which are sent to
NAND chips via a new interface DeviceSettings between
autoFTL and NAND chips. AutoFTL also extends both
the garbage collector and wear leveler to be DPES-aware.

7

68 12th USENIX Conference on File and Storage Technologies USENIX Association

Table 1: The write-mode selection rules used by the
DPES manager.

Buffer utilization u Write mode

u > 80% Wmode0
60% < u ≤ 80% Wmode1
40% < u ≤ 60% Wmode2
20% < u ≤ 40% Wmode3

u ≤ 20% Wmode4

As semiconductor technologies reach their physical
limitations, it is necessary to use cross-layer optimiza-
tion between system software and NAND devices. As
a result, some of internal device interfaces are gradually
opened to public in the form of additional ‘user inter-
face’. For example, in order to track bit errors caused
by data retention, a new ‘device setting interface’ which
adjusts the internal reference voltages for read opera-
tions is recently opened to public [18, 19]. There are
already many set and get functions for modifying or
monitoring NAND internal configurations in the up-to-
date NAND specifications such as the toggle mode in-
terface and ONFI. For the measurements presented here,
we were fortunately able to work in conjunction with a
flash manufacturer to adjust erase voltage as we wanted.

4.2 Write Mode Selection
In selecting a write mode for a write request, the Wmode
selector of the DPES manager exploits idle times be-
tween consecutive write requests so that autoFTL can
increase MAXP/E without incurring additional decrease
in the overall write throughput. In autoFTL, the Wmode
selector uses a simple circular buffer for estimating the
maximum available program time (i.e., the minimum re-
quired write speed) for a given write request. Table 1
summarizes the write-mode selection rules used by the
Wmode selector depending on the utilization of a cir-
cular buffer. The circular buffer queues incoming write
requests before they are written, and the Wmode selec-
tor adaptively decides a write mode for each write re-
quest. The current version of the Wmode selector, which
is rather conservative, chooses the write mode, Wmodei,
depending on the buffer utilization u. The buffer utiliza-
tion u represents how much of the circular buffer is filled
by outstanding write requests. For example, if the utiliza-
tion is lower than 20%, the write request in the head of
the circular buffer is programmed to a NAND chip with
Wmode4.

4.3 Extended Mapping Table
Since erase operations are performed at the NAND block
level, the per-block mode table maintains five linked lists

of blocks which were erased using the same erase voltage
mode. When the DPES manager decides a write mode
for a write request, the corresponding linked list is con-
sulted to locate a destination block for the write request.
Also, the DPES manager informs a NAND chip how to
configure appropriate device settings (e.g., ISPP/ISPE
voltages, the erase voltage, and reference voltages for
read/verify operations) for the current write mode using
the per-block mode table. Once NAND chips are set to
a certain mode, an additional setting is not necessary as
long as the write and the erase modes are maintained.
For a read request, since different write modes require
different reference voltages for read operations, the per-
block mode table keeps track of the current write mode
for each block so that a NAND chip changes its read ref-
erences before serving a read request.

4.4 Erase Voltage Mode Selection
Since the erase voltage has a significant impact on the
NAND endurance as described in Section 3.1, selecting
a right erase voltage is the most important step in improv-
ing the NAND endurance using the DPES technique. As
explained in Section 4.2, since autoFTL decides a write
mode of a given write request based on the utilization of
the circular buffer of incoming write requests, when de-
ciding the erase voltage mode of a victim block, autoFTL
takes into account of the future utilization of the circular
buffer. If autoFTL could accurately predict the future uti-
lization of the circular buffer and erase the victim block
with the erase voltage that can support the future write
mode, the NAND endurance can be improved without
a lazy erase operation. In the current version, we use
the average buffer utilization of 105 past write requests
for predicting the future utilization of the circular buffer.
In order to reduce the management overhead, we divide
105 past write requests into 100 subgroups where each
subgroup consists of 1000 write requests. For each sub-
group, we compute the average utilization of 1000 write
requests in the subgroup, and use the average of 100 sub-
group’s utilizations to calculate the estimate of the future
utilization of the buffer.

When a foreground garbage collection is invoked,
since the write speed of a near-future write request is al-
ready chosen based on the current buffer utilization, the
victim block can be erased with the corresponding erase
voltage mode. On the other hand, when a background
garbage collection is invoked, it is difficult to use the cur-
rent buffer utilization because the background garbage
collector is activated when there are no more write re-
quests waiting in the buffer. For this case, we use the
estimated average buffer utilization of the circular buffer
to predict the buffer utilization when the next phase of
write requests (after the background garbage collection)
fills in the circular buffer.

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 69

4.5 Erase Speed Mode Selection
In selecting an erase speed mode for a block erase oper-
ation, the DPES manager selects an erase speed mode
which does not affect the write throughput. An erase
speed mode for erasing a NAND block is determined by
estimating the effect of a block erase time on the buffer
utilization. Since write requests in the circular buffer
cannot be programmed while erasing a NAND block,
the buffer utilization is effectively increased by the block
erase time. The effective buffer utilization u′ consider-
ing the effect of the block erase time can be expressed as
follows:

u′ = u+∆uerase, (3)

where u is the current buffer utilization and ∆uerase is
the increment in the buffer utilization by the block erase
time. In order to estimate the effect of a block erase op-
eration on the buffer utilization, we convert the block
erase time to a multiple M of the program time of the
current write mode. ∆uerase corresponds to the increment
in the buffer utilization for these M pages. For select-
ing an erase speed mode of a NAND block, the mode
selector checks if ESmodeslow can be used. If erasing
with ESmodeslow does not increase u′ larger than 100%
(i.e., no buffer overflow), ESmodeslow is selected. Other-
wise, the fast erase mode ESmode f ast is selected. On the
other hand, when the background garbage collection is
invoked, ESmodeslow is always selected in erasing a vic-
tim block. Since the background garbage collection is
invoked when an idle time between consecutive write re-
quests is sufficiently long, the overall write throughput is
not affected even with ESmodeslow.

4.6 DPES-Aware Garbage Collection
When the garbage collector is invoked, the most appro-
priate write mode for copying valid data to a free block is
determined by using the same write-mode selection rules
summarized in Table 1 with a slight modification to com-
puting the buffer utilization u. Since the write requests in
the circular buffer cannot be programmed while copying
valid pages to a free block by the garbage collector, the
buffer utilization is effectively increased by the number
of valid pages in a victim block. By using the informa-
tion from the garbage collector, the mode selector recal-
culates the effective buffer utilization u∗ as follows:

u∗ = u+∆ucopy, (4)

where u is the current buffer utilization and ∆ucopy is the
increment in the buffer utilization taking the number of
valid pages to be copied into account. The mode selector
decides the most appropriate write mode based on the
write-mode selection rules with u∗ instead of u. After
copying all the valid pages to a free block, a victim block
is erased by the erase voltage mode (selected by the rules

Table 2: Examples of selecting write and erase modes
in the garbage collector assuming that the circular buffer
has 200 pages and the current buffer utilization u is 70%.

(Case 1) The number of valid pages in a victim block is 30.

ucopy u∗ ∆uerase u′ Selected
modes

15% 85%
Slow 8% 93% EVmode0 & ESmodeslow

Fast 2% 87% Wmode0

(Case 2) The number of valid pages in a victim block is 50.

ucopy u∗ ∆uerase u′ Selected
modes

25% 95%
Slow 8% 103% EVmode0 & ESmode f ast

Fast 2% 97% Wmode0

described in Section 4.4) with the erase speed (chosen
by the rules described in Section 4.5). For example, as
shown in the case 1 of Table 2, if garbage collection is
invoked when u is 70%, and the number of valid pages to
be copied is 30 (i.e., ∆ucopy

= 30/200 = 15%), Wmode0
is selected because u∗ is 85% (= 70% + 15%), and
ESmodeslow is selected because erasing with ESmodeslow
does not overflow the circular buffer. (We assume that
∆uerase for ESmodeslow and ∆uerase for ESmode f ast are 8%
and 2%, respectively.) On the other hand, as shown in the
case 2 of Table 2, when the number of valid pages to be
copied is 50 (i.e., ∆ucopy

= 50/200 = 25%), ESmodeslow
cannot be selected because u′ becomes larger than 100%.
As shown in the case 1, ESmodeslow can still be used even
when the buffer utilization is higher than 80%. When
the buffer utilization is higher than 80% (i.e., an inten-
sive write workload condition), the erase voltage scaling
is not effective because the highest erase voltage is se-
lected. On the other hand, even when the buffer utiliza-
tion is above 90%, the erase speed scaling can be still
useful.

4.7 DPES-Aware Wear Leveling

Since different erase voltage/time affects the NAND en-
durance differently as described in Section 3.1, the relia-
bility metric (based on the number of P/E cycles) of the
existing wear leveling algorithm [20] is no longer valid
in a DPES-enabled NAND flash chip. In autoFTL, the
DPES-aware wear leveler uses the total sum of the ef-
fective wearing instead of the number of P/E cycles as a
reliability metric, and tries to evenly distribute the total
sum of the effective wearing among NAND blocks.

9

70 12th USENIX Conference on File and Storage Technologies USENIX Association

5 Experimental Results

5.1 Experimental Settings

In order to evaluate the effectiveness of the proposed aut-
oFTL, we used an extended version of a unified develop-
ment environment, called FlashBench [12], for NAND
flash-based storage devices. Since the efficiency of our
DPES is tightly related to the temporal characteristics
of write requests, we extended the existing FlashBench
to be timing-accurate. Our extended FlashBench em-
ulates the key operations of NAND flash memory in a
timing-accurate fashion using high-resolution timers (or
hrtimers) (which are available in a recent Linux kernel
[21]). Our validation results on an 8-core Linux server
system show that the extended FlashBench is very accu-
rate. For example, variations on the program time and
erase time of our DRAM-based NAND emulation mod-
els are less than 0.8% of TPROG and 0.3% of TERASE , re-
spectively.

For our evaluation, we modified a NAND flash model
in FlashBench to support DPES-enabled NAND flash
chips with five write modes, five erase voltage modes,
and two erase speed modes as shown in Figure 7. Each
NAND flash chip employed 128 blocks which were com-
posed of 128 8-KB pages. The maximum number of
P/E cycles was set to 3,000. The nominal page program
time (i.e., TPROG) and the nominal block erase time (i.e.,
TERASE) were set to 1.3 ms and 5.0 ms, respectively.

We evaluated the proposed autoFTL in two differ-
ent environments, mobile and enterprise environments.
Since the organizations of mobile storage systems and
enterprise storage systems are quite different, we used
two FlashBench configurations for different environ-
ments as summarized in Table 3. For a mobile envi-
ronment, FlashBench was configured to have two chan-
nels, and each channel has a single NAND chip. Since
mobile systems are generally resource-limited, the size
of a circular buffer for a mobile environment was set
to 80 KB only (i.e., equivalently 10 8-KB pages). For
an enterprise environment, FlashBench was configured
to have eight channels, each of which was composed of
four NAND chips. Since enterprise systems can utilize
more resources, the size of a circular buffer was set to 32
MB (which is a typical size of data buffer in HDD) for
enterprise environments.

We carried out our evaluations with two different tech-
niques: baseline and autoFTL. Baseline is an existing
DPES-unaware FTL that always uses the highest erase
voltage mode and the fast erase mode for erasing NAND
blocks, and the fastest write mode for writing data to
NAND blocks. AutoFTL is the proposed DPES-aware
FTL which decides the erase voltage and the erase time
depending on the characteristic of a workload and fully
utilizes DPES-aware techniques, described in Sections 3

Table 3: Summary of two FlashBench configurations.
Environments Channels Chips Buffer

Mobile 2 2 80 KB

Enterprise 8 32 32 MB

and 4, so it can maximally exploit the benefits of dy-
namic program and erase scaling.

Our evaluations were conducted with various I/O
traces from mobile and enterprise environments. (For
more details, please see Section 5.2). In order to re-
play I/O traces on top of the extended FlashBench, we
developed a trace replayer. The trace replayer fetches
I/O commands from I/O traces and then issues them to
the extended FlashBench according to their inter-arrival
times to a storage device. After running traces, we mea-
sured the maximum number of P/E cycles, MAXP/E ,
which was actually conducted until flash memory be-
came unreliable. We then compared it with that of base-
line. The overall write throughput is an important metric
that shows the side-effect of autoFTL on storage perfor-
mance. For this reason, we also measured the overall
write throughput while running each I/O trace.

5.2 Benchmarks
We used 8 different I/O traces collected from Android-
based smartphones and real-world enterprise servers.
The m down trace was recorded while downloading a
system installation file (whose size is about 700 MB)
using a mobile web-browser through 3G network. The
m p2p1 trace included I/O activities when downloading
multimedia files using a mobile P2P application from a
lot of rich seeders. Six enterprise traces, hm 0, proj 0,
prxy 0, src1 2, stg 0, and web 0, were from the MS-
Cambridge benchmarks [22]. However, since enterprise
traces were collected from old HDD-based server sys-
tems, their write throughputs were too low to evaluate
the performance of modern NAND flash-based storage
systems. In order to partially compensate for low write
throughput of old HDD-based storage traces, we accel-
erated all the enterprise traces by 100 times so that the
peak throughput of the most intensive trace (i.e., src1 2)
can fully consume the maximum write throughput of our
NAND configuration. (In our evaluations, therefore, all
the enterprise traces are 100x-accelerated versions of the
original traces.)

Since recent enterprise SSDs utilize lots of inter-
chip parallelism (multiple channels) and intra-chip paral-
lelism (multiple planes), peak throughput is significantly
higher than that of conventional HDDs. We tried to find
appropriate enterprise traces which satisfied our require-
ments to (1) have public confidence; (2) can fully con-
sume the maximum throughput of our NAND configura-

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 71

Table 4: Normalized inter-arrival times of write requests
for 8 traces used for evaluations.

Trace
Distributions of normalized

inter-arrival times t over T e f f ective
PROG [%]

t ≤ 1 1 <t≤ 2 t > 2

proj 0 40.6% 47.0% 12.4%
src1 2 41.0% 55.6% 3.4%
hm 0 14.2% 72.1% 13.7%
prxy 0 8.9% 34.6% 56.5%
stg 0 7.1% 81.5% 11.4%
web 0 5.4% 36.7% 56.9%
m down 45.9% 0.0% 54.1%
m p2p1 49.5% 0.0% 50.5%

tion; (3) reflect real user behaviors in enterprise environ-
ments; (4) are extracted from under SSD-based storage
systems. To the best of our knowledge, we could not find
any workload which met all of the requirements at the
same time. In particular, there are few enterprise SSD
workloads which are opened to public.

Table 4 summarizes the distributions of inter-arrival
times of our I/O traces. Inter-arrival times were normal-
ized over T e f f ective

PROG which reflects parallel NAND opera-
tions supported by multiple channels and multiple chips
per channel in the extended FlashBench. For example,
for an enterprise environment, since up to 32 chips can
serve write requests simultaneously, T e f f ective

PROG is about
40 us (i.e., 1300 us of TPROG is divided by 32 chips.).
On the other hand, for a mobile environment, since there
are only 2 chips can serve write requests at the same
time, T e f f ective

PROG is 650 us. Although the mobile traces
collected from Android smartphones (i.e., m down [23]
and m p2p1) exhibit very long inter-arrival times, nor-
malized inter-arrival times over T e f f ective

PROG are not much
different from the enterprise traces, except that the mo-
bile traces show distinct bimodal distributions which no
write requests in 1 <t≤ 2.

5.3 Endurance Gain Analysis

In order to understand how much MAXP/E is improved
by DPES, each trace was repeated until the total sum
of the effective wearing reached 3K. Measured MAXP/E
values were normalized over that of baseline. Figure 9
shows normalized MAXP/E ratios for eight traces with
two different techniques. Overall, the improvement on
MAXP/E is proportional to inter-arrival times as summa-
rized in Table 4; the longer inter-arrival times are, the
more likely slow write modes are selected.

AutoFTL improves MAXP/E by 69%, on average, over
baseline for the enterprise traces. For proj 0 and src1 2

traces, improvements on MAXP/E are less than 50% be-
cause inter-arrival times of more than 40% of write re-
quests are shorter than T e f f ective

PROG so that it is difficult to

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Baseline AutoFTL

N
or

m
al

ize
d
M
AX

P/
E

ra
tio

+46%

Avg. +69%

+50%
+76% +82% +78% +80%

+39% +37%

Avg. +38%

Figure 9: Comparisons of normalized MAXP/E ratios for
eight traces.

0.0

0.5

1.0

1.5
Baseline AutoFTL

N
or

m
al

ize
d

ov
er

al
l

w
rit

e
th

ro
ug

hp
ut -2.17%

Avg. -0.91%

-0.66% -0.64% -1.49% -0.14% -0.36% -0.09% -0.03%
Avg. -0.06%

Figure 10: Comparisons of normalized overall write
throughputs for eight traces.

use the lowest erase voltage mode. For the other enter-
prise traces, MAXP/E is improved by 79%, on average,
over baseline.

On the other hand, for the mobile traces, AutoFTL im-
proves MAXP/E by only 38%, on average, over baseline.
Although more than 50% of write requests have inter-
arrival times twice longer than T e f f ective

PROG , autoFTL could
not improve MAXP/E as much as expected. This is be-
cause the size of the circular buffer is too small for buffer-
ing the increase in the buffer utilization caused by the
garbage collection. For example, when a NAND block is
erased by the fast speed erase mode, the buffer utilization
is increased by 40% for the mobile environment while
the effect of the fast erase mode on the buffer utilization
is less than 0.1% for the enterprise environment. More-
over, by the same reason, the slow erase speed mode can-
not be used in the mobile environment.

5.4 Overall Write Throughput Analysis
Although autoFTL uses slow write modes frequently, the
decrease in the overall write throughput over baseline is
less than 2.2% as shown in Figure 10. For proj 0 trace,
the overall write throughput is decreased by 2.2%. This
is because, in proj 0 trace, the circular buffer may be-
come full by highly clustered write requests. When the
circular buffer becomes full, if the foreground garbage
collection should be invoked, the write response time of
NAND chips can be directly affected. Although inter-
arrival times in prxy 0 trace are relatively long over
other enterprise traces, the overall write throughput is

11

72 12th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0
EVmode0 EVmode1 EVmode2 EVmode3 EVmode4

Di
st

rib
ut

io
ns

 o
f E

Vm
od

e'
s

Figure 11: Distributions of EVmode’s used.

degraded more than the other enterprise traces. This is
because almost all the write requests exhibit inter-arrival
times shorter than 10 ms so that the background garbage
collection is not invoked at all4. As a result, the fore-
ground garbage collection is more frequently invoked,
thus increasing the write response time.

We also evaluated if there is an extra delay from a
host in sending a write request to the circular buffer be-
cause of DPES. Although autoFTL introduced a few ex-
tra queueing delay for the host, the increase in the aver-
age queueing delay per request was negligible compared
to T e f f ective

PROG . For example, for src1 2 trace, 0.4% of the
total programmed pages were delayed, and the average
queueing delay per request was 2.6 us. For stg 0 trace,
less than 0.1% of the total programmed pages were de-
layed, and the average queueing delay per request was
0.1 us.

5.5 Detailed Analysis
We performed a detailed analysis on the relationship be-
tween the erase voltage/speed modes and the improve-
ment of MAXP/E . Figure 11 presents distributions of
EVmode’s used for eight I/O traces. Distributions of
EVmode’s exactly correspond to the improvements of
MAXP/E as shown in Figure 9; the more frequently a low
erase voltage mode is used, the higher the endurance gain
is. In our evaluations for eight I/O traces, lazy erases are
rarely used for all the traces.

Figure 12(a) shows distributions of ESmode’s for eight
I/O traces. Since the slow erase mode is selected by us-
ing the effective buffer utilization, there are little chances
for selecting the slow erase mode for the mobile traces
because the size of the circular buffer is only 80 KB.
On the other hand, for the enterprise environment, there
are more opportunities for selecting the slow erase mode.
Even for the traces with short inter-arrival times such as
proj 0 and src1 2, only 5%∼10% of block erases used
the fast erase mode.

We also evaluated the effect of the slow erase mode
on the improvement of MAXP/E . For this for evaluation,

4In our autoFTL setting, the background garbage collection is in-
voked when a idle time between two consecutive requests is longer than
300 ms.

0.0

0.2

0.4

0.6

0.8

1.0
ESmode ESmode

Di
st

rib
ut

io
ns

 o
f E

Sm
od

e'
s fast slow

(a) Distributions of ESmode’s used.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

proj_0 src1_2 hm_0 prxy_0 stg_0 web_0

AutoFTL AutoFTL

N
or

m
al

ize
d
M
AX

P/
E

ra
tio

+14% +13%
+17% +17% +18% +17%

_

(b) The effect of ESmodeslow on improving MAXP/E .

Figure 12: Distributions of ESmode’s used and the effect
of ESmode’s on MAXP/E .

we modified our autoFTL so that ESmode f ast is always
used when NAND blocks are erased. (We represent this
technique by autoFTL

−.) As shown in Figure 12(b), the
slow erase mode can improve the NAND endurance gain
up to 18%. Although the slow erase mode can increase
the buffer utilization, its effect on the write throughput
was almost negligible.

6 Related Work

As the endurance of recent high-density NAND flash
memory is continuously reduced, several system-level
techniques which exploit the physical characteristics of
NAND flash memory have been proposed for improv-
ing the endurance and lifetime of flash-based storage sys-
tems [8, 7, 24, 25].

Mohan et al. investigated the effect of the damage
recovery on the SSD lifetime for enterprise servers [8].
They showed that the overall endurance of NAND flash
memory can be improved with its recovery nature. Our
DPES technique does not consider the self-recovery ef-
fect, but it can be easily extended to exploit the physical
characteristic of the self-recovery of flash memory cells.

Lee et al. proposed a novel lifetime management tech-
nique that guarantees the lifetime of storage devices by
intentionally throttling write performance [7]. They also
exploited the self-recovery effect of NAND devices, so
as to lessen the performance penalty caused by write
throttling. Unlike Lee’s work (which sacrifices write
performance for guaranteeing the storage lifetime), our
DPES technique improves the lifetime of NAND devices
without degrading the performance of NAND-based stor-

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 73

age systems.

Wu et al. presented a novel endurance enhancement
technique that boosts recovery speed by heating a flash
chip under high temperature [24]. By leveraging the
temperature-accelerated recovery, it improved the en-
durance of SSDs up to five times. The major drawback of
this approach is that it requires extra energy consumption
to heat flash chips and lowers the reliability of a storage
device. Our DPES technique improves the endurance of
NAND devices by lowering the erase voltage and slow-
ing down the erase speed without any serious side effect.

Jeong et al. proposed an earlier version of the
DPES idea and demonstrated that DPES can improve the
NAND endurance significantly without sacrificing the
overall write throughput [25]. Unlike their work, how-
ever, our work treats the DPES approach in a more com-
plete fashion, extensively extending the DPES approach
in several dimensions such as the erase speed scaling,
shallow erasing and lazy erase scheme. Furthermore,
more realistic and detailed evaluations using the timing-
accurate emulator are presented in this paper.

7 Conclusions

We have presented a new system-level approach for im-
proving the lifetime of flash-based storage systems using
dynamic program and erase scaling (DPES). Our DPES
approach actively exploits the tradeoff relationship be-
tween the NAND endurance and the erase voltage/speed
so that directly improves the NAND endurance with a
minimal decrease in the write performance. Based on
our novel NAND endurance model and the newly defined
interface for changing the NAND behavior, we have im-
plemented autoFTL, which changes the erase voltage and
speed in an automatic fashion. Moreover, by making
the key FTL modules (such as garbage collection and
wear leveling) DPES-aware, autoFTL can significantly
improve the NAND endurance. Our experimental results
show that autoFTL can improve the maximum number of
P/E cycles by 69% for enterprise traces and 38% for mo-
bile traces, on average, over an existing DPES-unaware
FTL.

The current version of autoFTL can be further im-
proved in several ways. For example, we believe that the
current mode selection rules are rather too conservative
without adequately reflecting the varying characteristics
of I/O workload. As an immediate future task, we plan
to develop more adaptive mode selection rules that may
adaptively adjust the buffer utilization boundaries for se-
lecting write modes.

Acknowledgements

We would like to thank Erik Riedel, our shepherd, and
anonymous referees for valuable comments that greatly
improved our paper. This work was supported by the
National Research Foundation of Korea (NRF) grant
funded by the Ministry of Science, ICT and Future Plan-
ning (MSIP) (NRF-2013R1A2A2A01068260). This re-
search was also supported by Next-Generation Infor-
mation Computing Development Program through NRF
funded by MSIP (No. 2010-0020724). The ICT at Seoul
National University and IDEC provided research facili-
ties for this study.

References

[1] S.-H. Shin et al., “A New 3-bit Programming Al-
gorithm Using SLC-to-TLC Migration for 8 MB/s
High Performance TLC NAND Flash Memory,” in
Proc. IEEE Symp. VLSI Circuits, 2012.

[2] J. Choi et al., “3D Approaches for Non-volatile
Memory,” in Proc. IEEE Symp. VLSI Technology,
2011.

[3] A. A. Chien et al., “Moore’s Law: The First End-
ing and A New Beginning,” Tech. Report, Dept. of
Computer Science, the Univ. of Chicago, TR-2012-
06.

[4] J.-W. Hsieh et al., “Efficient Identification of Hot
Data for Flash Memory Storage Systems,” ACM
Trans. Storage, vol. 2, no. 1, pp. 22-40, 2006.

[5] F. Chen et al., “CAFTL: A Content-Aware Flash
Translation Layer Enhancing the Lifespan of Flash
Memory Based Solid State Drives,” in Proc.
USENIX Conf. File and Storage Tech., 2011.

[6] S. Lee et al., “Improving Performance and Lifetime
of Solid-State Drives Using Hardware-Accelerated
Compression,” IEEE Trans. Consum. Electron.,
vol. 57, no. 4, pp. 1732-1739, 2011.

[7] S. Lee et al., “Lifetime Management of Flash-
Based SSDs Using Recovery-Aware Dynamic
Throttling,” in Proc. USENIX Conf. File and Stor-
age Tech., 2012.

[8] V. Mohan et al., “How I Learned to Stop Worry-
ing and Love Flash Endurance,” in Proc. USENIX
Workshop Hot Topics in Storage and File Systems,
2010.

[9] N. Mielke et al., “Bit Error Rate in NAND Flash
Memories,” in Proc. IEEE Int. Reliability Physics
Symp., 2008.

13

74 12th USENIX Conference on File and Storage Technologies USENIX Association

[10] K. F. Schuegraf et al., “Effects of Temperature and
Defects on Breakdown Lifetime of Thin SiO2 at
Very Low Voltages,” IEEE Trans. Electron Devices,
vol. 41, no. 7, pp. 1227-1232, 1994.

[11] S. Cho, “Improving NAND Flash Memory Relia-
bility with SSD Controllers,” in Proc. Flash Mem-
ory Summit, 2013.

[12] S. Lee et al., “FlashBench: A Workbench for a
Rapid Development of Flash-Based Storage De-
vices,” in Proc. IEEE Int. Symp. Rapid System Pro-
totyping, 2012.

[13] R.-S. Liu et al., “Optimizing NAND Flash-Based
SSDs via Retention Relaxation,” in Proc. USENIX
Conf. File and Storage Tech., 2012.

[14] K.-D. Suh et al., “A 3.3 V 32 Mb NAND Flash
Memory with Incremental Step Pulse Programming
Scheme,” IEEE J. Solid-State Circuits, vol. 30, no.
11, pp. 1149-1156, 1995.

[15] JEDEC Standard, ”Stress-Test-Driven Qualifica-
tion of Integrated Circuits,” JESD47H.01, 2011.

[16] J. Jeong and J. Kim, “Dynamic Program and
Erase Scaling in NAND Flash-based Storage
Systems,” Tech. Report, Seoul National Univ.,
http://cares.snu.ac.kr/download/TR-CARES-01-
14, 2014.

[17] D.-W. Lee et al., “The Operation Algorithm for Im-
proving the Reliability of TLC (Triple Level Cell)
NAND Flash Characteristics,” in Proc. IEEE Int.
Memory Workshop, 2011.

[18] J. Yang, “High-Efficiency SSD for Reliable Data
Storage Systems,” in Proc. Flash Memory Summit,
2011.

[19] R. Frickey, “Data Integrity on 20 nm NAND SSDs,”
in Proc. Flash Memory Summit, 2012.

[20] L.-P. Chang, “On Efficient Wear Leveling for
Large-Scale Flash-Memory Storage Systems,” in
Proc. ACM Symp. Applied Computing, 2007.

[21] IBM “Kernel APIs, Part 3: Timers and Lists in the
2.6 Kernel,” http://www.ibm.com/developerworks/
library/l-timers-list/.

[22] D. Narayanan et al., “Write Off-Loading: Practi-
cal Power Management for Enterprise Storage,” in
Proc. USENIX Conf. File and Storage Tech., 2008.

[23] http://www.ubuntu.com/download

[24] Q. Wu et al., “Exploiting Heat-Accelerated Flash
Memory Wear-Out Recovery to Enable Self-
Healing SSDs,” in Proc. USENIX Workshop Hot
Topics in Storage and File Systems, 2011.

[25] J. Jeong et al., “Improving NAND Endurance by
Dynamic Program and Erase scaling,” in Proc.
USENIX Workshop Hot Topics in Storage and File
Systems, 2013.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 75

ReconFS: A Reconstructable File System on Flash Storage

Youyou Lu Jiwu Shu∗ Wei Wang
Department of Computer Science and Technology, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology

∗ Corresponding author: shujw@tsinghua.edu.cn
{luyy09, wangwei11}@mails.tsinghua.edu.cn

Abstract

Hierarchical namespaces (directory trees) in file systems
are effective in indexing file system data. However, the
update patterns of namespace metadata, such as intensive
writeback and scattered small updates, exaggerate the
writes to flash storage dramatically, which hurts both
performance and endurance (i.e., limited program/erase
cycles of flash memory) of the storage system.

In this paper, we propose a reconstructable file system,
ReconFS, to reduce namespace metadata writeback
size while providing hierarchical namespace access.
ReconFS decouples the volatile and persistent directory
tree maintenance. Hierarchical namespace access is
emulated with the volatile directory tree, and the
consistency and persistence of the persistent directory
tree are provided using two mechanisms in case of
system failures. First, consistency is ensured by
embedding an inverted index in each page, eliminating
the writes of the pointers (indexing for directory tree).
Second, persistence is guaranteed by compacting and
logging the scattered small updates to the metadata
persistence log, so as to reduce write size. The inverted
indices and logs are used respectively to reconstruct
the structure and the content of the directory tree
on reconstruction. Experiments show that ReconFS
provides up to 46.3% performance improvement and
27.1% write reduction compared to ext2, a file system
with low metadata overhead.

1 Introduction

In recent years, flash memory is gaining popularity in
storage systems for its high performance, low power
consumption and small size [11, 12, 13, 19, 23, 28].
However, flash memory has limited program/erase (P/E)
cycles, and the reliability is weakened as P/E cycles
approach the limit, which is known as the endurance
problem [10, 14, 17, 23]. The recent trend of denser flash

memory, which increases storage capacity by multiple-
level cell (MLC) or triple-level cell (TLC) technologies,
makes the endurance problem even worse [17].

File system design evolves slowly in the past few
decades, yet it has a marked impact on I/O behaviors of
the storage subsystems. Recent studies have proposed
to revisit the namespace structure of file systems, e.g.,
flexible indexing for search-friendly file systems [33] and
table structured metadata management for better meta-
data access performance [31]. Meanwhile, leveraging
the internal storage management of flash translation layer
(FTL) of solid state drives (SSDs) to improve storage
management efficiency has also been discussed [19, 23,
25, 37]. But namespace management also impacts flash-
based storage performance and endurance, especially
when considering metadata-intensive workloads. This
however has not been well researched.

Namespace metadata are intensively written back
to persistent storage due to system consistency or
persistence guarantees [18, 20]. Since the no-overwrite
property of flash memory requires writes to be updated
in free pages, frequent writeback introduces a large
dynamic update size (i.e., the total write size of free
pages that are used). Even worse, a single file system
operation may scatter updates to different metadata
pages (e.g., the create operation writes both the inode
and the directory entry), and the average update size
to each metadata page is far less than one page size
(e.g., an inode in ext2 has the size of 128 bytes). A
whole page needs to be written even though only a
small part in the page is updated. Endurance, as well
as performance, of flash storage systems is affected
by namespace metadata accesses due to frequent and
scattered small write patterns.

To address these problems, we propose a recon-
structable file system, ReconFS, which provides a
volatile hierarchical namespace and relaxes the write-
back requirements. ReconFS decouples the maintenance
of the volatile and persistent directory trees. Metadata

76 12th USENIX Conference on File and Storage Technologies USENIX Association

pages are written back to their home locations only
when they are evicted or checkpointed (i.e., the operation
to update the persistent directory tree the same as the
volatile directory tree) from main memory. Consistency
and persistence of the persistent directory tree are
guaranteed using two new mechanisms. First, we use
embedded connectivity mechanism to embed an inverted
index in each page and track the unindexed pages. Since
the namespace is tree-structured, the inverted indices are
used for directory tree structure reconstruction. Second,
we log the differential updates of each metadata page
to the metadata persistence log and compact them into
fewer pages, and we call it metadata persistence logging
mechanism. These logs are used for directory tree
content update on reconstruction.

Fortunately, flash memory properties can be leveraged
to keep overhead of the two mechanisms low. First, page
metadata, the spare space alongside each flash page, is
used to store the inverted index. The inverted index
is atomically accessed with its page data without extra
overhead [10]. Second, unindexed pages are tracked
in the unindexed zone by limiting new allocations to a
continuous logical space. The address mapping table in
FTL redirects the writes to different physical pages, and
the performance is not affected even though the logical
layout is changed. Third, high random read performance
makes the compact logging possible, as the reads of
corresponding base pages are fast during recovery. As
such, ReconFS can efficiently gain performance and
endurance benefits with rather low overhead.

Our contributions are summarized as follows:
• We propose a reconstructable file system design to

avoid the high overhead of maintaining a persistent
directory tree and emulate hierarchical namespace
access using a volatile directory tree in memory.

• We provide namespace consistency by embedding
an inverted index with the indexed data and
eliminate the pointer update in the parent node
(in the directory tree view) to reduce writeback
frequency.

• We also provide metadata persistence by logging
and compacting dirty parts from multiple metadata
pages to the metadata persistence log, and the
compact form reduces metadata writeback size.

• We implement ReconFS based on ext2 and evaluate
it against different file systems, including ext2,
ext3, btrfs and f2fs. Results show an up to
46.3% performance increase and 27.1% endurance
improvement compared to ext2, a file system with
low metadata overhead.

The rest of this paper is organized as follows.
Section 2 gives the background of flash memory and
namespace management. Section 3 describes the
ReconFS design, including the decoupled volatile and

persistent directory tree maintenance, the embedded
connectivity and metadata persistence logging mecha-
nisms, as well as the reconstruction. We present the
implementation in Section 4 and evaluate ReconFS in
Section 5. Related work is given in Section 6, and the
conclusion is made in Section 7.

2 Background

2.1 Flash Memory Basics
Programming in flash memory is performed in one
direction. Flash memory cells need to be erased before
overwritten. The read/write unit is a flash page (e.g.,
4KB), and the erase unit is a flash block (e.g., 64 pages).
In each flash page, there is a spare area for storing the
metadata of the page, which is called page metadata or
out-of-band (OOB) area [10]. The page metadata is used
to store error correction codes (ECC). And it has been
proposed to expose the page metadata to software in
NVMe standard [6].

Flash translation layers (FTLs) are used in flash-
based solid state drives (SSDs) to export the block
interface [10]. FTLs translate the logical page number
in the software to the physical page number in flash
memory. The address mapping hides the no-overwrite
property from the system software. FTLs also perform
garbage collection to reclaim space and wear leveling to
extend the lifetime of the device.

Flash-based SSDs provide higher bandwidth and IOPS
compared to hard disk drives (HDDs) [10]. Multiple
chips are connected through multiple channels inside
an SSD to provide internal parallelism, providing high
aggregated bandwidth. Due to elimination of mechanical
moving part, an SSD provides high IOPS. Endurance is
another element that makes flash-based SSDs different
from HDDs [10, 14, 17, 23]. Each flash memory cell has
limited program/erase (P/E) cycles. As the P/E cycles
approach the limit, the reliability of each cell drops
dramatically. As such, endurance is a critical issue in
system designs on flash-based storage.

2.2 Hierarchical Namespaces
Directory trees have been used in different file systems
for over three decades to manage data in a hierarchical
way. But hierarchical namespaces introduce high
overhead to provide consistency and persistence for
the directory tree. Also, static metadata organization
amplifies the metadata write size.
Namespace Consistency and Persistence. Directories
and files are indexed in a tree structure, the directory
tree. Each page uses pointers to index its children in the
directory tree. To keep the consistency of the directory

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 77

Volatile Directory Tree

ReconFS Storage
(Persistent Directory Tree,

Persistent Data Pages)

Metadata
Persistence Log

Main
Memory

Persistent
Storage

Persistence
Induced Writeback

Consistency
Induced Writeback

Buffer Eviction/Checkpoint
Induced Writeback

Figure 1: ReconFS Framework

tree, the page that has the pointer and the pointed page
should be updated atomically. Different mechanisms,
such as journaling [4, 7, 8, 34, 35] and copy-on-write
(COW) [2, 32], are used to provide atomicity, but
introduce a large amount of extra writes. In addition,
the persistence requires the pointers to be in a durable
state even after power failures, and this demands in-
time writeback of these pages. This increases the
writeback frequency, which also has a negative impact
on endurance.

In this paper, we focus on the consistency of the
directory tree, i.e., the metadata consistency. Data con-
sistency can be achieved by incorporating transactional
flash techniques [22, 23, 28, 29].
Metadata Organization. Namespace metadata are
clustered and stored in the storage media, which we refer
to as static compacting. Static compacting is commonly
used in file systems. In ext2, index nodes in each block
group are stored continuously. Since each index node
is of 128 bytes in ext2, a 4KB page can store as many
inodes as 32. Directory entries are organized in the
similar way except that each directory entry is of variable
length. Multiple directory entries with the same parent
directory may share the same directory entry page. This
kind of metadata organization improves the metadata
performance in hard disk drives, as the metadata can be
easily located.

Unfortunately, this kind of metadata organization
has not addressed the endurance problem. For each
file system operation, multiple metadata pages may be
written but with only small parts updated in each page.
E.g., a file create operation creates an inode in the inode
page and writes a directory entry to the directory entry
page. Since the flash-based storage is written in the unit
of pages, the write amount is exaggerated by comparing
the sum of all updated pages’ size (from the view of
storage device) with the updated metadata size (from the
view of file system operations).

3 Design

ReconFS is designed to reduce the writes to flash
storage while providing hierarchical namespace access.

In this section, we first present the overall design of
ReconFS, including the decoupled volatile and persistent
directory tree maintenance and four types of metadata
writeback. We then describe two mechanisms, embedded
connectivity and metadata persistence logging, which
provide consistency and persistence of the persistent
directory tree with reduced writes, respectively. Finally,
we discuss the ReconFS reconstruction.

3.1 Overview of ReconFS

ReconFS decouples the maintenance of the volatile and
persistent directory trees. ReconFS emulates a volatile
directory tree in main memory to provide the hierarchical
namespace access. Metadata pages are updated to the
volatile directory tree without being written back to the
persistent directory tree. While the reduced writeback
can benefit both performance and endurance of flash
storage, consistency and persistence of the persistent
directory tree need to be provided in case of unexpected
system failures. Instead of writing back metadata pages
directly to their home locations, ReconFS either embeds
the inverted index with the indexed data for namespace
consistency or compacts and writes back the scattered
small updates in a log-structured way.

As shown in Figure 1, ReconFS is composed of
three parts: the Volatile Directory Tree, the ReconFS
Storage, and the Metadata Persistence Log. The Volatile
Directory Tree manages namespace metadata pages
in main memory to provide hierarchical namespace
access. The ReconFS Storage is the persistent storage
for ReconFS file system. It stores both the data and
metadata, including the persistent directory tree, of
the file system. The Metadata Persistence Log is a
continuously allocated space in the persistent storage
which is mainly used for the metadata persistence.

3.1.1 Decoupled Volatile and Persistent Directory
Tree Maintenance

Since ReconFS emulates the hierarchical namespace
access in main memory using a volatile directory tree,
three issues are raised. First, namespace metadata
pages need replacement when memory pressure is high.
Second, namespace consistency is not guaranteed once
system crashes without namespace metadata written
back in time. Third, updates to the namespace metadata
may get lost after unexpected system failures.

For the first issue, ReconFS writes back the namespace
metadata to their home locations in ReconFS storage
when they are evicted from the buffer, which we call
write-back on eviction. This guarantees the metadata
in persistent storage that do not have copies in main
memory are the latest. Therefore, there are three kinds

3

78 12th USENIX Conference on File and Storage Technologies USENIX Association

of metadata in persistent storage (denoted as Mdisk): the
up-to-date metadata written back on eviction (denoted
as Mup−to−date), the untouched metadata that have not
been read into memory (denoted as Muntouched) and the
obsolete metadata that have copies in memory (denoted
as Mobsolete). Note Mobsolete includes both pages that
have dirty or clean copies in memory. Let Mvdt , Mpdt
respectively be the namespace metadata of the volatile
and persistent directory trees and Mmemory be the volatile
namespace metadata in main memory, we have

Mvdt = Mmemory +Mup−to−date +Muntouched ,

Mpdt = Mdisk = Mobsolete +Mup−to−date +Muntouched .

Since Mup−to−date and Mmemory are the latest, Mvdt is the
latest. In contrast, Mpdt is not up-to-date, as ReconFS
does not write back the metadata that still have copies
in main memory. Volatile metadata are written back
to their home locations for three cases: (1) file system
unmount, (2) unindexed zone switch (Section 3.2), and
(3) log truncation (Section 3.3). We call the operation
that makes Mpdt = Mvdt the checkpoint operation. When
the volatile directory tree is checkpointed on unmount,
it can be reconstructed by directly reading the persistent
directory tree for later system booting.

The second and third issues are raised from unex-
pected system crashes, in which cases, Mvdt �= Mpdt .
The writeback of namespace metadata not only provides
namespace connectivity for updated files or directories,
but also keeps the descriptive metadata in metadata
pages (e.g., owner, access control list in an inode)
up-to-date. The second issue is caused by the loss
of connectivity. To overcome this problem, ReconFS
embeds an inverted index in each page for connectivity
reconstruction (Section 3.2). The third issue is from
the loss of metadata update. This problem is addressed
by logging the metadata that need persistence (e.g.,
fsync) to the metadata persistence log (Section 3.3). In
this way, the metadata of volatile directory tree can be
reconstructed by first the connectivity reconstruction and
then the descriptive metadata update even after system
crashes.

3.1.2 Metadata Writeback

Metadata writeback to persistent storage, including the
file system storage and the metadata persistence log, can
be classified into four types as follows:
• Buffer eviction induced writeback: Metadata pages

that are evicted due to memory pressure are written
back to their home locations, so that these pages
can be directly read out for later accesses without
looking up the logs.

• Checkpoint induced writeback: Metadata pages are
written back to their home locations for checkpoint

Inode

Directory
Entries

Inode

Data
Pages

Inode

Directory
Entries

Inode

Data
Pages

Figure 2: Normal Indexing (left) and Inverted Indexing
(right) in a Directory Tree

operations, in order to reduce the reconstruction
overhead.

• Consistency induced writeback: Writeback of
pointers (used as the indices) is eliminated by
embedding an inverted index with the indexed data
of the flash storage, so as to reduce the writeback
frequency.

• Persistence induced writeback: Metadata pages
written back due to persistence requirements are
compacted and logged to the metadata persistence
log in a compact form to reduce the metadata
writeback size.

3.2 Embedded Connectivity

Namespace consistency is one of the reasons why names-
pace metadata need frequent writeback to persistent
storage. In the normal indexing of a directory tree
as shown in the left half of Figure 2, the pointer and
the pointed page of each link should be written back
atomically for namespace consistency in each metadata
operation. This not only requires the two pages to be
updated but also demands journaling or ordered update
for consistency. Instead, ReconFS provides namespace
consistency using inverted indexing, which embeds the
inverted index with the indexed data, as shown in the
right half of Figure 2. Since the pointer is embedded with
the pointed page, the consistency can be easily achieved.
As well as the journal writes, the pointer updates are
eliminated. In this way, the embedded connectivity
lowers the frequency of metadata writeback and ensures
the metadata consistency.

Embedded Inverted Index: In a directory tree, there
are two kinds of links: links from directory entries to
inodes (dirent-inode links) and links from inodes to data
pages (inode-data links). Since directory entries are
stored as data pages of directories in Unix/Linux, links
from inodes to directory entries are classified as the
inode-data links. For an inode-data link, the inverted
index is the inode number and the data’s location (i.e.,
the offset and length) in the file or directory. Since the
inverted index is of several bytes, it is stored in the page

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 79

metadata of each flash page. For a dirent-inode link,
the inverted index is the file or directory name and its
inode number. Because the name is of variable length
and is difficult to fit into the page metadata, an operation
record, which is composed of the inverted index, the
inode content and the operation type, is generated and
stored in the metadata persistence log. The operation
type in the operation record is set to ‘creation’ for
create operations and ‘link’ for hard link operations.
During reconstruction, the ‘link’ type does not invalidate
previous creation records, while the ‘creation’ does.

An inverted index is also associated with a version
number for identifying the correct version in case of
inode number or directory entry reuses. When an inode
number or a directory entry is reused after it is deleted,
pages that belong to the deleted file or directory may still
reside in persistent storage with their inverted indices.
During reconstruction, these pages may be wrongly
regarded as valid. To avoid this ambiguity, each directory
entry is extended with a version number, and each inode
is extended with the version pair < Vborn,Vcur >, which
indicates the liveness of the inode. Vborn is the version
number when the inode is created or reused. For a
delete operation, Vborn is set by increasing one to Vcur.
Because all pages at that time have version numbers
no larger than Vcur, all data pages of the deleted inode
are set invalid. As same as the create and hard link
operations, a delete operation generates a deletion record
and appends it to the metadata persistence log, which is
used to disconnect the inode from the directory tree and
invalid all its children pages.

Unindexed Zone: Pages whose indices have not been
written back are not accessible in the directory tree after
system failures. These pages are called unindexed pages
and need to be tracked for reconstruction. ReconFS
divides the logical space into several zones and restricts
the writes to one zone in each stage. This zone is called
the unindexed zone, and it tracks all unindexed pages at
one stage. A stage is the time period when the unindexed
zone is used for allocation. When the zone is used up, the
unindexed zone is switched to another. Before the zone
switch, a checkpoint operation is performed to write the
dirty indices back to their home locations. The restriction
of writes to the unindexed zone incurs little performance
penalty. This is because the FTL inside an SSD remaps
logical addresses to physical addresses, and data layout
in the logical space view does little impact on system
performance while data layout in the physical space view
is critical.

In addition to namespace connectivity, bitmap write-
back is another source of frequent metadata persistence.
The bitmap updates are frequently written back to keep
the space allocation consistent. ReconFS only keeps
the volatile bitmap in main memory, which is used for

logical space allocation, and does not keep the persistent
bitmap up-to-date. Once system crashes, bitmaps are
reconstructed. Since new allocations are performed only
in the unindexed zone, the bitmap in the unindexed zone
is reconstructed using the valid and invalid statuses of
the pages. Bitmaps in other zones are only updated when
pages are deleted, and these updates can be reconstructed
using deletion records in the metadata persistence log.

3.3 Metadata Persistence Logging

Metadata persistence causes frequent metadata write-
back. The scattered small update pattern of the writeback
amplifies the metadata writes, which are written back in
the unit of pages. Instead of using static compacting
(as mentioned in Section 2), ReconFS dynamically
compacts the metadata updates and writes them to the
metadata persistence log. While static compacting
requires the metadata updates written back to their home
locations, dynamic compacting is able to cluster the
small updates in a compact form. Dynamic compacting
only writes the dirty parts rather than the whole pages, so
as to reduce write size.

In metadata persistence logging, writeback is triggered
when persistence is needed, e.g., explicit synchroniza-
tion or the wake up of pdflush daemon. The metadata
persistence logging mechanism keeps track of the dirty
parts of each metadata page in main memory and
compacts those parts into the logs:
• Memory Dirty Tagging: For each metadata opera-

tion, metadata pages are first updated in the main
memory. ReconFS records the location metadata
(i.e., the offset and the length) of the dirty parts in
each updated metadata page. The location metadata
are attached to the buffer head of the metadata page
to track the dirty parts for each page.

• Writeback Compacting: During writeback, Re-
conFS travels multiple metadata pages and appends
their dirty parts to the log pages. Each dirty part has
its location metadata (i.e., the base page address, the
offset and length in the page) attached in the head of
each log page.

Log truncation is needed when the metadata persis-
tence log runs short of space. Instead of merging the
small updates in the log with base metadata pages,
ReconFS performs a checkpoint operation to write back
all dirty metadata pages to their home locations. To
mitigate the writeback cost, the checkpoint operation is
performed in an asynchronous way using a writeback
daemon, and the daemon starts when the log space drops
below a pre-defined threshold. As such, the log is
truncated without costly merging operations.

Multi-page Update Atomicity. Multi-page update
atomicity is needed for an operation record which size

5

80 12th USENIX Conference on File and Storage Technologies USENIX Association

is larger than one page (e.g., a file creation operation
with a 4KB file name). To provide the consistency of
the metadata operation, these pages need to be updated
atomically. Single-page update atomicity is guaranteed
in flash storage, because the no-overwrite property of
flash memory requires the page to be updated in a new
place followed by atomic mapping entry update in the
FTL mapping table.

Multi-page update atomicity is simply achieved using
a flag bit in each page. Since a metadata operation
record is written in continuously allocated log pages, the
atomicity is achieved by tagging the start and end of these
pages. The last page is tagged with flag ‘1’, and the
others are tagged with ‘0’. The bit is stored in the head of
each log page. It is set when the log page is written back,
and it does not require extra writes. During recovery,
the flag bit ‘1’ is used to determine the atomicity. Pages
between two ‘1’s belong to complete operations, while
pages at the log tail without an ending ‘1’ belong to an
incomplete operation. In this way, multi-page update
atomicity is achieved.

3.4 ReconFS Reconstruction

During normal shutdowns, the volatile directory tree
writes the checkpoint to the persistent directory tree
in persistent storage, which is simply read into main
memory to reconstruct the volatile directory tree for the
next system start. But once the system crashes, ReconFS
needs to reconstruct the volatile directory tree using
the metadata recorded by the embedded connectivity
and the metadata persistence logging mechanisms.
Since the persistent directory tree is the checkpoint
of volatile directory tree when the unindexed zone is
switched or the log is truncated, all page allocations
are performed in the unindexed zone, and all metadata
changes have been logged to the persistent metadata logs.
Therefore, ReconFS only needs to update the directory
tree by scanning the unindexed zone and the metadata
persistence log. ReconFS reconstruction includes:

1. File/directory reconstruction: Each page in the
unindexed zone is connected to its index node using
its inverted index. And then, each page checks
the version number in its inverted index with the
<Vborn,Vcur > in its index node. If this matches, the
page is indexed to the file or directory. Otherwise,
the page is discarded because the page has been
invalidated. After this, all pages, including file data
pages and directory entry pages, are indexed to their
index nodes.

2. Directory tree connectivity reconstruction: The
metadata persistence log is scanned to search the
dirent-inode links. These links are used to connect
those inodes to the directory tree, so as to update the

Inode Page
(flash page)

Ino,off,len,verData Page
(flash page)

data

Page Metadata Page Data

Inode
(V_born, V_cur)

...

Figure 3: An Inverted Index for an Inode-Data Link

directory tree structure.
3. Directory tree content update: Log records in the

metadata persistence log are used to update the
metadata pages in the directory tree, so the content
of the directory tree is updated to the latest.

4. Bitmap reconstruction: The bitmap in the unin-
dexed zone is reset by checking the valid status of
each page, which can be identified using version
numbers. Bitmaps in other zones are not changed
except for deleted pages. With the deletion or
truncation log records, the bitmaps are updated.

After the reconstruction, those obsolete metadata pages
in persistent directory tree are updated to the latest, and
the recent allocated pages are indexed into the directory
tree. The volatile directory tree is reconstructed to
provide hierarchical namespace access.

4 Implementation

ReconFS is implemented based on ext2 file system in
Linux kernel 3.10.11. ReconFS shares both on-disk
and in-memory data structures of ext2 but modifies the
namespace metadata writeback flows.

In volatile directory directory tree, ReconFS employs
two dirty flags for each metadata buffer page: persistence
dirty and checkpoint dirty. Persistence dirty is tagged
for the writeback to the metadata persistence log.
Checkpoint dirty is tagged for the writeback to the
persistent directory tree. Both of them are set when
the buffer page is updated. The persistence dirty flag is
cleared only when the metadata page is written to the
metadata persistence log for metadata persistence. The
checkpoint dirty flag is cleared only when the metadata
are written back to its home location. ReconFS uses the
double dirty flags to separate metadata persistence (the
metadata persistence log) from metadata organization
(the persistent directory tree).

In embedded connectivity, inverted indices for inode-
data and dirent-inode links are stored in different ways.
The inverted index of an inode-data link is stored in the
page metadata of each flash page. It has the form of
(ino,o f f , len,ver), in which ino is the inode number,
o f f and len are the offset and the valid data length in
the file or directory, respectively, and ver is the version
number of the inode. The inverted index of a dirent-

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 81

Inode
Page off,len

Dirent
Page

Dirty Tagging

off,len
off,len

off,len

off,len off,lenType: creation

Figure 4: Dirty Tagging in Main Memory

inode link is stored as a log record with the record type
type set to ‘creation’ in the metadata persistence log.
The log record contains both the directory entry and the
inode content and keeps an (o f f , len, lba,ver) extent for
each of them. lba is the logical block address of the
base metadata page. The log record acts as the inverted
index for the inode, which is used to reconnect it to the
directory tree. Unindexed zone in ReconFS is set by
clustering multiple block groups in ext2. ReconFS limits
the new allocations to these block groups, thus making
these block groups as the unindexed zone. The addresses
of these block groups are kept in file system super block
and are made persistent on each zone switch.

In metadata persistence logging, ReconFS tags the
dirty parts of each metadata page using a linked list,
as shown in Figure 4. Each node in the linked list
is a pair of (o f f , len) to indicate which part is dirty.
Before each insertion, the list is checked to merge
the overlapped dirty parts. The persistent log record
also associates the type type, the version number ver
and the logical block address lba for each metadata
page with the linked list pairs, followed by the dirty
content. In current implementation, ReconFS writes
the metadata persistence log as a file in the root
file system. Checkpoint is performed for file system
unmount, unindexed zone switch or log truncation.
Checkpoint for file system unmount is performed when
the unmount command is issued, while checkpoint for
the other two is triggered when the free space in the
unindexed zone or the metadata persistence log drops
below 5%.

Reconstruction of ReconFS is performed in three
phases:

1. Scan Phase: Page metadata from all flash pages
in the unindexed zone and log records from the
metadata persistence log are read into memory.
After this, all addresses of the metadata pages that
appear in either of them are collected. And then, all
these metadata pages are read into memory.

2. Zone Processing Phase: In the unindexed zone,
each flash page is connected to its inode using the
inverted index in its page metadata. Structures of
files and directories are reconstructed, but they may
have obsolete pages.

Table 1: File Systems

ext2 a traditional file system without journaling
ext3 a traditional journaling file system (jour-

naled version of ext2)
btrfs[2] a recent copy-on-write (COW) file system
f2fs[12] a recent log-structured file system opti-

mized for flash

3. Log Processing Phase: Each log record is used
either to connect a file or directory to the directory
tree or to update the metadata page content. For
a creation or hard link log record, the directory
entry is updated for the inode. For a deletion or
truncation log record, the corresponding bitmaps
are read and updated. The other log records are used
to update the page content. And finally, versions
in the pages and inodes are checked to discard the
obsolete pages, files and directories.

5 Evaluation

We evaluate the performance and endurance of ReconFS
against previous file systems, including ext2, ext3,
btrfs and F2FS, and aim to answer the following four
questions:

1. How does ReconFS compare with previous file
systems in terms of performance and endurance?

2. What kind of operations gain more benefits from
ReconFS? What are the benefits from embedded
connectivity and metadata persistence logging?

3. What is the impact of changes in memory size?
4. What is the overhead of checkpoint and reconstruc-

tion in ReconFS?
In this section, we first describe the experimental setup

before answering the above questions.

5.1 Experimental Setup
We implement ReconFS in Linux kernel 3.10.11, and
evaluate the performance and endurance of ReconFS
against the file systems listed in Table 1.

We use four workloads from filebench benchmark [3].
They emulate different types of servers. Operations and
read-write ratio [21] of each workload are illustrated as
follows:
• fileserver emulates a file server, which performs a

sequence of create, delete, append, read, write and
attribute operations. The read-write ratio is 1:2.

• webproxy emulates a web proxy server, which
performs a mix of create-write-close, open-read-
close and delete operations, as well as log appends.
The read-write ratio is 5:1.

7

82 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

fileserver webproxy varmail webserver

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

ext2
ext3
btrfs
f2fs

reconfs

Figure 5: System Comparison on Performance

 0

 0.5

 1

 1.5

 2

fileserver webproxy varmail webserver

N
o
rm

a
liz

e
d
 E

n
d
u
ra

n
c
e
 (

W
ri
te

 S
iz

e
) 6.09,9.25 6.64,4.96

ext2
ext3
btrfs
f2fs

reconfs

Figure 6: System Comparison on Endurance

Table 2: SSD Specification

Capacity 128 GB
Seq. Read Bandwidth 260 MB/s
Seq. Write Bandwidth 200 MB/s

Rand. Read IOPS (4KB) 17,000
Rand. Write IOPS (4KB) 5,000

• varmail emulates a mail server, which performs a
set of create-append-sync, read-append-sync, read
and delete operations. The read-write ratio is 1:1.

• webserver emulates a web server, which performs
open-read-close operations, as well as log appends.
The read-write ratio is 10:1.

Experiments are carried out on Fedora 10 using Linux
kernel 3.10.11, and the computer is equipped with 4-core
2.50GHz processor and 12GB memory. We evaluate all
file systems on a 128GB SSD, and its specification is
shown in Table 2. All file systems are mounted with
default options.

5.2 System Comparison
5.2.1 Overall Comparison

We evaluate the performance of all file systems by
measuring the throughput reported by the benchmark,
and the endurance by measuring the write size to storage.
The write size to storage is collected from the block level
trace using blktrace tool [1].

Figure 5 shows the throughput normalized to the
throughput of ext2 to evaluate the performance. As
shown in the figure, ReconFS is among the best of
all file systems for all evaluated workloads, and gains
performance improvement up to 46.3% than ext2 for
varmail, the metadata intensive workload. For read
intensive workloads, such as webproxy and webserver,
all evaluated file systems do not show a big difference.
But for write intensive workloads, such as fileserver
and varmail, they show different performance. Ext2

shows comparatively higher performance than other
file systems excluding ReconFS. Both ext3 and btrfs
have provided namespace consistency with different
mechanisms, e.g., waiting until the data reach persistent
storage before writing back the metadata, but with poorer
performance compared to ext2. F2FS, the file system
with data layout optimized for flash, shows a comparable
performance to ext2, but has inferior performance in
varmail workload, which is metadata intensive and has
frequent fsyncs. Comparatively, ReconFS achieves
the performance of ext2 in all evaluated workloads,
nearly the best performance of all previous file systems,
and is even better than ext2 in varmail workload.
Moreover, ReconFS provides namespace consistency
with embedded connectivity while ext2 does not.

Figure 6 shows the write size to storage normalized
to that of ext2 to evaluate the endurance. From the
figure, we can see ReconFS effectively reduces write
size for metadata and reduces write size by up to
27.1% compared to ext2. As same as the performance,
the endurance of ext2 is the best of all file systems
excluding ReconFS. On the while, ext3, btrfs and F2FS
uses journaling or copy-on-write to provide consistency,
which introduces extra writes. For instance, btrfs has the
write size 9 times as large as that of ext2 in the fileserver
workload. ReconFS provides namespace consistency
using embedded connectivity without incurring extra
writes, and further reduces write size by compacting
metadata writeback. As shown in the figure, ReconFS
shows a write size reduction of 18.4%, 7.9% and 27.1%
even compared with ext2 respectively for fileserver,
webproxy and varmail workloads.

5.2.2 Performance

To understand the performance impact of ReconFS, we
evaluate four different operations that have to update
the index node page and/or directory entry page. The
four operations are file creation, deletion, append and
append with fsyncs. They are evaluated using micro-

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 83

1e+01

1e+02

1e+03

1e+04

ext2
ext3

btrfs
f2fs

reconfs

C
re

a
te

 T
h
ro

u
g
h
p
u
t

 (
o
p
/s

,
lo

g
 s

c
a
le

)

1e+04

1e+05

1e+06

ext2
ext3

btrfs
f2fs

reconfs

D
e
le

te
 T

h
ro

u
g
h
p
u
t

 (
o
p
/s

,
lo

g
 s

c
a
le

)

2e+04

3e+04

4e+04

4e+04

4e+04

5e+04

ext2
ext3

btrfs
f2fs

reconfs

A
p
p
e
n
d
 T

h
ro

u
g
h
p
u
t

 (
o
p
/s

)

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

3e+04

ext2
ext3

btrfs
f2fs

reconfs

A
p

p
e

n
d

(f
s
y
n

c
)

T
h

ro
u

g
h

p
u

t
 (

o
p

/s
)

Figure 7: Performance Evaluation of Operations (File
create, delete, append and append with fsync)

benchmarks. The file creation and deletion benchmarks
create or delete 100K files spread over 100 directories.
f sync is performed following each creation. The append
benchmark appends 4KB pages to a file, and it inserts
a fsync for every 1,000 (one fsync per 4MB) and 10
(one fsync per 40KB) append operations respectively for
evaluating append and append with fsyncs.

Figure 7 shows the throughput of the four operations.
ReconFS shows a significant throughput increase in
file creation and append with fsyncs. File creation
throughput in ReconFS doubles the throughput in ext2.
This is because only one log page is appended in the
metadata persistence log, while multiple pages need
to be written back in ext2. Other file systems have
even worse file creation performance due to consistency
overheads. File deletion operations in ReconFS also
show better performance than the others. File append
throughput in ReconFS almost equals that in ext2 for
append operations with one fsync per 1,000 append
operations. But file append (with fsyncs) throughput in
ext2 drops dramatically as the fsync frequency increases
from 1/1000 to 1/10, as well as in the other journaling or
log-structured file systems. In comparison, file append
(with fsyncs) throughput in ReconFS only drops to half
of previous throughput. When fsync frequency is 1/10,
ReconFS has file append throughput 5 times better than
ext2 and orders of magnitude better than the other file
systems.

5.2.3 Endurance

To further investigate the endurance benefits of ReconFS,
we measure the write size of ext2, ReconFS without log
compacting (denoted as ReconFS-EC) and ReconFS.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

fileserver webproxy varmail webserver

N
o

rm
a

liz
e

d
 E

n
d

u
ra

n
c
e

 (
W

ri
te

 S
iz

e
)

ext2
reconfs-ec

reconfs

Figure 8: Endurance Evaluation for Embedded Connec-
tivity and Metadata Persistence Logging

Figure 8 shows write sizes of the three file systems.
We compare the write sizes of ext2 and ReconFS-EC to
evaluate the benefit from embedded connectivity, since
ReconFS-EC implements the embedded connectivity but
without log compacting. From the figure, we observe
that the fileserver workload shows a remarkable drop
in write size from ext2 to ReconFS-EC. The benefit
mainly comes from the intensive file creates and appends
in the fileserver workload, which otherwise requires
index pointers to be updated for namespace connectivity.
Embedded connectivity in ReconFS eliminates updates
to these index pointers. We also compare the write sizes
of ReconFS-EC and ReconFS to evaluate the benefit
from log compacting in metadata persistence logging.
As shown in the figure, ReconFS shows a large write
reduction in varmail workload. This is because frequent
fsyncs reduce the effects of buffering, in other words, the
updates to metadata pages are small when written back.
As a result, the log compacting gains more improvement
than other workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

fileserver
webproxy

varmail
webserver

D
is

tr
ib

u
ti
o
n
 o

f
 B

u
ff
e
r

W
ri
te

b
a
c
k
 S

iz
e (0,1024)

[1024,2048)
[2048,3072)
[3072,4096)

[4096,inf)

Figure 9: Distribution of Buffer Page Writeback Size

Figure 9 also shows the distribution of buffer page
writeback size, which is the size of dirty parts in each
page. As shown in the figure, over 99.9% of the dirty
data for each page in metadata writeback of varmail
workload are less than 1KB due to frequent fsyncs, while
the others have the fraction varied from 7.3% to 34.7%

9

84 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 2000

 4000

 6000

 8000

 10000

 12000

1G 2G 3G 7G 12G

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)
ext2
ext3
btrfs
f2fs

reconfs

(a) Memory Size Impact on Performance (fileserver)

 0

 1000

 2000

 3000

 4000

 5000

 6000

1G 2G 3G 7G 12G

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

)

ext2
ext3
btrfs
f2fs

reconfs

(b) Memory Size Impact on Performance (varmail)

 0

 4000

 8000

 12000

 16000

1G 2G 3G 7G 12G

W
ri
te

 S
iz

e
 (

b
y
te

s
/o

p
)

ext2
ext3
btrfs
f2fs

reconfs

(c) Memory Size Impact on Endurance (fileserver)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1G 2G 3G 7G 12G

W
ri
te

 S
iz

e
 (

b
y
te

s
/o

p
)

ext2
ext3
btrfs
f2fs

reconfs

(d) Memory Size Impact on Endurance (varmail)

Figure 10: Memory Size Impact on Performance and Endurance

Table 3: Comparision of Full-Write and Compact-Write

Workloads Full Write
Size (KB)

Comp. Write
Size (KB)

Compact
Ratio

fileserver 108,143 48,624 44.96%
webproxy 45,133 21,325 47.25%
varmail 3,060,116 117,235 3.83%

webserver 374 143 38.36%

for dirty size less than 1KB. In addition, we calculate the
compact ratio by dividing the full page update size with
the compact write size, as shown in Table 3. The compact
ratio of varmail workload achieves as low as 3.83%.

5.3 Impact of Memory Size

To study the memory size impact, we set the memory
size to 1, 2, 3, 7 and 12 gigabytes1 and measure both
performance and endurance of all evaluated file systems.
We measure performance in the unit of the operations
per second (ops/s), and endurance in the unit of bytes
per operation (bytes/op) by dividing the total write size
with the number of operations. Results of webproxy
and webserver workloads are not shown due to space
limitation, as they are read intensive workloads and show
little difference between file systems.

1We limit the memory size to 1, 2, 4, 8 and 12 gigabytes in the
GRUB. The recognized memory sizes (shown in /proc/meminfo) are
997, 2,005, 3,012, 6,980 and 12,044 megabytes, respectively.

Figure 10 (a) shows the throughput of fileserver
workload for all file systems under different memory
sizes. As shown in the figure, ReconFS gains more when
memory size becomes larger, in which case data pages
are written back less frequently and the writeback of
metadata pages has larger impact. When memory size
is small and memory pressure is high, the impact of data
writes dominates. ReconFS has poorer performance than
F2FS, which has optimized data layout. When memory
size increases, the impact from the metadata writes
increases. Little improvement is gained in ext3 and btrfs
when memory size increases from 7GB to 12GB. In
contrast, ReconFS and ext2 gain significant improvement
for their low metadata overhead and approach the
performance of F2FS. Figure 10 (c) shows the endurance
measured in bytes per operation of fileserver. In the
figure, ReconFS has comparable or less write size than
other file systems.

Figure 10 (b) shows the throughput of varmail
workload. Performance is stable under different memory
sizes, and ReconFS achieves the best performance. This
is because varmail workload is metadata intensive work-
load and has frequent fsync operations. Figure 10 (d)
shows the endurance of varmail workload. ReconFS
achieves the best in all file systems.

5.4 Reconstruction Overhead

We measure the unmount time to evaluate the overhead
of checkpoint, which writes back all dirty metadata
to make the persistent directory tree equivalent to the

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 85

 0

 2

 4

 6

 8

 10

fileserver webproxy varmail webserver

U
n

m
o

u
n

t
T

im
e

 (
s
e

c
o

n
d

s
)

46 , 20 58

ext2
ext3
btrfs
f2fs

reconfs

Figure 11: Unmount Time (Immediate Unmount)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

fileserver webproxy varmail webserver

U
n

m
o

u
n

t
T

im
e

 (
s
e

c
o

n
d

s
) ext2

ext3
btrfs
f2fs

reconfs

Figure 12: Unmount Time (Unmount after 90s)

volatile directory tree, as well as the reconstruction time.
Unmount Time. We use time command to measure the
time of unmount operations and use the elapsed time
reported by the time command.

Figure 11 shows the unmount time when the unmount
is performed immediately when each benchmark com-
pletes. The read intensive workloads, webproxy and
webserver, have unmount time less than one second
for all file systems. But the write intensive workloads
have various unmount time for different file systems.
The unmount time in ext2 is 46 seconds, while that of
ReconFS is 58. All the unmount time values are less
than one minute, and they include the time used for
both data and metadata writeback. Figure 12 shows
the unmount time when the unmount is performed 90
seconds later after each benchmark completes. All of
them are less than one second, and ReconFS does not
show a noticeable difference with others.

 0

 10

 20

 30

 40

 50

 60

fileserver webproxy varmail webserver

T
im

e
 (

s
e
c
o
n
d
s
)

scan-time
processing-time

Figure 13: Recovery Time

Reconstruction Time. Reconstruction time has two
main parts: scan time and processing time. The scan
time includes the time of the unindexed zone scan and
the log scan. The scan is the sequential read, which
performance is bounded by the device bandwidth. The
processing time is the time used to read the base metadata
pages in the directory tree to be updated in addition to the
recovery logic processing time. As shown in Figure 13,

the scan time is 48 seconds for an 8GB zone on the SSD,
and the processing time is around one second. The scan
time is expected to be reduced with PCIe SSDs. E.g., the
scan time for a 32GB zone on a PCIe SSD with 3GB/s is
around ten seconds. Therefore, with high read bandwidth
and IOPS, the reconstruction of ReconFS can complete
in tens of seconds.

6 Related Work

File System Namespace. Research on file system
namespace has been long for efficient and effective
namespace metadata management. Relational database
or table-based technologies have been used to man-
age namespace metadata for either consistency or
performance. Inversion file system [26] manages
namespace metadata using PostGRES database system to
provide transaction protection and crash recovery to the
metadata. TableFS [31] stores namespace metadata in
LevelDB [5] to improve metadata access performance by
leveraging the log-structured merge tree (LSM-tree) [27]
implemented in LevelDB.

The hierarchical structure of namespace has also been
discussed to be implemented in a flexible way to provide
semantic accesses. Semantic file system [16] removes
the tree-structured namespace and accesses files and
directories using attributes. hFAD [33] proposes a
similar approach, which prefers a search-friendly file
system to a hierarchical file system.

Pilot [30] proposes an even aggressive way and
eliminates all indexing in file systems, in which files are
accessed only through a 64-bit universal identifier (UID).
And Pilot does not provide tree-structured file access.
Comparatively, ReconFS removes only the indexing of
persistent storage to lower the metadata cost, and it
emulates the tree-structured file access using the volatile
directory tree.
Backpointers and Inverted Indices. Backpointers have
been used in storage systems for different purposes.
BackLog [24] uses backpointer in data blocks to reduce

11

86 12th USENIX Conference on File and Storage Technologies USENIX Association

the pointer updates when data blocks are moved due to
advanced file system features, such as snapshots, clones.
NoFS [15] uses backpointer for consistency checking
on each read to provide consistency. Both of them use
backpointer as the assistant to enhance new functions,
but ReconFS uses backpointers (inverted indices) as the
only indexing (without forward pointers).

In flash-based SSDs, backpointer (e.g., the logical
page addresses) is stored in the page metadata of each
flash page, which is atomically accessed with the page
data, to recover the FTL mapping table [10]. On
each device booting, all pages are scanned, and the
FTL mapping table is recovered using the backpointer.
OFSS [23] uses backpointer in page metadata in a
similar way. OFSS uses an object-based FTL, and
the backpointer in each page records the information
of the object, which is used to delay the persistence
of the object indexing. ReconFS extends the use of
backpointer in flash storage to the file system namespace
management. Instead of maintaining the indexing
(forward pointers), ReconFS embeds only the reverse
index (backward pointers) with the indexed data, and the
reverse indices are used for reconstruction once system
fails unexpectedly.
File System Logging. File systems have used logging
in two different ways. One is the journaling, which
updates metadata and/or data in the journaling area
before updating them to their home locations, and is
widely used in modern file systems to provide file system
consistency [4, 7, 8, 34, 35]. Log-structured file systems
use logging in the other way [32]. Log-structured file
systems write all data and metadata in a logging way,
making random writes sequential for better performance.

ReconFS employs the logging mechanism for meta-
data persistence. Unlike journaling file systems or log-
structured file systems, which require tracking of valid
and invalid pages for checkpoint and garbage cleaning,
the metadata persistence log in ReconFS is simply
discarded after the writeback of all volatile metadata.
ReconFS also enables compact logging, because the
base metadata pages can be read quickly during
reconstruction due to high random read performance of
flash storage.
File Systems on Flash-based Storage. In addition
to embedded flash file systems [9, 36], researchers
are proposing new general-purpose file systems for
flash storage. DFS [19] is a file system that directly
manages flash memory by leveraging functions (e.g.,
block allocation, atomic update) provided by FusionIO’s
ioDrive. Nameless Write [37] also removes the space
allocation function in the file system and leverage the
FTL space management for space allocation. OFSS [23]
proposes to directly manage flash memory using an
object-based FTL, in which the object indexing, free

space management and data layout can be optimized
with the flash memory characteristics. F2FS [12] is a
promising log-structured file system which is designed
for flash storage. It optimizes data layout in flash
memory, e.g., the hot/cold data grouping. But these file
systems have paid little attention to the high overhead
of namespace metadata, which are frequently written
back and are written in the scattered small write pattern.
ReconFS is the first to address the namespace metadata
problem on flash storage.

7 Conclusion

Properties of namespace metadata, such as intensive
writeback and scattered small updates, make the over-
head of namespace management high on flash storage
in terms of both performance and endurance. ReconFS
removes maintenance of the persistent directory tree and
emulates hierarchical access using a volatile directory
tree. ReconFS is reconstructable after unexpected system
failures using both embedded connectivity and metadata
persistence logging mechanisms. Embedded connec-
tivity enables directory tree structure reconstruction by
embedding the reverted index with the indexed data.
With elimination of updates to parent pages (in the
directory tree) for pointer updating, the consistency
maintenance is simplified and the writeback frequency
is reduced. Metadata persistence logging provides
persistence to metadata pages, and the logged metadata
are used for directory tree content reconstruction. Since
only the dirty parts of metadata pages are logged and
compacted in the logs, the writeback size is reduced.
Reconstruction is fast due to high bandwidth and IOPS of
flash storage. Through the new namespace management,
ReconFS improves both performance and endurance
of flash-based storage system without compromising
consistency or persistence.

Acknowledgments

We would like to thank our shepherd Remzi Arpaci-
Dusseau and the anonymous reviewers for their com-
ments and suggestions. This work is supported by the
National Natural Science Foundation of China (Grant
No. 61232003, 60925006), the National High Tech-
nology Research and Development Program of China
(Grant No. 2013AA013201), Shanghai Key Laboratory
of Scalable Computing and Systems, Tsinghua-Tencent
Joint Laboratory for Internet Innovation Technology,
Huawei Technologies Co. Ltd., and Tsinghua University
Initiative Scientific Research Program.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 87

References

[1] blktrace(8) - linux man page. http://linux.

die.net/man/8/blktrace.

[2] Btrfs. http://btrfs.wiki.kernel.org.

[3] Filebench benchmark. http://sourceforge.

net/apps/mediawiki/filebench/index.

php?title=Main_Page.

[4] Journaled file system technology for linux. http:

//jfs.sourceforge.net/.

[5] LevelDB, a fast and lightweight key/value database
library by Google. https://code.google.com/
p/leveldb/.

[6] The NVM express standard. http://www.

nvmexpress.org.

[7] ReiserFS. http://reiser4.wiki.kernel.org.

[8] XFS: A high-performance journaling filesystem.
http://oss.sgi.com/projects/xfs/.

[9] Yaffs. http://www.yaffs.net.

[10] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina
Panigrahy. Design tradeoffs for SSD performance.
In Proceedings of 2008 USENIX Annual Technical
Conference (USENIX’08), 2008.

[11] David G Andersen, Jason Franklin, Michael
Kaminsky, Amar Phanishayee, Lawrence Tan, and
Vijay Vasudevan. FAWN: A fast array of wimpy
nodes. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP’09), 2009.

[12] Neil Brown. An F2FS teardown. http://lwn.

net/Articles/518988/.

[13] Adrian M. Caulfield, Laura M. Grupp, and Steven
Swanson. Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive
applications. In Proceedings of the 14th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS XIV), 2009.

[14] Feng Chen, Tian Luo, and Xiaodong Zhang.
CAFTL: A content-aware flash translation layer
enhancing the lifespan of flash memory based solid
state drives. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies
(FAST’11), 2011.

[15] Vijay Chidambaram, Tushar Sharma, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Consistency without ordering. In Proceedings of
the 10th USENIX Conference on File and Storage
Technologies (FAST’12), 2012.

[16] David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and James W. O’Toole, Jr. Semantic file
systems. In Proceedings of the thirteenth ACM
Symposium on Operating Systems Principles
(SOSP’91), 1991.

[17] Laura M Grupp, John D Davis, and Steven
Swanson. The bleak future of NAND flash
memory. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies
(FAST’12), 2012.

[18] Tyler Harter, Charlotte Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: understanding the I/O
behavior of Apple desktop applications. In
Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP’11), 2011.

[19] William K. Josephson, Lars A. Bongo, David
Flynn, and Kai Li. DFS: a file system for
virtualized flash storage. In Proceedings of the 8th
USENIX Conference on File and Storage
Technologies (FAST’10), 2010.

[20] Hyojun Kim, Nitin Agrawal, and Cristian Un-
gureanu. Revisiting storage for smartphones. In
Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST’12), 2012.

[21] Eunji Lee, Hyokyung Bahn, and Sam H Noh.
Unioning of the buffer cache and journaling layers
with non-volatile memory. In Proceedings of the
11th USENIX Conference on File and Storage
Technologies (FAST’13), 2013.

[22] Youyou Lu, Jiwu Shu, Jia Guo, Shuai Li, and Onur
Mutlu. LightTx: A lightweight transactional design
in flash-based SSDs to support flexible
transactions. In Proceedings of the 31st IEEE
International Conference on Computer Design
(ICCD’13), 2013.

[23] Youyou Lu, Jiwu Shu, and Weimin Zheng. Ex-
tending the lifetime of flash-based storage through
reducing write amplification from file systems. In
Proceedings of the 11th USENIX Conference on
File and Storage Technologies (FAST’13), 2013.

[24] Peter Macko, Margo I Seltzer, and Keith A Smith.
Tracking back references in a write-anywhere file
system. In Proceedings of the

13

88 12th USENIX Conference on File and Storage Technologies USENIX Association

8th USENIX Conference on File and storage
technologies (FAST’10), 2010.

[25] David Nellans, Michael Zappe, Jens Axboe, and
David Flynn. ptrim ()+ exists (): Exposing new
FTL primitives to applications. In the 2nd Annual
Non-Volatile Memory Workshop, 2011.

[26] Michael A Olson. The design and implementation
of the inversion file system. In USENIX Winter,
1993.

[27] Patrick O’Neil, Edward Cheng, Dieter Gawlick,
and Elizabeth O’Neil. The log-structured merge-
tree (LSM-tree). Acta Informatica, 33(4):351–385,
1996.

[28] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K Panda. Be-
yond block I/O: Rethinking traditional storage
primitives. In Proceedings of the 17th IEEE
International Symposium on High Performance
Computer Architecture (HPCA’11), 2011.

[29] Vijayan Prabhakaran, Thomas L Rodeheffer, and
Lidong Zhou. Transactional flash. In Proceedings
of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI’08),
2008.

[30] David D Redell, Yogen K Dalal, Thomas R
Horsley, Hugh C Lauer, William C Lynch, Paul R
McJones, Hal G Murray, and Stephen C Purcell.
Pilot: An operating system for a personal computer.
Communications of the ACM, 23(2):81–92, 1980.

[31] Kai Ren and Garth Gibson. TABLEFS: Enhancing
metadata efficiency in the local file system. In
Proceedings of 2013 USENIX Annual Technical
Conference (USENIX’13), 2013.

[32] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[33] Margo I Seltzer and Nicholas Murphy. Hierarchical
file systems are dead. In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems
(HotOS XII), 2009.

[34] Stephen Tweedie. Ext3, journaling filesystem. In
Ottawa Linux Symposium, 2000.

[35] Stephen C Tweedie. Journaling the linux ext2fs
filesystem. In The Fourth Annual Linux Expo, 1998.

[36] David Woodhouse. Jffs2: The journalling flash
file system, version 2. http://sourceware.org/
jffs2.

[37] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
De-indirection for flash-based SSDs with nameless
writes. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies
(FAST’12), 2012.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 89

Toward strong, usable access control for shared distributed data

Michelle L. Mazurek, Yuan Liang, William Melicher, Manya Sleeper,
Lujo Bauer, Gregory R. Ganger, Nitin Gupta, and Michael K. Reiter*

Carnegie Mellon University, *University of North Carolina at Chapel Hill

Abstract

As non-expert users produce increasing amounts of per-
sonal digital data, usable access control becomes critical.
Current approaches often fail, because they insufficiently
protect data or confuse users about policy specification.
This paper presents Penumbra, a distributed file sys-
tem with access control designed to match users’ mental
models while providing principled security. Penumbra’s
design combines semantic, tag-based policy specification
with logic-based access control, flexibly supporting intu-
itive policies while providing high assurance of correct-
ness. It supports private tags, tag disagreement between
users, decentralized policy enforcement, and unforgeable
audit records. Penumbra’s logic can express a variety of
policies that map well to real users’ needs. To evaluate
Penumbra’s design, we develop a set of detailed, real-
istic case studies drawn from prior research into users’
access-control preferences. Using microbenchmarks and
traces generated from the case studies, we demonstrate
that Penumbra can enforce users’ policies with overhead
less than 5% for most system calls.

1 Introduction

Non-expert computer users produce increasing amounts
of personal digital data, distributed across devices (lap-
tops, tablets, phones, etc.) and the cloud (Gmail, Face-
book, Flickr, etc.). These users are interested in access-
ing content seamlessly from any device, as well as shar-
ing it with others. Thus, systems and services designed
to meet these needs are proliferating [6,37,42,43,46,52].

In this environment, access control is critical. News
headlines repeatedly feature access-control failures with
consequences ranging from embarrassing (e.g., students
accessing explicit photos of their teacher on a classroom
iPad [24]) to serious (e.g., a fugitive’s location being re-
vealed by geolocation data attached to a photo [56]). The
potential for such problems will only grow. Yet, at the
same time, access-control configuration is a secondary
task most users do not want to spend much time on.

Access-control failures generally have two sources:
ad-hoc security mechanisms that lead to unforeseen be-
havior, and policy authoring that does not match users’

mental models. Commercial data-sharing services some-
times fail to guard resources entirely [15]; often they
manage access in ad-hoc ways that lead to holes [33].
Numerous studies report that users do not understand pri-
vacy settings or cannot use them to create desired poli-
cies (e.g., [14,25]). Popular websites abound with advice
for these confused users [38, 48].

Many attempts to reduce user confusion focus only on
improving the user interface (e.g., [26, 45, 54]). While
this is important, it is insufficient—a full solution also
needs the underlying access-control infrastructure to pro-
vide principled security while aligning with users’ un-
derstanding [18]. Prior work investigating access-control
infrastructure typically either does not support the flex-
ible policies appropriate for personal data (e.g., [20]) or
lacks an efficient implementation with system-call-level
file-system integration (e.g., [31]).

Recent work (including ours) has identified features
that are important for meeting users’ needs but largely
missing in deployed access-control systems: for exam-
ple, support for semantic policies, private metadata, and
interactive policy creation [4, 28, 44]. In this paper, we
present Penumbra, a distributed file system with access
control designed to support users’ policy needs while
providing principled security. Penumbra provides for
flexible policy specification meant to support real access-
control policies, which are complex, frequently include
exceptions, and change over time [8, 34, 35, 44, 53]. Be-
cause Penumbra operates below the user interface, we
do not evaluate it directly with a user study; instead, we
develop a set of realistic case studies drawn from prior
work and use them for evaluation. We define “usabil-
ity” for this kind of non-user-facing system as supporting
specific policy needs and mental models that have been
previously identified as important.

Penumbra’s design is driven by three important fac-
tors. First, users often think of content in terms of its
attributes, or tags—photos of my sister, budget spread-
sheets, G-rated movies—rather than in traditional hier-
archies [28, 47, 49]. In Penumbra, both content and pol-
icy are organized using tags, rather than hierarchically.
Second, because tags are central to managing content,
they must be treated accordingly. In Penumbra, tags are
cryptographically signed first-class objects, specific to a

90 12th USENIX Conference on File and Storage Technologies USENIX Association

single user’s namespace. This allows different users to
use different attribute values to describe and make policy
about the same content. Most importantly, this design
ensures tags used for policy specification are resistant to
unauthorized changes and forgery. Policy for accessing
tags is set independently of policy for files, allowing for
private tags. Third, Penumbra is designed to work in
a distributed, decentralized, multi-user environment, in
which users access files from various devices without a
dedicated central server, an increasingly important envi-
ronment [47]. We support multi-user devices; although
these devices are becoming less common [13], they re-
main important, particularly in the home [27, 34, 61].
Cloud environments are also inherently multi-user.

This paper makes three main contributions. First, it
describes Penumbra, the first file-system access-control
architecture that combines semantic policy specifica-
tion with logic-based credentials, providing an intuitive,
flexible policy model without sacrificing correctness.
Penumbra’s design supports distributed file access, pri-
vate tags, tag disagreement between users, decentralized
policy enforcement, and unforgeable audit records that
describe who accessed what content and why that access
was allowed. Penumbra’s logic can express a variety of
flexible policies that map well to real users’ needs.

Second, we develop a set of realistic access-control
case studies, drawn from user studies of non-experts’
policy needs and preferences. To our knowledge, these
case studies, which are also applicable to other personal-
content-sharing systems, are the first realistic policy
benchmarks with which to assess such systems. These
case studies capture users’ desired policy goals in detail;
using them, we can validate our infrastructure’s efficacy
in supporting these policies.

Third, using our case studies and a prototype imple-
mentation, we demonstrate that semantic, logic-based
policies can be enforced efficiently enough for the inter-
active uses we target. Our results show enforcement also
scales well with policy complexity.

2 Related work

In this section, we discuss four related areas of research.

Access-control policies and preferences. Users’
access-control preferences for personal data are nuanced,
dynamic, and context-dependent [3, 35, 44]. Many poli-
cies require fine-grained rules, and exceptions are fre-
quent and important [34, 40]. Users want to protect per-
sonal data from strangers, but are perhaps more con-
cerned about managing access and impressions among
family, friends, and acquaintances [4, 12, 25, 32]. Fur-
thermore, when access-control mechanisms are ill-suited
to users’ policies or capabilities, they fall back on

clumsy, ad-hoc coping mechanisms [58]. Penumbra is
designed to support personal polices that are complex,
dynamic, and drawn from a broad range of sharing pref-
erences.

Tags for access control. Penumbra relies on tags to
define access-control policies. Researchers have proto-
typed tag-based access-control systems for specific con-
texts, including web photo albums [7], corporate desk-
tops [16], microblogging services [17], and encrypting
portions of legal documents [51]. Studies using role-
playing [23] and users’ own tags [28] have shown that
tag-based policies are easy to understand and accurate
policies can be created from existing tags.

Tags for personal distributed file systems. Many dis-
tributed file systems use tags for file management, an
idea introduced by Gifford et al. [22]. Many suggest
tags will eclipse hierarchical management [49]. Several
systems allow tag-based file management, but do not ex-
plicitly provide access control [46, 47, 52]. Homeviews
provides capability-based access control, but remote files
are read-only and each capability governs files local to
one device [21]. In contrast, Penumbra provides more
principled policy enforcement and supports policy that
applies across devices. Cimbiosys offers partial replica-
tion based on tag filtering, governed by fixed hierarchical
access-control policies [60]. Research indicates personal
policies do not follow this fixed hierarchical model [34];
Penumbra’s more flexible logic builds policies around
non-hierarchical, editable tags, and does not require a
centralized trusted authority.

Logic-based access control. An early example of
logic-based access control is Taos, which mapped au-
thentication requests to proofs [59]. Proof-carrying au-
thentication (PCA) [5], in which proofs are submitted to-
gether with requests, has been applied in a variety of sys-
tems [9,11,30]. PCFS applies PCA to a local file system
and is evaluated using a case study based on government
policy for classified data [20]. In contrast, Penumbra
supports a wider, more flexible set of distributed policies
targeting personal data. In addition, while PCFS relies
on constructing and caching proofs prior to access, we
consider the efficiency of proof generation.

One important benefit of logic-based access control is
meaningful auditing; logging proofs provides unforge-
able evidence of which policy credentials were used to
allow access. This can be used to reduce the trusted com-
puting base, to assign blame for unintended accesses, and
to help users detect and fix policy misconfigurations [55].

3 System overview

This section describes Penumbra’s architecture as well as
important design choices.

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 91

3.1 High-level architecture

Penumbra encompasses an ensemble of devices, each
storing files and tags. Users on one device can remotely
access files and tags on other devices, subject to access
control. Files are managed using semantic (i.e., tag-
based) object naming and search, rather than a directory
hierarchy. Users query local and remote files using tags,
e.g., type=movie or keyword=budget. Access-control
policy is also specified semantically, e.g., Alice might
allow Bob to access files with the tags type=photo and
album=Hawaii. Our concept of devices can be extended
to the cloud environment. A cloud service can be thought
of as a large multi-user device, or each cloud user as be-
ing assigned her own logical “device.” Each user runs a
software agent, associated with both her global public-
key identity and her local uid, on every device she uses.
Among other tasks, the agent stores all the authorization
credentials, or cryptographically signed statements made
by principals, that the user has received.

Each device in the ensemble uses a file-system-level
reference monitor to control access to files and tags.
When a system call related to accessing files or tags is
received, the monitor generates a challenge, which is for-
matted as a logical statement that can be proved true
only if the request is allowed by policy. To gain ac-
cess, the requesting user’s agent must provide a logical
proof of the challenge. The reference monitor will ver-
ify the proof before allowing access. To make a proof,
the agent assembles a set of relevant authorization cre-
dentials. The credentials, which are verifiable and un-
forgeable, are specified as formulas in an access-control
logic, and the proof is a derivation demonstrating that
the credentials are sufficient to allow access. Penumbra
uses an intuitionistic first-order logic with predicates and
quantification over base types, described further in Sec-
tions 3.3 and 4.

The challenges generated by the reference monitors
have seven types, which fall into three categories: au-
thority to read, write, or delete an existing file; authority
to read or delete an existing tag; and authority to create
content (files or tags) on the target device. The ratio-
nale for this is explained in Section 3.2. Each challenge
includes a nonce to prevent replay attacks; for simplic-
ity, we omit the nonces in examples. The logic is not
exposed directly to users, but abstracted by an interface
that is beyond the scope of this paper.

For both local and remote requests, the user must
prove to her local device that she is authorized to access
the content. If the content is remote, the local device
(acting as client) must additionally prove to the remote
device that the local device is trusted to store the con-
tent and enforce policy about it. This ensures that users
of untrusted devices cannot circumvent policy for remote

5"

6"

7"

9"

10"

content store

ref. monitor

interface

1"

2" 3"4"

tablet agent

Alice’s agent

0" 11"TABLET" DESKTOP"

8"

content store

interface

user agents ref. monitor

Figure 1: Access-control example. (0) Using her tablet, Alice
requests to open a file stored on the desktop. (1) The interface
component forwards this request to the reference monitor. (2)
The local monitor produces a challenge, which (3) is proved
by Alice’s local agent, then (4) asks the content store for the
file. (5) The content store requests the file from the desktop,
(6) triggering a challenge from the desktop’s reference monitor.
(7) Once the tablet’s agent proves the tablet is authorized to
receive the file, (8) the desktop’s monitor instructs the desktop’s
content store to send it to the tablet. (9–11) The tablet’s content
store returns the file to Alice via the interface component.

data. Figure 1 illustrates a remote access.

3.2 Metadata
Semantic management of access-control policy, in addi-
tion to file organization, gives new importance to tag han-
dling. Because we base policy on tags, they must not be
forged or altered without authorization. If Alice gives
Malcolm access to photos from her Hawaiian vacation,
he can gain unauthorized access to her budget if he can
change its type from spreadsheet to photo and add the
tag album=Hawaii. We also want to allow users to keep
tags private and to disagree about tags for a shared file.

To support private tags, we treat each tag as an object
independent of the file it describes. Reading a tag re-
quires a proof of access, meaning that assembling a file-
access proof that depends on tags will often require first
assembling proofs of access to those tags (Figure 2).

For tag integrity and to allow users to disagree about
tags, we implement tags as cryptographically signed cre-
dentials of the form principal signed tag(attribute, value,

file). For clarity in examples, we use descriptive file
names; in reality, Penumbra uses globally unique IDs.
For example, Alice can assign the song “Thriller” a four-
star rating by signing a credential: Alice signed tag(rating,

4, “Thriller”). Alice, Bob, and Caren can each assign dif-
ferent ratings to “Thriller.” Policy specification takes this
into account: if Alice grants Bob permission to listen to
songs where Alice’s rating is three stars or higher, Bob’s
rating is irrelevant. Because tags are signed, any prin-
cipal is free to make any tag about any file. Principals

3

92 12th USENIX Conference on File and Storage Technologies USENIX Association

Alice&signed&
Alice.album=Hawaii&for&Luau.jpg&

PROOF:&&
Alice&says&read&Luau.jpg&Bob&signed&read&Luau.jpg&

Bob&signed&read&
Alice.album&for&Luau.jpg&

PROOF:&Alice&says&read&
Alice.album&for&Luau.jpg&

Alice&signed&Bob&can&read&
Alice.album&for&any&file&

Alice&signed&Bob&can&
read&any&file&with&
Alice.album=Hawaii&&

Figure 2: Example two-stage proof of access, expressed in-
formally. In the first stage, Bob’s agent asks which album Al-
ice has placed the photo Luau.jpg in. After making the proof,
Bob’s agent receives a metadata credential saying the photo is
in the album Hawaii. By combining this credential with Bob’s
authority to read some files, Bob’s agent can make a proof that
will allow Bob to open Luau.jpg.

can be restricted from storing tags on devices they do not
own, but if Alice is allowed to create or store tags on a
device then those tags may reference any file.

Some tags are naturally written as attribute-value pairs
(e.g., type=movie, rating=PG). Others are commonly
value-only (e.g., photos tagged with vacation or with
people’s names). We handle all tags as name-value pairs;
value-only tags are transformed into name-value pairs,
e.g., from “vacation” to vacation=true.

Creating tags and files. Because tags are cryptograph-
ically signed, they cannot be updated; instead, the old
credential is revoked (Section 4.4) and a new one is is-
sued. As a result, there is no explicit write-tag authority.

Unlike reading and writing, in which authority is de-
termined per file or tag, authority to create files and tags
is determined per device. Because files are organized
by their attributes rather than in directories, creating one
file on a target device is equivalent to creating any other.
Similarly, a user with authority to create tags can always
create any tag in her own namespace, and no tags in any
other namespace. So, only authority to create any tags
on the target device is required.

3.3 Devices, principals, and authority

We treat both users and devices as principals who can
create policy and exercise authority granted to them.
Each principal has a public-private key pair, which is
consistent across devices. This approach allows multi-
user devices and decisions based on the combined trust-
worthiness of a user and a device. (Secure initial distri-
bution of a user’s private key to her various devices is
outside the scope of this paper.)

Access-control logics commonly use A signed F to de-
scribe a principal cryptographically asserting a statement

F . A says F describes beliefs or assertions F that can be
derived from other statements that A has signed or, using
modus ponens, other statements that A believes (says):

A says F A says (F → G)

A says G

Statements that principals can make include both del-
egation and use of authority. In the following example,
principal A grants authority over some action F to prin-
cipal B, and B wants to perform action F.

A signed deleg (B, F) (1)
B signed F (2)

These statements can be combined, as a special case
of modus ponens, to prove that B’s action is supported
by A’s authority:

(1) (2)
A says F

Penumbra’s logic includes these rules, other construc-
tions commonly used in access control (such as defining
groups of users), and a few minor additions for describ-
ing actions on files and tags (see Section 4).

In Penumbra, the challenge statements issued by a ref-
erence monitor are of the form device says action, where
action describes the access being attempted. For Alice to
read a file on her laptop, her software agent must prove
that AliceLaptop says readfile(f).

This design captures the intuition that a device storing
some data ultimately controls who can access it: sensi-
tive content should not be given to untrusted devices, and
trusted devices are tasked with enforcing access-control
policy. For most single-user devices, a default policy in
which the device delegates all of its authority to its owner
is appropriate. For shared devices or other less common
situations, a more complex device policy that gives no
user full control may be necessary.

3.4 Threat model
Penumbra is designed to prevent unauthorized access to
files and tags. To prevent spoofed or forged proofs, we
use nonces to prevent replay attacks and rely on stan-
dard cryptographic assumptions that signatures cannot be
forged unless keys are leaked. We also rely on standard
network security techniques to protect content from ob-
servation during transit between devices.

Penumbra employs a language for capturing and rea-
soning about trust assertions. If trust is misplaced, viola-
tions of intended policy may occur—for example, an au-
thorized user sending a copy of a file to an unauthorized
user. In contrast to other systems, Penumbra’s flexibility
allows users to encode limited trust precisely, minimiz-
ing vulnerability to devices or users who prove untrust-
worthy; for example, different devices belonging to the
same owner can be trusted differently.

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 93

4 Expressing semantic policies

This section describes how Penumbra expresses and en-
forces semantic policies with logic-based access control.

4.1 Semantic policy for files
File accesses incur challenges of the form device says ac-

tion(f), where f is a file and action can be one of readfile,
writefile, or deletefile.

A policy by which Alice allows Bob to listen to any of
her music is implemented as a conditional delegation: If
Alice says a file has type=music, then Alice delegates to
Bob authority to read that file. We write this as follows:

Alice signed ∀ f :
tag(type,music, f) → deleg(Bob,readfile(f)) (3)

To use this delegation to listen to “Thriller,” Bob’s
agent must show that Alice says “Thriller” has
type=music, and that Bob intends to open “Thriller” for
reading, as follows:

Alice signed tag(type,music,“Thriller”) (4)
Bob signed readfile(“Thriller”) (5)

(3) (4)
Alice says deleg(Bob,readfile(“Thriller”)) (5)

Alice says readfile(“Thriller”)

In this example, we assume Alice’s devices grant her
access to all of her files; we elide proof steps showing
that the device assents once Alice does. We similarly
elide instantiation of the quantified variable.

We can easily extend such policies to multiple attrib-
utes or to groups of people. To allow the group “co-
workers” to view her vacation photos, Alice would as-
sign users to the group (which is also a principal) by is-
suing credentials as follows:

Alice signed speaksfor(Bob, Alice.co-workers) (6)

Then, Alice would delegate authority to the group rather
than to individuals:

Alice signed ∀ f : tag(type,music, f) →
deleg(Alice.co-workers,readfile(f)) (7)

4.2 Policy about tags
Penumbra supports private tags by requiring a proof of
access before allowing a user or device to read a tag.
Because tags are central to file and policy management,
controlling access to them without impeding file system
operations is critical.
Tag policy for queries. Common accesses to tags fall
into three categories. A listing query asks which files be-
long to a category defined by one or more attributes, e.g.,

list all Alice’s files with type=movie and genre=comedy.
An attribute query asks the value of an attribute for a spe-
cific file, e.g., the name of the album to which a photo be-
longs. This kind of query can be made directly by users
or by their software agents as part of two-stage proofs
(Figure 2). A status query, which requests all the sys-
tem metadata for a given file—last modify time, file size,
etc.—is a staple of nearly every file access in most file
systems (e.g., the POSIX stat system call).

Tag challenges have the form device says ac-

tion(attribute list,file), where action is either readtags

or deletetags. An attribute list is a set of (princi-

pal,attribute,value) triples representing the tags for which
access is requested. Because tag queries can apply to
multiple values of one attribute or multiple files, we use
the wildcard * to indicate all possible completions. The
listing query example above, which is a search on mul-
tiple files, would be specified with the attribute list [(Al-
ice,type,movie), (Alice,genre,comedy)] and the target file
*. The attribute query example identifies a specific tar-
get file but not a specific attribute value, and could be
written with the attribute list [(Alice,album,*)] and target
file “Luau.jpg.” A status query for the same file would
contain an attribute list like [(AliceLaptop,*,*)].

Credentials for delegating and using authority in the
listing query example can be written as:

Alice signed ∀ f : deleg(Bob,readtags(
[(Alice,type,movie),(Alice,genre,comedy)], f)) (8)

Bob signed readtags(
[(Alice,type,movie),(Alice,genre,comedy)],*) (9)

These credentials can be combined to prove Bob’s au-
thority to make this query.
Implications of tag policy. One subtlety inherent in
tag-based delegation is that delegations are not separa-
ble. If Alice allows Bob to list her Hawaii photos (e.g.,
files with type=photo and album=Hawaii), that should
not imply that he can list all her photos or non-photo files
related to Hawaii. However, tag delegations should be
additive: a user with authority to list all photos and au-
thority to list all Hawaii files could manually compute the
intersection of the results, so a request for Hawaii photos
should be allowed. Penumbra supports this subtlety.

Another interesting issue is limiting the scope of
queries. Suppose Alice allows Bob to read the
album name only when album=Hawaii, and Bob
wants to know the album name for “photo127.” If
Bob queries the album name regardless of its value
(attributelist[(Alice,album,*)]), no proof can be made and
the request will fail. If Bob limits his request to the at-
tribute list [(Alice,album,Hawaii)], the proof succeeds. If
“photo127” is not in the Hawaii album, Bob cannot learn
which album it is in.

Users may sometimes make broader-than-authorized
queries: Bob may try to list all of Alice’s photos when

5

94 12th USENIX Conference on File and Storage Technologies USENIX Association

he only has authority for Hawaii photos. Bob’s agent
will then be asked for a proof that cannot be constructed.
A straightforward option is for the query to simply fail.
A better outcome is for Bob to receive an abridged list
containing only Hawaii photos. One way to achieve this
is for Bob’s agent to limit his initial request to something
the agent can prove, based on available credentials—in
this case, narrowing its scope from all photos to Hawaii
photos. We defer implementing this to future work.

4.3 Negative policies

Negative policies, which forbid access rather than al-
low it, are important but often challenging for access-
control systems. Without negative policies, many intu-
itively desirable rules are difficult to express. Examples
taken from user studies include denying access to photos
tagged with weird or strange [28] and sharing all files
other than financial documents [34].

The first policy could naively be formulated as forbid-
ding access to files tagged with weird=true; or as allow-
ing access when the tag weird=true is not present. In our
system, however, policies and tags are created by many
principals, and there is no definitive list of all creden-
tials. In such contexts, the inability to find a policy or
tag credential does not guarantee that no such credential
exists; it could simply be located somewhere else on the
network. In addition, policies of this form could allow
users to make unauthorized accesses by interrupting the
transmission of credentials. Hence, we explore alterna-
tive ways of expressing deny policies.

Our solution has two parts. First, we allow delega-
tion based on tag inequality: for example, to protect fi-
nancial documents, Alice can allow Bob to read any file
with topic�=financial. This allows Bob to read a file if
his agent can find a tag, signed by Alice, placing that file
into a topic other than financial. If no credential is found,
access is still denied, which prevents unauthorized ac-
cess via credential hiding. This approach works best for
tags with non-overlapping values—e.g., restricting chil-
dren to movies not rated R. If, however, a file is tagged
with both topic=financial and topic=vacation, then this
approach would still allow Bob to access the file.

To handle situations with overlapping and less-well-
defined values, e.g., denying access to weird photos, Al-
ice can grant Bob authority to view files with type=photo
and weird=false. In this approach, every non-weird
photo must be given the tag weird=false. This suggests
two potential difficulties. First, we cannot ask the user
to keep track of these negative tags; instead, we assume
the user’s policymaking interface will automatically add
them (e.g., adding weird=false to any photo the user has
not marked with weird=true). As we already assume
the interface tracks tags to help the user maintain con-

sistent labels and avoid typos, this is not an onerous re-
quirement. Second, granting the ability to view files with
weird=false implicitly leaks the potentially private infor-
mation that some photos are tagged weird=true. We as-
sume the policymaking interface can obfuscate such neg-
ative tags (e.g., by using a hash value to obscure weird),
and maintain a translation to the user’s original tags for
purposes of updating and reviewing policy and tags. We
discuss the performance impact of adding tags related to
the negative policy (e.g., weird=false) in Section 7.

4.4 Expiration and revocation
In Penumbra, as in similar systems, the lifetime of policy
is determined by the lifetimes of the credentials that en-
code that policy. To support dynamic policies and allow
policy changes to propagate quickly, we have two fairly
standard implementation choices.

One option is short credential lifetimes: the user’s
agent can be set to automatically renew each short-lived
policy credential until directed otherwise. Alternatively,
we can require all credentials used in a proof to be online
countersigned, confirming validity [29]. Revocation is
then accomplished by informing the countersigning au-
thority. Both of these options can be expressed in our
logic; we do not discuss them further.

5 Realistic policy examples

We discussed abstractly how policy needs can be trans-
lated into logic-based credentials. We must also ensure
that our infrastructure can represent real user policies.

It is difficult to obtain real policies from users for
new access-control capabilities. In lab settings, espe-
cially without experience to draw on, users struggle to
articulate policies that capture real-life needs across a
range of scenarios. Thus, there are no applicable stan-
dard policy or file-sharing benchmarks. Prior work has
often, instead, relied on researcher experience or intu-
ition [41,46,52,60]. Such an approach, however, has lim-
ited ability to capture the needs of non-expert users [36].

To address this, we develop the first set of access-
control-policy case studies that draw from target users’
needs and preferences. They are based on detailed re-
sults from in-situ and experience-sampling user stud-
ies [28, 34] and were compiled to realistically represent
diverse policy needs. These case studies, which could
also be used to evaluate other systems in this domain, are
an important contribution of this work.

We draw on the HCI concept of persona development.
Personas are archetypes of system users, often created
to guide system design. Knowledge of these personas’
characteristics and behaviors informs tests to ensure an
application is usable for a range of people. Specifying

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 95

An access-control system should support ... Sources Case study
access-control policies on metadata [4, 12] All
policies for potentially overlapping groups of people, with varied granularity

(e.g., family, subsets of friends, strangers, “known threats”) [4, 12, 25, 40, 44, 50] All
policies for potentially overlapping groups of items, with varied granularity

(e.g., health information, “red flag” items) [25, 34, 40, 44] All
photo policies based on photo location., people in photo [4, 12, 28] Jean, Susie
negative policies to restrict personal or embarrassing content [4, 12, 28, 44] Jean, Susie
policy inheritance for new and modified items [4, 50] All
hiding unshared content [35, 44] All
joint ownership of files [34, 35] Heather/Matt
updating policies and metadata [4, 12, 50] —

Table 1: Access control system needs from literature.

individuals with specific needs provides a face to types
of users and focuses design and testing [62].

To make the case studies sufficiently concrete for test-
ing, each includes a set of users and devices, as well as
policy rules for at least one user. Each also includes a
simulated trace of file and metadata actions; some ac-
tions loosely mimic real accesses, and others test spe-
cific properties of the access-control infrastructure. Cre-
ating this trace requires specifying many variables, in-
cluding policy and access patterns, the number of files
of each type, specific tags (access-control or otherwise)
for each file, and users in each user group. We deter-
mine these details based on user-study data, and, where
necessary, on inferences informed by HCI literature and
consumer market research (e.g., [2, 57]). In general, the
access-control policies are well-grounded in user-study
data, while the simulated traces are more speculative.

In line with persona development [62], the case stud-
ies are intended to include a range of policy needs, espe-
cially those most commonly expressed, but not to com-
pletely cover all possible use cases. To verify coverage,
we collated policy needs discussed in the literature. Ta-
ble 1 presents a high-level summary. The majority of
these needs are at least partially represented in all of our
case studies. Unrepresented is only the ability to up-
date policies and metadata over time, which Penumbra
supports but we did not include in our test cases. The
diverse policies represented by the case studies can all
be encoded in Penumbra; this provides evidence that our
logic is expressive enough to meet users’ needs.

Case study 1: Susie. This case (Figure 3), drawn from
a study of tag-based access control for photos [28], cap-
tures a default-share mentality: Susie is happy to share
most photos widely, with the exception of a few contain-
ing either highly personal content or pictures of children
she works with. As a result, this study exercises several
somewhat-complex negative policies. This study focuses
exclusively on Susie’s photos, which she accesses from
several personal devices but which other users access
only via simulated “cloud” storage. No users besides

Susie have write access or the ability to create files and
tags. Because the original study collected detailed infor-
mation on photo tagging and policy preferences, both the
tagging and the policy are highly accurate.

Case study 2: Jean. This case study (Figure 3) is
drawn from the same user study as Susie. Jean has a
default-protect mentality; she only wants to share pho-
tos with people who are involved in them in some way.
This includes allowing people who are tagged in photos
to see those photos, as well as allowing people to see
photos from events they attended, with some exceptions.
Her policies include some explicit access-control tags—
for example, restricting photos tagged goofy —as well
as hybrid tags that reflect content as well as policy. As
with the Susie case study, this one focuses exclusively
on Jean’s photos, which she accesses from personal de-
vices and others access from a simulated “cloud.” Jean’s
tagging scheme and policy preferences are complex; this
case study includes several examples of the types of tags
and policies she discussed, but is not comprehensive.

Case study 3: Heather and Matt. This case study
(Figure 3) is drawn from a broader study of users’ access-
control needs [34]. Heather and Matt are a couple with
a young daughter; most of the family’s digital resources
are created and managed by Heather, but Matt has full
access. Their daughter has access to the subset of con-
tent appropriate for her age. The couple exemplifies a
default-protect mentality, offering only limited, identi-
fied content to friends, other family members, and co-
workers. This case study includes a wider variety of con-
tent, including photos, financial documents, work docu-
ments, and entertainment media. The policy preferences
reflect Heather and Matt’s comments; the assignment of
non-access-control-related tags is less well-grounded, as
they were not explicitly discussed in the interview.

Case study 4: Dana. This case study (Figure 3) is
drawn from the same user study as Heather and Matt.
Dana is a law student who lives with a roommate and
has a strong default-protect mentality. She has confiden-
tial documents related to a law internship that must be

7

96 12th USENIX Conference on File and Storage Technologies USENIX Association

SUSIE%

Individuals:"Susie,"mom"
Groups:"friends,"acquaintances,"older"friends,"public"
Devices:"laptop,"phone,"tablet,"cloud"
Tags%per%photo:"082"access8control,"185"other"
Policies:%%

Friends"can"see"all"photos."
Mom"can"see"all"photos"except"mom8sensi@ve."
"Acquaintances"can"see"all"photos"except"personal,""

very"personal,"or"red"flag."
"Older"friends"can"see"all"photos"except"red"flag.!
"Public"can"see"all"photos"except"personal,"very"

personal,"red"flag,"or"kids."

HEATHER%AND%MATT%

Individuals:"Heather,"MaJ,"daughter"
Groups:"friends,"rela@ves,"co8workers,"guests"
Devices:"laptop,"two"phones,"DVR,"tablet""
Tags%per%item:"183,"including"mixed8use"access"control"
Policies:%%

Heather"and"MaJ"can"see"all"files"
Co8workers"can"see"all"photos"and"music"
Friends"and"rela@ves"can"see"all"photos,"TV"shows,"and"music"
Guests"can"see"all"TV"shows"and"music"
Daughter"can"see"all"photos;"music,"TV"except"inappropriate"
Heather"can"update"all"files"except"TV"shows"
MaJ"can"update"TV"shows"

JEAN%

Individuals:"Jean,"boyfriend,"sister,"Pat,"supervisor,"Dwight""
Groups:"volunteers,"kids,"acquaintances"
Devices:"phone,"two"cloud"services"
Tags%per%photo:"1810,"including"mixed8use"access"control"
Policies:%%

Anyone""can"see"photos"they"are"in."
Kids"can"only"see"kids"photos."
Dwight"can"see"photos"of"his"wife."
Supervisor"can"see"work"photos."
Volunteers"can"see"volunteering"photos."
"Boyfriend"can"see"boyfriend,"family"reunion,"and"kids"photos."
Acquaintances"can"see"beau@ful"photos."
No"one"can"see"goofy"photos."

DANA%

Individuals:"Dana,"sister,"mom,"boyfriend,"roommate,"boss"
Groups:"colleagues,"friends"
Devices:"laptop,"phone,"cloud"service"
Tags%per%item:"183,"including"mixed8use"access"control"
Policies:%"

Boyfriend"and"sister"can"see"all"photos"
Friends"can"see"favorite"photos"
Boyfriend,"sister,"friends"can"see"all"music"and"TV"shows"
Roommate"can"read"and"write"household"documents"
Boyfriend"and"mom"can"see"health"documents"
Boss"can"read"and"write"all"work"documents"
Colleagues"can"read"and"write"work"documents"per"project"

Figure 3: Details of the four case studies

protected. This case study includes documents related
to work, school, household management, and personal
topics like health, as well as photos, e-books, television
shows, and music. The policy preferences closely reflect
Dana’s comments; the non-access-control tags are drawn
from her rough descriptions of the content she owns.

6 Implementation

This section describes our Penumbra prototype.

6.1 File system implementation

Penumbra is implemented in Java, on top of FUSE [1].
Users interact normally with the Linux file system;
FUSE intercepts system calls related to file operations
and redirects them to Penumbra. Instead of standard file
paths, Penumbra expects semantic queries. For exam-
ple, a command to list G-rated movies can be written ‘ls
“query:Alice.type=movie & Alice.rating=G”.’

Figure 4 illustrates Penumbra’s architecture. System
calls are received from FUSE in the front-end interface,
which also parses the semantic queries. The central con-
troller invokes the reference monitor to create challenges
and verify proofs, user agents to create proofs, and the
file and (attribute) database managers to provide pro-
tected content. The controller uses the communications
module to transfer challenges, proofs, and content be-
tween devices. We also implement a small, short-term
authority cache in the controller. This allows users who

controller(

user(
agents(

ref.(mon.(file(
manager(

db(
manager(

file(
store(DB(

com
m
s(

front5end(interface(
To(FUSE(

To(other(devices(

Figure 4: System architecture. The primary TCB (controller
and reference monitor) is shown in red (darkest). The file and
database managers (medium orange) also require some trust.

have recently proved access to content to access that con-
tent again without submitting another proof. The size
and expiration time of the cache can be adjusted to trade
off proving time with faster response to policy updates.

The implementation is about 15,000 lines of Java and
1800 lines of C. The primary trusted computing base
(TCB) includes the controller (1800 lines) and the ref-
erence monitor (2500 lines)—the controller guards ac-
cess to content, invoking the reference monitor to create
challenges and verify submitted proofs. The file manager
(400 lines) must be trusted to return the correct content
for each file and to provide access to files only through
the controller. The database manager (1600 lines) sim-
ilarly must be trusted to provide access to tags only
through the controller and to return only the requested

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 97

System call Required proof(s)
mknod create file, create metadata
open read file, write file
truncate write file
utime write file
unlink delete file
getattr read tags: (system, *, *)
readdir read tags: attribute list for *
getxattr read tags: (principal, attribute, *)
setxattr create tags
removexattr delete tags: (principal, attribute, *)

Table 2: Proof requirements for file-related system calls

tags. The TCB also includes 145 lines of LF (logical
framework) specification defining our logic.

Mapping system calls to proof goals. Table 2 shows
the proof(s) required for each system call. For example,
calling readdir is equivalent to a listing query—asking
for all the files that have some attribute(s)—so it must
incur the appropriate read-tags challenge.

Using “touch” to create a file triggers four system
calls: getattr (the FUSE equivalent of stat), mknod,
utime, and another getattr. Each getattr is a status query
(see Section 4.2) and requires a proof of authority to read
system tags. The mknod call, which creates the file and
any initial metadata set by the user, requires proofs of
authority to create files and metadata. Calling utime in-
structs the device to update its tags about the file. Up-
dated system metadata is also a side effect of writing to
a file, so we map utime to a write-file permission.

Disconnected operation. When a device is not con-
nected to the Penumbra ensemble, its files are not avail-
able. Currently, policy updates are propagated immedi-
ately to all available devices; if a device is not available,
it misses the new policy. While this is obviously im-
practical, it can be addressed by implementing eventual
consistency (see for example Perspective [47] or Cim-
biosys [43]) on top of the Penumbra architecture.

6.2 Proof generation and verification

Users’ agents construct proofs using a recursive theo-
rem prover loosely based on the one described by Elliott
and Pfenning [19]. The prover starts from the goal (the
challenge statement provided by the verifier) and works
backward, searching through its store of credentials for
one that either proves the goal directly or implies that if
some additional goal(s) can be proven, the original goal
will also be proven. The prover continues recursively
solving these additional goals until either a solution is
reached or a goal is found to be unprovable, in which
case the prover backtracks and attempts to try again with
another credential. When a proof is found, the prover
returns it in a format that can be submitted to the refer-

ence monitor for checking. The reference monitor uses a
standard LF checker implemented in Java.

The policy scenarios represented in our case studies
generally result in a shallow but wide proof search: for
any given proof, there are many irrelevant credentials,
but only a few nested levels of additional goals. In enter-
prise or military contexts with strictly defined hierarchies
of authority, in contrast, there may be a deeper but nar-
rower structure. We implement some basic performance
improvements for the shallow-but-wide environment, in-
cluding limited indexing of credentials and simple fork-
join parallelism, to allow several possible proofs to be
pursued simultaneously. These simple approaches are
sufficient to ensure that most proofs complete quickly;
eliminating the long tail in proving time would require
more sophisticated approaches, which we leave to future
work.

User agents build proofs using the credentials of which
they are aware. Our basic prototype pushes all delega-
tion credentials to each user agent. (Tag credentials are
guarded by the reference monitor and not automatically
shared.) This is not ideal, as pushing unneeded creden-
tials may expose sensitive information and increase prov-
ing time. However, if credentials are not distributed au-
tomatically, agents may need to ask for help from other
users or devices to complete proofs (as in [9]); this could
make data access slower or even impossible if devices
with critical information are unreachable. Developing a
strategy to distribute credentials while optimizing among
these tradeoffs is left for future work.

7 Evaluation

To demonstrate that our design can work with reasonable
efficiency, we evaluated Penumbra using the simulated
traces we developed as part of the case studies from Sec-
tion 5 as well as three microbenchmarks.

7.1 Experimental setup

We measured system call times in Penumbra using the
simulated traces from our case studies. Table 3 lists fea-
tures of the case studies we tested. We added users to
each group, magnifying the small set of users discussed
explicitly in the study interview by a factor of five. The
set of files was selected as a weighted-random distribu-
tion among devices and access-control categories. For
each case study, we ran a parallel control experiment
with access control turned off—all access checks suc-
ceed immediately with no proving. These comparisons
account for the overheads associated with FUSE, Java,
and our database accesses—none of which we aggres-
sively optimized—allowing us to focus on the overhead

9

98 12th USENIX Conference on File and Storage Technologies USENIX Association

Deleg. System
Case study Users Files creds. Proofs calls
Susie 60 2,349 68 46,646 212,333
Jean 65 2,500 93 30,755 264,924
Heather/Matt 60 3,098 101 39,732 266,501
Dana 60 3,798 89 27,859 74,593

Table 3: Case studies we tested. Proof and system call counts
are averaged over 10 runs.

of access control. We ran each case study 10 times with
and 10 times without access control.

During each automated run, each device in the case
study was mounted on its own four-core (eight-thread)
3.4GHz Intel i7-4770 machine with 8GB of memory,
running Ubuntu 12.04.3 LTS. The machines were con-
nected on the same subnet via a wired Gigabit-Ethernet
switch; 10 pings across each pair of machines had mini-
mum, maximum, and median round-trip times of 0.16,
0.37, and 0.30 ms. Accounts for the people in the
case study were created on each machine; these users
then created the appropriate files and added a weighted-
random selection of tags. Next, users listed and opened
a weighted-random selection of files from those they
were authorized to access. The weights are influenced
by research on how the age of content affects access pat-
terns [57]. Based on the file type, users read and wrote all
or part of each file’s content before closing it and choos-
ing another to access. The specific access pattern is less
important than broadly exercising the desired policy. Fi-
nally, each user attempted to access forbidden content
to validate that the policy was set correctly and measure
timing for failed accesses.

7.2 System call operations
Adding theorem proving to the critical path of file op-
erations inevitably reduces performance. Usability re-
searchers have found that delays of less than 100 ms
are not noticeable to most users, who perceive times less
than that as instantaneous [39]. User-visible operations
consist of several combined system calls, so we target
system call operation times well under the 100 ms limit.

Figure 5 shows the duration distribution for each sys-
tem call, aggregated across all runs of all case studies,
both with and without access control. Most system calls
were well under the 100 ms limit, with medians below 2
ms for getattr, open, and utime and below 5 ms for getx-
attr. Medians for mknod and setxattr were 20 ms and
25 ms. That getattr is fast is particularly important, as
it is called within nearly every user operation. Unfor-
tunately, readdir (shown on its own axis for scale) did
not perform as well, with a median of 66 ms. This arises
from a combination of factors: readdir performs the most
proofs (one local, plus one per remote device); polls each

(n)

0

10

20

30

40

50

Sy
st

em
 c

al
l t

im
e

(m
s)

0

50

100

150

200

250

Figure 5: System call times with (white, left box of each pair)
and without (shaded, right) access control, with the number of
operations (n) in parentheses. ns vary up to 2% between runs
with and without access control. Other than readdir (shown
separately for scale), median system call times with access con-
trol are 1-25 ms and median overhead is less than 5%.

remote device; and must sometimes retrieve thousands
of attributes from our mostly unoptimized database on
each device. In addition, repeated readdirs are sparse in
our case studies and so receive little benefit from proof
caching. The results also show that access-control over-
head was low across all system calls. For open and utime,
the access control did not affect the median but did add
more variance.

In general, we did little optimization on our simple
prototype implementation; that most of our operations
already fall well within the 100 ms limit is encouraging.
In addition, while this performance is slower than for a
typical local file system, longer delays (especially for re-
mote operations like readdir) may be more acceptable for
a distributed system targeting interactive data sharing.

7.3 Proof generation

Because proof generation is the main bottleneck inherent
to our logic-based approach, it is critical to understand
the factors that affect its performance. Generally sys-
tem calls can incur up to four proofs (local and remote,
for the proofs listed in Table 2). Most, however, incur
fewer—locally opening a file for reading, for example,
incurs one proof (or zero, if permission has already been
cached). The exception is readdir, which can incur one
local proof plus one proof for each device from which
data is requested. However, if authority has already been
cached no proof is required. (For these tests, authority
cache entries expired after 10 minutes.)

Proving depth. Proving time is affected by prov-

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 99

ing depth, or the number of subgoals generated by the
prover along one search path. Upon backtracking, prov-
ing depth decreases, then increases again as new paths
are explored. Examples of steps that increase proving
depth include using a delegation, identifying a member
of a group, and solving the “if” clause of an implica-
tion. Although in corporate or military settings proofs
can sometimes extend deeply through layers of authority,
policies for personal data (as exhibited in the user studies
we considered) usually do not include complex redele-
gation and are therefore generally shallow. In our case
studies, the maximum proving depth (measured as the
greatest depth reached during proof search, not the depth
of the solution) was only 21; 11% of observed proofs
(165,664 of 1,468,222) had depth greater than 10.

To examine the effects of proving depth, we developed
a microbenchmark that tests increasingly long chains of
delegation between users. We tested chains up to 60 lev-
els deep. As shown in Figure 6a, proving time grew lin-
early with depth, but with a shallow slope—at 60 levels,
proving time remained below 6 ms.

Red herrings. We define a red herring as an unsuccess-
ful proving path in which the prover recursively pursues
at least three subgoals before detecting failure and back-
tracking. To examine this, we developed a microbench-
mark varying the number of red herrings; each red her-
ring is exactly four levels deep. As shown in Fig-
ure 6b, proving time scaled approximately quadratically
in this test: each additional red herring forces additional
searches of the increasing credential space. In our case
studies, the largest observed value was 43 red herrings;
proofs with more than 20 red herrings made up only
0.5% of proofs (7,437 of 1,468,222). For up to 20 red
herrings, proving time in the microbenchmark was gen-
erally less than 5 ms; at 40, it remained under 10 ms.

Proving time in the case studies. In the presence of
real policies and metadata, changes in proving depth and
red herrings can interact in complex ways that are not
accounted for by the microbenchmarks. Figure 7 shows
proving time aggregated in two ways. First, we compare
case studies. Heather/Matt has the highest variance be-
cause files are jointly owned by the couple, adding an
extra layer of indirection for many proofs. Susie has a
higher median and variance than Dana or Jean because
of her negative policies, which lead to more red herrings.
Second, we compare proof generation times, aggregated
across case studies, based on whether a proof was made
by the primary user, by device agents as part of remote
operations, or by other users. Most important for Penum-
bra is that proofs for primary users be fast, as users do not
expect delays when accessing their own content; these
proofs had a median time less than 0.52 ms in each case
study. Also important is that device proofs are fast, as

they are an extra layer of overhead on all remote oper-
ations. Device proofs had median times of 1.1-1.7 ms
for each case study. Proofs for other users were slightly
slower, but had medians of 2-9 ms in each case study.

We also measured the time it takes for the prover
to conclude no proof can be made. Across all experi-
ments, 1,375,259 instances of failed proofs had median
and 90th-percentile times of 9 and 42 ms, respectively.

Finally, we consider the long tail of proving times.
Across all 40 case study runs, the 90th-percentile proof
time was 10 ms, the 99th was 45 ms, and the maximum
was 1531 ms. Of 1,449,920 proofs, 3,238 (0.2%) took
longer than 100 ms. These pathological cases may have
several causes: high depth, bad luck in red herrings, and
even Java garbage collection. Reducing the tail of prov-
ing times is an important goal for future work.

Effects of negative policy. Implementing negative pol-
icy for attributes without well-defined values (such as the
allow weird=false example from Section 4.3) requires
adding inverse policy tags to many files. A policy with
negative attributes needs n×m extra attribute credentials,
where n is the number of negative attributes in the policy
and m is the number of affected files.

Users with default-share mentalities who tend to spec-
ify policy in terms of exceptions are most affected. Susie,
our default-share case study, has five such negative at-
tributes: personal, very personal, mom-sensitive, red-
flag, and kids. Two other case studies have one each:
Jean restricts photos tagged goofy, while Heather and
Matt restrict media files tagged inappropriate from their
young daughter. Dana, an unusually strong example of
the default-protect attitude, has none. We also reviewed
detailed policy data from [28] and found that for pho-
tos, the number of negative tags ranged from 0 to 7, with
median 3 and mode 1. For most study participants, nega-
tive tags fall into a few categories: synonyms for private,
synonyms for weird or funny, and references to alcohol.
A few also identified one or two people who prefer not to
have photos of them made public. Two of 18 participants

D
an

a

H
/M

Je
an

Su
si

e

0

5

10

15

20

25

Pr
ov

in
g

tim
e

(m
s)

pr
im

ar
y

de
vi

ce

ot
he

r al
l0

5

10

15

20

25

Figure 7: Proving times organized by (left) case study and
(right) primary user, device, and other users.

11

100 12th USENIX Conference on File and Storage Technologies USENIX Association

(b) Red herring count (c) Number of attributes(a) Proof depth

0

2

4

6

8

0 12 24 36 48 60

y = 0.0841x + 0.2923

0

15

30

45

60

0 30 60 90 120 150

y = 0.0013x2 + 0.1586x + 0.6676

0

3

6

9

12

15

0 10 20 30 40 50

y = 0.0014x2 + 0.0778x + 1.626

Pr
ov

in
g

tim
e

(m
s)

Figure 6: Three microbenchmarks showing how proving time scales with proving depth, red herrings, and attributes-per-policy.
Shown with best-fit (a) line and (b,c) quadratic curve.

used a wider range of less general negative tags.
The value of m is determined in part by the complex-

ity of the user’s policy: the set of files to which the neg-
ative attributes must be attached is the set of files with
the positive attributes in the same policy. For example, a
policy on files with type=photo & goofy=false will have
a larger m-value than a policy on files with type=photo &
party=true & goofy=false.

Because attributes are indexed by file in the prover,
the value of n has a much stronger affect on proving time
than the value of m. Our negative-policy microbench-
mark tests the prover’s performance as the number of at-
tributes per policy (and consequently per file) increases.

Figure 6c shows the results. Proving times grew ap-
proximately quadratically but with very low coefficients.
For policies of up to 10 attributes (the range discussed
above), proving time was less than 2.5 ms.

Adding users and devices. Penumbra was designed to
support groups of users who share with each other reg-
ularly – household members, family, and close friends.
Based on user studies, we estimate this is usually under
100 users. Our evaluation (Section 7) examined Penum-
bra’s performance under these and somewhat more chal-
lenging circumstances. Adding more users and devices,
however, raises some potential challenges.

When devices are added, readdir operations that must
visit all devices will require more work; much of this
work can be parallelized, so the latency of a readdir
should grow sub-linearly in the number of devices. With
more users and devices, more files are also expected,
with correspondingly more total attributes. The latency
of a readdir to an individual device is approximately lin-
ear in the number of attributes that are returned. Prov-
ing time should scale sub-linearly with increasing num-
bers of files, as attributes are indexed by file ID; increas-
ing the number of attributes per file should scale lin-
early as the set of attributes for a given file is searched.
Adding users can also be expected to add policy creden-
tials. Users can be added to existing policy groups with
sub-linear overhead, but more complex policy additions

can have varying effects. If a new policy is mostly dis-
joint from old policies, it can quickly be skipped dur-
ing proof search, scaling sub-linearly. However, policies
that heavily overlap may lead to increases in red herrings
and proof depths; interactions between these could cause
proving time to increase quadratically (see Figure 6) or
faster. Addressing this problem could require techniques
such as pre-computing proofs or subproofs [10], as well
as more aggressive indexing and parallelization within
proof search to help rule out red herrings sooner.

In general, users’ agents must maintain knowledge of
available credentials for use in proving. Because they are
cryptographically signed, credentials can be up to about
2 kB in size. Currently, these credentials are stored in
memory, indexed and preprocessed in several ways, to
streamline the proving process. As a result, memory re-
quirements grow linearly, but with a large constant, as
credentials are added. To support an order of magnitude
more credentials would require revisiting the data struc-
tures within the users’ agents and carefully considering
tradeoffs among insertion time, deletion time, credential
matching during proof search, and memory use.

8 Conclusion

Penumbra is a distributed file system with an access-
control infrastructure for distributed personal data that
combines semantic policy specification with logic-based
enforcement. Using case studies grounded in data from
user studies, we demonstrated that Penumbra can ac-
commodate and enforce commonly desired policies, with
reasonable efficiency. Our case studies can also be ap-
plied to other systems in this space.

9 Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grants No.
0946825, CNS-0831407, and DGE-0903659, by CyLab
at Carnegie Mellon under grants DAAD19-02-1-0389

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 101

and W911NF-09-1-0273 from the Army Research Of-
fice, by gifts from Cisco Systems Inc. and Intel, and
by Facebook and the ARCS Foundation. We thank the
members and companies of the PDL Consortium (includ-
ing Actifio, APC, EMC, Facebook, Fusion-io, Google,
Hewlett-Packard Labs, Hitachi, Huawei, Intel, Microsoft
Research, NEC Laboratories, NetApp, Oracle, Panasas,
Riverbed, Samsung, Seagate, Symantec, VMware, and
Western Digital) for their interest, insights, feedback,
and support. We thank Michael Stroucken and Zis
Economou for help setting up testing environments.

References

[1] FUSE: Filesystem in userspace.
http://fuse.sourceforge.net.

[2] Average number of uploaded and linked photos
of Facebook users as of January 2011, by gender.
Statista, 2013.

[3] M. S. Ackerman. The intellectual challenge of
CSCW: The gap between social requirements and
technical feasibility. Human-Computer Interaction,
15(2):179–203, 2000.

[4] S. Ahern, D. Eckles, N. S. Good, S. King, M. Naa-
man, and R. Nair. Over-exposed? Privacy patterns
and considerations in online and mobile photo shar-
ing. In Proc. ACM CHI, 2007.

[5] A. W. Appel and E. W. Felten. Proof-carrying au-
thentication. In Proc. ACM CCS, 1999.

[6] Apple. Apple iCloud. https://www.icloud.com/,
2013.

[7] C.-M. Au Yeung, L. Kagal, N. Gibbins, and
N. Shadbolt. Providing access control to online
photo albums based on tags and linked data. In
Proc. AAAI-SSS:Social Semantic Web, 2009.

[8] O. Ayalon and E. Toch. Retrospective privacy:
Managing longitudinal privacy in online social net-
works. In Proc. SOUPS, 2013.

[9] L. Bauer, S. Garriss, and M. K. Reiter. Distributed
proving in access-control systems. In Proc. IEEE
SP, 2005.

[10] L. Bauer, S. Garriss, and M. K. Reiter. Efficient
proving for practical distributed access-control sys-
tems. In ESORICS, 2007.

[11] L. Bauer, M. A. Schneider, and E. W. Felten. A
general and flexible access-control system for the
Web. In Proc. USENIX Security, 2002.

[12] A. Besmer and H. Richter Lipford. Moving be-
yond untagging: Photo privacy in a tagged world.
In Proc. ACM CHI, 2010.

[13] A. J. Brush and K. Inkpen. Yours, mine and ours?
Sharing and use of technology in domestic environ-
ments. In Proc. UbiComp. 2007.

[14] Facebook & your privacy: Who sees the data you
share on the biggest social network? Consumer
Reports Magazine, June 2012.

[15] D. Coursey. Google apologizes for Buzz privacy
issues. PCWorld. Feb. 15, 2010.

[16] J. L. De Coi, E. Ioannou, A. Koesling, W. Nejdl,
and D. Olmedilla. Access control for sharing se-
mantic data across desktops. In Proc. ISWC, 2007.

[17] E. De Cristofaro, C. Soriente, G. Tsudik, and
A. Williams. Hummingbird: Privacy at the time
of Twitter. In Proc. IEEE SP, 2012.

[18] K. W. Edwards, M. W. Newman, and E. S. Poole.
The infrastructure problem in HCI. In Proc. ACM
CHI, 2010.

[19] C. Elliott and F. Pfenning. A semi-functional im-
plementation of a higher-order logic programming
language. In P. Lee, editor, Topics in Advanced
Language Implementation. MIT Press, 1991.

[20] D. Garg and F. Pfenning. A proof-carrying file sys-
tem. In Proc. IEEE SP, 2010.

[21] R. Geambasu, M. Balazinska, S. D. Gribble, and
H. M. Levy. Homeviews: Peer-to-peer middleware
for personal data sharing applications. In Proc.
ACM SIGMOD, 2007.

[22] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
O’Toole. Semantic file systems. In Proc. ACM
SOSP, 1991.

[23] M. Hart, C. Castille, R. Johnson, and A. Stent. Us-
able privacy controls for blogs. In Proc. IEEE CSE,
2009.

[24] K. Hill. Teacher accidentally puts racy photo on
students’ iPad. School bizarrely suspends students.
Forbes, October 2012.

[25] M. Johnson, S. Egelman, and S. M. Bellovin. Face-
book and privacy: It’s complicated. In Proc.
SOUPS, 2012.

[26] M. Johnson, J. Karat, C.-M. Karat, and
K. Grueneberg. Usable policy template au-
thoring for iterative policy refinement. In Proc.
IEEE POLICY, 2010.

13

102 12th USENIX Conference on File and Storage Technologies USENIX Association

[27] A. K. Karlson, A. J. B. Brush, and S. Schechter.
Can I borrow your phone? Understanding concerns
when sharing mobile phones. In Proc. ACM CHI,
2009.

[28] P. Klemperer, Y. Liang, M. L. Mazurek, M. Sleeper,
B. Ur, L. Bauer, L. F. Cranor, N. Gupta, and M. K.
Reiter. Tag, you can see it! Using tags for access
control in photo sharing. In Proc. ACM CHI, 2012.

[29] B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: The-
ory and practice. ACM Trans. Comput. Syst.,
10(4):265–310, 1992.

[30] C. Lesniewski-Laas, B. Ford, J. Strauss, R. Morris,
and M. F. Kaashoek. Alpaca: Extensible authoriza-
tion for distributed services. In Proc. ACM CCS,
2007.

[31] N. Li, J. C. Mitchell, and W. H. Winsborough. De-
sign of a role-based trust-management framework.
In Proc. IEEE SP, 2002.

[32] L. Little, E. Sillence, and P. Briggs. Ubiquitous sys-
tems and the family: Thoughts about the networked
home. In Proc. SOUPS, 2009.

[33] A. Masoumzadeh and J. Joshi. Privacy settings in
social networking systems: What you cannot con-
trol. In Proc. ACM ASIACCS, 2013.

[34] M. L. Mazurek, J. P. Arsenault, J. Bresee, N. Gupta,
I. Ion, C. Johns, D. Lee, Y. Liang, J. Olsen,
B. Salmon, R. Shay, K. Vaniea, L. Bauer, L. F. Cra-
nor, G. R. Ganger, and M. K. Reiter. Access control
for home data sharing: Attitudes, needs and prac-
tices. In Proc. ACM CHI, 2010.

[35] M. L. Mazurek, P. F. Klemperer, R. Shay, H. Tak-
abi, L. Bauer, and L. F. Cranor. Exploring reactive
access control. In Proc. ACM CHI, 2011.

[36] D. D. McCracken and R. J. Wolfe. User-centered
website development: A human-computer interac-
tion approach. Prentice Hall Englewood Cliffs,
2004.

[37] Microsoft. Windows SkyDrive.
http://windows.microsoft.com/en-us/skydrive/,
2013.

[38] R. Needleman. How to fix Facebook’s new privacy
settings. cnet, December 2009.

[39] J. Nielsen and J. T. Hackos. Usability engineering,
volume 125184069. Academic press Boston, 1993.

[40] J. S. Olson, J. Grudin, and E. Horvitz. A study of
preferences for sharing and privacy. In Proc. CHI
EA, 2005.

[41] D. Peek and J. Flinn. EnsemBlue: Integrating dis-
tributed storage and consumer electronics. In Proc.
OSDI, 2006.

[42] A. Post, P. Kuznetsov, and P. Druschel. PodBase:
Transparent storage management for personal de-
vices. In Proc. IPTPS, 2008.

[43] V. Ramasubramanian, T. L. Rodeheffer, D. B.
Terry, M. Walraed-Sullivan, T. Wobber, C. C. Mar-
shall, and A. Vahdat. Cimbiosys: A platform for
content-based partial replication. In Proc. NSDI,
2009.

[44] M. N. Razavi and L. Iverson. A grounded theory of
information sharing behavior in a personal learning
space. In Proc. ACM CSCW, 2006.

[45] R. W. Reeder, L. Bauer, L. Cranor, M. K. Reiter,
K. Bacon, K. How, and H. Strong. Expandable
grids for visualizing and authoring computer secu-
rity policies. In Proc. ACM CHI, 2008.

[46] O. Riva, Q. Yin, D. Juric, E. Ucan, and T. Roscoe.
Policy expressivity in the Anzere personal cloud. In
Proc. ACM SOCC, 2011.

[47] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R.
Ganger. Perspective: Semantic data management
for the home. In Proc. USENIX FAST, 2009.

[48] S. Schroeder. Facebook privacy: 10 settings every
user needs to know. Mashable, February 2011.

[49] M. Seltzer and N. Murphy. Hierarchical file sys-
tems are dead. In Proc. USENIX HotOS, 2009.

[50] D. K. Smetters and N. Good. How users use access
control. In Proc. SOUPS, 2009.

[51] J. Staddon, P. Golle, M. Gagné, and P. Rasmussen.
A content-driven access control system. In Proc.
IDTrust, 2008.

[52] J. Strauss, J. M. Paluska, C. Lesniewski-Laas,
B. Ford, R. Morris, and F. Kaashoek. Eyo: device-
transparent personal storage. In Proc. USENIX-
ATC, 2011.

[53] F. Stutzman, R. Gross, and A. Acquisti. Silent lis-
teners: The evolution of privacy and disclosure on
facebook. Journal of Privacy and Confidentiality,
4(2):2, 2013.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 103

[54] K. Vaniea, L. Bauer, L. F. Cranor, and M. K. Re-
iter. Out of sight, out of mind: Effects of displaying
access-control information near the item it controls.
In Proc. IEEE PST, 2012.

[55] J. A. Vaughan, L. Jia, K. Mazurak, and
S. Zdancewic. Evidence-based audit. Proc. CSF,
2008.

[56] B. Weitzenkorn. McAfee’s rookie mistake gives
away his location. Scientific American, December
2012.

[57] S. Whittaker, O. Bergman, and P. Clough. Easy
on that trigger dad: a study of long term family
photo retrieval. Personal and Ubiquitous Comput-
ing, 14(1):31–43, 2010.

[58] P. J. Wisniewski, H. Richter Lipford, and D. C. Wil-
son. Fighting for my space: Coping mechanisms

for SNS boundary regulation. In Proc. ACM CHI,
2012.

[59] E. Wobber, M. Abadi, M. Burrows, and B. Lamp-
son. Authentication in the Taos operating system.
In Proc. ACM SOSP, 1993.

[60] T. Wobber, T. L. Rodeheffer, and D. B. Terry.
Policy-based access control for weakly consistent
replication. In Proc. Eurosys, 2010.

[61] S. Yardi and A. Bruckman. Income, race, and
class: Exploring socioeconomic differences in fam-
ily technology use. In Proc. ACM CHI, 2012.

[62] G. Zimmermann and G. Vanderheiden. Accessible
design and testing in the application development
process: Considerations for an integrated approach.
Universal Access in the Information Society, 7(1-
2):117–128, 2008.

15

USENIX Association 12th USENIX Conference on File and Storage Technologies 105

On the Energy Overhead of Mobile Storage Systems

Jing Li† Anirudh Badam* Ranveer Chandra*

Steven Swanson† Bruce Worthington§ Qi Zhang§

†UCSD *Microsoft Research §Microsoft

Abstract

Secure digital cards and embedded multimedia cards
are pervasively used as secondary storage devices
in portable electronics, such as smartphones and
tablets. These devices cost under 70 cents per gi-
gabyte. They deliver more than 4000 random IOPS
and 70 MBps of sequential access bandwidth. Addi-
tionally, they operate at a peak power lower than 250
milliwatts. However, software storage stack above
the device level on most existing mobile platforms
is not optimized to exploit the low-energy charac-
teristics of such devices. This paper examines the
energy consumption of the storage stack on mobile
platforms.

We conduct several experiments on mobile plat-
forms to analyze the energy requirements of their re-
spective storage stacks. Software storage stack con-
sumes up to 200 times more energy when compared
to storage hardware, and the security and privacy re-
quirements of mobile apps are a major cause. A stor-
age energy model for mobile platforms is proposed
to help developers optimize the energy requirements
of storage intensive applications. Finally, a few op-
timizations are proposed to reduce the energy con-
sumption of storage systems on these platforms.

1 Introduction

NAND-Flash in the form of secure digital cards
(SD cards) [36] and embedded multimedia cards
(eMMC) [13] is the choice of storage hardware for
almost all mobile phones and tablets. These stor-
age devices consume less energy and provide signif-
icantly lower performance when compared to solid
state disks (SSD). Such a trade-off is acceptable for
battery-powered hand-held devices like phones and
tablets, which run mostly one user-facing app at a
time and therefore do not require SSD-level perfor-
mance.

SD cards and eMMC devices deliver adequate per-
formance while consuming low energy. For exam-

ple, an eMMC 4.5 [35] device that we tested deliv-
ers 4000 random read, and 2000 random write 4K
IOPS. Additionally, it delivers close to 70 MBps se-
quential read, and 40 MBps sequential write band-
width. While the sequential bandwidth is compara-
ble to that of a single-platter 5400 RPM magnetic
disk, the random IOPS performance is an order of
magnitude higher than a 15000 RPM magnetic disk.
To deliver this performance, the eMMC device con-
sumes less than 250 milliwatts (see Section 2) of peak
power.

Storage software on mobile platforms, unfortu-
nately, is not well equipped to exploit these low-
energy characteristics of mobile-storage hardware.
In this paper, we examine the energy cost of storage
software on popular mobile platforms. The storage
software consumes as much as 200 times more en-
ergy when compared to storage hardware for popular
mobile platforms using Android and Windows RT.
Instead of comparing performance across different
platforms, this paper focuses on illustrating several
fundamental hardware-independent, and platform-
independent challenges with regards to the energy
consumption of mobile storage systems.

We believe that most developers design their ap-
plications under the assumption that storage sys-
tems on mobile platforms are not energy-hungry.
However, experimental results demonstrate the con-
trary. To help developers, we build a model for en-
ergy consumption of storage systems on mobile plat-
forms. Developers can leverage such a model to op-
timize the energy consumption of storage-intensive
mobile apps.

A detailed breakdown of the energy consumption
of various storage software and hardware compo-
nents was generated by analyzing data from fine-
grained performance and energy profilers. This pa-
per makes the following contributions:

1. The hardware and software energy consumption
of storage systems on Android and Windows RT
platforms is analyzed.

1

106 12th USENIX Conference on File and Storage Technologies USENIX Association

2. A model is presented that app developers can
use to estimate the amount of energy consumed
by storage systems and optimize their energy-
efficiency accordingly.

3. Optimizations are proposed for reducing the en-
ergy consumption of mobile storage software.

The rest of this paper is organized as follows. Sec-
tions 2, 3, and 4 present an analysis of the energy
consumption of storage software and hardware on
Android and Windows RT systems. A model to es-
timate energy consumption of a given storage work-
load is presented in Section 5. Section 6 describes a
proposal for optimizing the energy needed by mobile
storage systems. Section 7 presents related work,
and the conclusions from this paper are given in Sec-
tion 8.

2 The Case for Storage Energy

Past studies have shown that storage is a perfor-
mance bottleneck for many mobile apps [21]. This
section examines the energy-overhead of storage for
similar apps. In particular, background applica-
tions such as email, instant messaging, file synchro-
nization, updates for the OS and applications, and
certain operating system services like logging and
bookkeeping, can be storage-intensive. This sec-
tion devises estimates for the proportion of energy
that these applications spend on each storage sys-
tem component. Understanding the energy con-
sumption of storage-intensive background applica-
tions can help improve the standby times of mobile
devices.
Hardware power monitors are used to profile the

energy consumption of real and synthetic workloads.
Traces, logs and stackdumps were analyzed to un-
derstand where the energy is being spent.

2.1 Setup to Measure Energy

An Android phone and two Windows RT tablets
were selected for the storage component energy con-
sumption experiments. While these platforms pro-
vide some OS and hardware diversity for the pur-
poses of analyses and initial conclusions, additional
platforms would need to be tested in order to create
truly robust power models.

2.1.1 Android Setup

The battery of a Samsung Galaxy Nexus S phone
running Android version 4.2 was instrumented and
connected to a Monsoon Power Monitor [26] (see

Figure 1: Android 4.2 power profiling setup: The
battery leads on a Samsung Galaxy Nexus S phone
were instrumented and connected to a Monsoon
power monitor. The power draw of the phone was
monitored using Monsoon software.

Figure 2: Windows RT 8.1 power profiling setup
#1: Individual power rails were appropriately wired
for monitoring by a National Instruments DAQ that
captured power draws for the CPU, GPU, display,
DRAM, eMMC, and other components.

Figure 3: Windows RT 8.1 power profiling setup #2:
Pre-instrumented to gather fine-grained power num-
bers for a smaller set of power rails including the
CPU, GPU, Screen, WiFi, eMMC, and DRAM.

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 107

Figure 1). In combination with Monsoon software,
this meter can sample the current drawn from the
battery 10’s of times per second. Traces of applica-
tion activity on the Android phone were captured us-
ing developer tools available for that platform [1, 2].

2.1.2 Windows RT Setup

Two Microsoft Surface RT systems were instru-
mented for power analysis. The first platform uses
a National Instruments Digital Acquisition System
(NI9206) [27] to monitor the current drawn by the
CPU, GPU, display, DRAM, eMMC storage, and
other components (see Figure 2). This DAQ cap-
tures 1000’s of samples per second.

Figure 3 shows a second Surface RT setup, which
uses a simpler DAQ chip that captures the current
drawn from the CPU, memory, and other subsys-
tems 10’s of times per second. This hardware instru-
mentation is used in combination with the Windows
Performance Toolkit [42] to concurrently profile soft-
ware activity.

2.1.3 Software

Storage benchmarking tools for Android and Win-
dows RT were built using the recommended APIs
available for app-store application developers on
these platforms [3, 43]. These microbenchmarks
were varied using the parameters specified in Ta-
ble 1. A “warm” cache is created by reading the en-
tire contents of a file small enough to fit in DRAM
at least once before the actual benchmark. A “cold”
cache is created by rebooting the device before run-
ning the benchmark, and by accessing a large enough
range of sectors such that few read “hits” in the
DRAM are expected. The write-back experiments
use a small file that is caches in DRAM in such a
way that writes are lazily written to secondary stor-
age. Such a setting enables us to estimate the energy
required for writes to data that is cached. Each mi-
crobenchmark was run for one minute. The caches
are always warmed from a separate process to en-
sure that the microbenchmarking process traverses
the entire storage stack before experiencing a “hit”
in the system cache.

To reduce noise, most of the applications from the
systems were uninstalled, and unnecessary hardware
components were disabled whenever possible (e.g.,
by putting the network devices into airplane mode
and turning off the screen). For all the components,
their idle-state power is subtracted from the power
consumed during the experiment to accurately re-
flect only the energy used by the workload.

Parameter Value Range

IO Size (KB) 0.5, 1, 2, 4, ..., or 1024

Read Cache
Config

Warm or Cold

Write Policy Write-through or Write-back

Access Pattern Sequential or Random

IO Performed Read or Write

Benchmark
Language

Managed Language or Native C

Full-disk
Encryption

Enabled or disabled

Table 1: Storage workload parameters varied be-
tween each 1-minute energy measurement.

Figure 4: Storage energy per KB on Surface RT:
Smaller IOs consume more energy per KB because
of the per-IO cost at eMMC controller.

2.2 Experimental Results

The energy overhead of the storage system was de-
termined via microbenchmark and real application
experiments. The microbenchmarks enable tightly
controlled experiments, while the real application
experiments provide realistic IO traces that can be
replayed.

2.2.1 Microbenchmarks

Figure 4 shows the amount of energy per KB con-
sumed by the eMMC storage for various block sizes
and access patterns on the Microsoft Surface RT.

• The eMMC device requires 0.1–1.3 µJ/KB for
its operations. Sequential operations are the
most energy efficient from the point of view of
the device.

• Random accesses of 32 KB have similar energy
efficiency as sequential accesses. Smaller ran-
dom accesses are more expensive – requiring
more than 1 µJ/KB. This is due to the setup
cost of servicing an IO at the eMMC controller
level.

3

108 12th USENIX Conference on File and Storage Technologies USENIX Association

From a performance perspective, for a given block
size, read performance is higher than write perfor-
mance, and sequential IO has higher performance
than random IO. We expect this to be due to the
simplistic nature of eMMC controllers. Studies
have shown other trends with more complex con-
trollers [9]. For eMMC, however, the delta between
read and write performance (and energy) will likely
widen in the future, since eMMC devices have been
increasing in read performance faster than they have
been increasing in write performance.

(a) RND RD (b) SEQ RD

(c) RND WR (d) SEQ WR

Figure 5: System energy per KB on Android: The
slower eMMC device on this platform results in more
CPU and DRAM energy consumption, especially for
writes. “Warm” file operations (from DRAM) are
10x more energy efficient.

Figure 5 shows that the energy per KB required by
storage software on Android is two to four orders of
magnitude higher than the energy consumption by
the eMMC device (even though the eMMC controller
in the Android platform is an older and slower gen-
eration device, the device power is in a range similar
to that of the RT’s eMMC device).

• Sequential reads are the most energy-efficient at
the system level, requiring only one-third of the
energy of random reads.

• Cold sequential reads require up to 45% more
system energy than warm reads, as shown in
Figure 5(b).

• Writes are one to two orders of magnitude less
efficient than reads due to the additional CPU
and DRAM time waiting for the writes to com-
plete. Random writes are particularly expen-
sive, requiring as much as 4200 µJ/KB.

The impact of low-end storage devices on perfor-
mance has been well studied by Kim et al. [21]. Low
performance, unfortunately, translates directly into
high energy consumption for IO-intensive applica-
tions. We hypothesize that the idle energy consump-
tion of CPU and DRAM (because of not entering
deep idle power states soon enough) contribute to
this high energy. However, we expect the energy
wastage from idle power states to go down with the
usage of newer and faster eMMC devices like the
ones found in the tested Windows RT systems and
other newer Android devices.

(a) RND RD (b) SEQ RD

(c) RND WR (d) SEQ WR

Figure 6: System energy per KB on Windows RT:
The faster eMMC 4.5 card on this platform reduces
the amount of idle CPU and DRAM time. “Warm”
file operations (from DRAM) are 5x more energy
efficient.

Figure 6 presents the energy per KB needed for
the entire Windows RT platform. All “warm” IO
requires less than 20 µJ/KB, whereas writes to the
storage device require up to 120 µJ/KB. These en-
ergy costs are reflective of how higher performant
eMMC devices can reduce energy wastage from non-
sleep idle power states (tail power states). While
some of this is the energy cost at the device, most
of it is due to execution of the storage software, as
discussed later in this section.

2.2.2 Application Benchmarks

Disk IO logs from several storage-intensive applica-
tions on Android and Windows RT were replayed
to profile their energy requirements. During the re-
play, OS traces were captured for attributing power
consumption to specific pieces of software, as well as

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 109

Email Synchronize a mailbox with 500
emails totaling 50 MB.

File upload Upload 100 photos totaling 80
MB to cloud storage.

File download Download 100 photos totaling 8
0MB from cloud storage.

Music Play local MP3 music files.

Instant
messaging

Receive 100 instant messages.

Table 2: Storage-intensive background applications
profiled to estimate storage software energy con-
sumption.

Figure 7: Breakdown of Windows RT energy con-
sumption by hardware component. Storage soft-
ware consumes more than 200x more energy than
the eMMC device for background applications.

noting intervals where the CPU or DRAM were idle.

This paper focuses primarily on storage-intensive
background applications that run while the screen is
turned off, such as email, cloud storage uploads and
downloads, local music streaming, application and
OS updates, and instant messaging clients. How-
ever, many of the general observations hold true
for screen-on apps as well, although display-related
hardware and software tend to take up a large por-
tion of the system energy consumption. Better un-
derstanding and optimization of the energy con-
sumed by such applications would help increase plat-
form standby time.

Table 2 presents the list of application scenarios
profiled. Traces were taken when the device was
using battery with the screen turned off.

During IO trace replay on Windows RT, power
readings are captured for individual hardware com-
ponents. Figure 7 plots the energy breakdown for
eMMC, DRAM, CPU and Core. The “Core” power
rail supplies the majority of the non-CPU compute
components (GPU, encode/decode, crypto, etc.).

Library Name % CPU Busy Time

Filesystem APIs 19.6

CLR APIs 25.8

Encryption APIs 42.1

Other APIs 12.5

Table 3: Breakdown of functionality with respect to
CPU usage for a storage benchmark run onWindows
RT. Overhead from managed language environment
(CLR) and encryption is significant.

The storage software consumes between 5x and
200x more energy than the storage IO itself, de-
pending on how the DRAM power is attributed.
The fact that storage software is the primary en-
ergy consumer for storage-intensive applications is
consistent with our hypothesis from the microbench-
mark data. The IO traces of these applications also
showed that a majority (92%) of the IO sizes were
less than 64KB. We will, therefore, focus on smaller
IO sizes in the rest of the paper.
Table 3 provides an overview of the stack traces

collected on the Windows RT device using the Win-
dows Performance Toolkit [42] for the mail IO work-
load. The majority of the CPU activity (when it
was not in sleep) resulted from encryption APIs
(∼42%) and Common Language Runtime (CLR)
APIs (∼26%). The CLR is the virtual machine on
which all the apps on Windows RT run. While there
was a tail of other APIs, including filesystem APIs,
contributing to CPU utilization, the largest group
was associated with encryption.
The energy overhead of native filesystem APIs has

been studied recently [8]. However, the overhead
from disk encryption (security requirements) and the
managed language environment (privacy and isola-
tion requirements) are not well understood. Secu-
rity, privacy, and isolation mechanisms are of a great
importance for mobile applications. Such mecha-
nisms not only protect sensitive user information
(e.g., geographic location) from malicious applica-
tions, but they also ensure that private data cannot
be retrieved from a stolen device. The following sec-
tions further examines the impact of disk encryption
and managed language environments on storage sys-
tems for Windows RT and Android.

3 The Cost of Encryption

Full-disk encryption is used to protect user data from
attackers with physical access to a device. Many cur-

5

110 12th USENIX Conference on File and Storage Technologies USENIX Association

(a) RND RD (b) RND WR (c) SEQ RD (d) SEQ WR

Figure 8: The impact of enabling encryption on the Android phone is 2.6–5.9x more energy per KB.

(a) RND RD (b) RND WR (c) SEQ RD (d) SEQ WR

Figure 9: The impact of enabling encryption on the Windows RT tablet is 1.1–5.8x more energy per KB.

rent portable devices have an option for turning on
full-disk encryption to help users protect their pri-
vacy and secure their data. BitLocker [6] on Win-
dows and similar features on Android allow users to
encrypt their data. While enterprise-ready devices
like Windows RT and Windows 8 tablets ship with
BitLocker enabled, most Android devices ship with
encryption turned off. However, most corporate Ex-
change and email services require full-disk encryp-
tion when they are accessed on mobile devices.
Encryption increases the energy required for all

storage operations, but the cost has not been well
quantified. This section presents analyses of various
unencrypted and encrypted storage-intensive opera-
tions on Windows RT and Android.
Experimental Setup: Energy measurements

were taken for microbenchmark workloads with vari-
ations of the first set of parameters shown in Ta-
ble 1 as well as with encryption enabled and dis-
abled while using the managed language APIs for
Android, and Windows RT systems. The results are
shown in Figures 8 and 9 for Android and Windows
RT respectively. Each bar represents the multipli-
cation factor by which energy consumption per KB
increases when storage encryption is enabled.
“Warm” and “cold” variations are shown. As be-

fore, “warm” represents a best-case scenario where
all requests are satisfied out of DRAM. “Cold” rep-
resents a worst-case scenario where all requests re-
quire storage hardware access. In all cases, except
Android writes as shown in Figures 8(b) and 8(d),

“warm” runs have lower energy requirements per
KB.
The cost of encryption, however, still needs to be

paid when cached blocks are flushed to the storage
device. Section 5 presents a model to analyze the
energy consumption for a given storage workload for
cached and uncached IO.
Figure 8 presents the encryption energy multiplier

for the Android platform:

• The energy overhead of enabling encryption
ranges from 2.6x for random reads to 5.9x for
random writes.

• Encryption costs per KB are almost always re-
duced as IO size increases, likely due to the
amortization of fixed encryption start-up costs.

• Android appears to flush dirty data to the
eMMC device aggressively. Even for small files
that can fit entirely in memory and for ex-
periments as short as 5 seconds, dirty data is
flushed, thereby incurring at least part of the
energy overhead from encryption. Therefore,
Android’s caching algorithms do not delay the
encryption overhead as much as expected. They
may also not provide as much opportunity for
“over-writes” to reduce the total amount of data
written, or for small sequential writes to be con-
catenated into more efficient large IOs.

Figure 9 presents the energy multiplier for en-
abling BitLocker on the Windows RT platform:

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 111

• The energy overhead of encryption ranges from
1.1x for reads to 5.8x for writes.

• The energy consumption correlation with re-
quest size is less obvious for the Windows plat-
form. While increasing read size generally re-
duces energy costs because of the usage of
crypto engines for larger sizes, as was the case
for the Android platform, write sizes appear to
have the opposite trend. All of the shown re-
quest sizes are fairly small when the CPU was
used for encryption; we found that that this
trend reverses as request sizes increased beyond
32 KB.

• DRAM caching does delay the energy cost of
encryption for reads and writes, even for ex-
periments as long as 60 seconds. This could
provide opportunity to reduce energy because
of over-writes, and also due to read prefetching
at larger IO sizes and concatenation of smaller
writes to form larger writes.

On Windows RT, encryption and decryption costs
are highly influenced by hardware features and soft-
ware algorithms used. Hardware features include the
number of concurrent crypto engines, the types of
encryption supported, the number of engine speeds
(clock frequencies) available, the amount of local
(dedicated) memory, the bandwidth to main mem-
ory, and so on. Software can choose to send all or
part (or none) of the crypto work to the hardware
crypto engines. For example, small crypto tasks are
faster on the general purpose CPU. Using the hard-
ware crypto engine can produce a sharp drop in en-
ergy consumption when the size of a disk IO reaches
an algorithmic inflection point with regard to perfor-
mance. See Section 6 for a hardware optimization we
propose to bring down the energy cost of encryption
for all IO sizes.

4 The Runtime Cost

Applications on mobile platforms are typically built
using managed languages and run in secure contain-
ers. Mobile applications have access to sensitive user
data such as geographic location, passwords, intel-
lectual property, and financial information. There-
fore, running them in isolation from the rest of the
system using managed languages like Java or the
Common Language Runtime (CLR) is advisable.
While this eases development and makes the plat-
form more secure, it affects both performance and
energy consumption.
Any extra IO activity generated as a result of the

use of managed code can significantly increase the

Figure 10: Impact of managed programming lan-
guages on Windows RT tablet: 13–18% more energy
per KB for using the CLR.

Figure 11: Impact of managed programming lan-
guage on Android phone: 24–102% more energy per
KB for using the Dalvik runtime.

average storage-related power, especially since mo-
bile storage has such a low idle power envelope. This
section explores the performance and energy impact
of using managed code.
Experimental Setup: The first set of parame-

ters from Table 1 are again varied during a set of
microbenchmarking runs using native and managed
code APIs for Windows RT, and Android with en-
cryption disabled. The pre-instrumented Windows
RT tablet is specially configured (via Microsoft-
internal functionality) to allow the development and
running of applications natively. The native version
of the benchmarking application uses the OpenFile,
ReadFile, and WriteFile APIs on Windows. The
Android version uses the Java Native Interface [20]
to call the native C fopen, fread, fseek, and fwrite

APIs.
The measured energy consumption for the Win-

dows and Android platforms are shown in Fig-
ures 10, and 11, respectively. Each bar represents
the multiplication factor by which energy consump-
tion per KB increases when using managed rather
than native code.

• On Windows RT, the energy overhead on stor-
age systems from running applications in a man-
aged environment is 12.6–18.3%.

7

112 12th USENIX Conference on File and Storage Technologies USENIX Association

(a) RND RD (b) RND WR

(c) SEQ RD (d) SEQ WR

Figure 12: Power draw by DRAM, eMMC, and CPU for different IO sizes on Windows RT with encryption
disabled. CPU power draw generally decreases as the IO rate drops. However, large (e.g., 1 MB) IOs incur
more CPU path (and power) because they trigger more working set trimming activity during each run.

• The overhead on Android is between 24.3–
102.1%. We believe that the higher energy
overhead for smaller IO sizes (some not shown)
is likely due to a larger prefetching granular-
ity used by the storage system. For larger IO
sizes (some not shown), the overhead was al-
ways lower than 25%.

Security and privacy requirements of applications
on mobile platforms clearly add an energy overhead
as demonstrated in this section and the previous one.
If developers of storage-intensive applications take
these overheads into account, more energy-efficient
applications could be built. See Section 6 for a hard-
ware optimization that we propose for reducing the
energy overhead due to the isolation requirements of
mobile applications.

5 Energy Modeling for Storage

As shown in the previous sections, encryption and
the use of managed code add a significant amount
of overhead to the storage APIs – in terms of en-
ergy. Therefore, we believe that it is necessary to
empower developers with tools to understand and

optimize the energy consumed by their applications
with regard to storage APIs.

This section first attempts to formalize the energy
consumption characteristics of the storage subsys-
tem. It then presents EMOS (Energy MOdeling for
Storage), a simulation tool that an application or OS
developer can use to estimate the amount of energy
needed for their storage activity. Such a tool can
be used standalone or as part of a complete energy
modeling system such as WattsOn [25]. For each
IO size, request type (read or write), cache behav-
ior (hit or miss), and encryption setting (disabled or
enabled), the model allows the developer to obtain
an energy value.

5.1 Modeling Storage Energy

The energy cost of a given IO size and type can be
broken down into its power and throughput compo-
nents. If the total power of read and write operations
are Pr and Pw, respectively, and the corresponding
read and write throughputs are Tr and Tw KB/s,
then the energy consumed by the storage device per
KB for reads (Er) and writes (Ew) is:

Er = Pr/Tr, Ew = Pw/Tw

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 113

(a) CPU vs IOPS Correlation (b) CPU vs IOPS Scatter plot

Figure 13: CPU power & IOps for different sizes of random and sequential reads on the Surface RT. Both
metrics follow an exponential curve and show good linear correlation. The two outliers in the scatter plot
towards the bottom right are caused by high read throughput triggering the CPU-intensive working set
trimming process in Windows RT.

The hardware “energy” cost of accessing a stor-
age page depends on whether it is a read or a write
operation, file cache hit or miss, sequential or ran-
dom, encrypted or not, and other considerations not
covered by this analysis, such as request inter-arrival
time, interleaving of different IO sizes and types, and
the effects of storage hardware caches or device-level
queuing.
In this model, P is comprised of CPU(PCPU),

memory (PDRAM), and storage hardware(PEMMC)
power. Figure 12 shows the variation of each of
these power components for uncached, unencrypted,
random, and sequential, reads and writes via man-
aged language microbenchmarking apps that we de-
scribed in Section 2.
PDRAM can be modeled as follows:

• For writes, the DRAM consumes 450 mW when
the IO size is less than 8 KB. When the IO size
is greater than or equal to 8 KB, this power is
closer to 360 mW. This may be due to a change
in memory bus speed for smaller IOs (with more
IOps and higher CPU requirements driving up
the memory-bus frequency).

• For reads, DRAM power increases linearly with
request size from 350 mW for 4 KB reads to 475
mW for 1 MB reads. Write throughput rates
are low enough that DRAM power variation for
different write sizes is low. This is likely caused
by more “active” power draw at the DRAM and
the controller as utilization increases.

Storage unit power (PEMMC) can be modeled as
follows:

• For writes, the eMMC power variation due to

sequentiality and request size is fairly low – from
105 mW for 4 KB IOs to 140 mW for 1 MB IOs.

• For random and sequential reads, the eMMC
power varies from 40 mW for 4 KB IOs to 180
mW for 1 MB IOs, with most of the variation
coming from IO sizes less than 4 KB. 4KB or
less IOs are traditionally more difficult for these
types of eMMC drives, because some of their
internal architecture is optimized for transfers
that are 8KB or larger (and aligned to corre-
sponding logical address boundaries).

The graphs show that PCPU follows an exponen-
tial curve with respect to the IO size. However, the
CPU power actually tracks the storage API IOps
curve, which is T/IO size. Since IOps actually fol-
lows an exponential curve when plotted against IO
size, a linear correlation exists between PCPU and
IOps (see Figure 13). The two scatter plot outliers
that consume high CPU power at low IOps are the
1 MB sequential and random read operations. The
bandwidth of these workloads (160 MB/s) was large
enough and the experiments were long enough for
the OS to start trimming working sets. If the other
request size experiments were run for long enough,
they would also incur some additional power cost
when trimming finally kicks in.
With Encryption: If similar graphs were plot-

ted for the experiments with encryption enabled, the
following would be seen for the Surface RT:

• All component power values generally increase
with IO size.

• PDRAM is higher for reads than writes, stay-
ing fairly constant at 515 mW. For writes, the

9

114 12th USENIX Conference on File and Storage Technologies USENIX Association

Platform Caching IO Size RND RD RND WR SEQ RD SEQ WR

8KB 14.2 22.4 11.2 19.0
Hit 32KB 11.4 18.2 8.6 18.2

Windows RT
8KB 96.7 110.4 85.0 117.5

Miss 32KB 36.4 116.8 18.0 118.2

4KB 10.3 252.9 9.1 52.6
8KB 6.0 167.2 5.8 51.0

Hit 16KB 4.0 240.7 4.0 64.4
32KB 3.3 169.7 3.3 88.5

Android
4KB 441.9 2402.7 62.5 451.8
8KB 214.4 2176.7 58.5 403.5

Miss 16KB 187.6 1720.9 51.3 254.9
32KB 141.0 1776.0 51.1 138.8

Table 4: Energy (uJ) per KB for different IO requests. Such tables can be built for a specific platform and
subsequently incorporated into power modeling software usable by developers for optimizing their storage
API calls.

power increases linearly with IO size, varying
from 370 mW for 4 KB IOs to 540 mW for 1 MB
IOs. This variation is mostly because of the ex-
tra memory needed for encryption to complete.

• PEMMC values for reads and writes are similar
to their unencrypted counterparts. Given that
encryption (and decryption) in current mobile
devices is handled using on-SoC hardware, this
is to be expected.

• PCPU is fairly linear with IOPS for reads, but
the power characteristics for writes are more
complex. This may be due to the dynamic en-
cryption algorithms discussed previously, where
request size factors into the decision on whether
to use crypto offload engines or general-purpose
CPU cores to perform the encryption.

Specific measurements can change for newer hard-
ware, however the general trends that we expect to
hold are the following: PDRAM would be signifi-
cantly higher when encryption is enabled vs when
it is disabled. This will be true as long as the
hardware crypto engines do not have enough ded-
icated RAM. PEMMC is expected to be the same
whether encryption is enabled or disabled as long
as the crypto engines are inside the SoC and not
packaged along with the eMMC device. PCPU is ex-
pected to be higher when encryption is enabled as
long as the hardware crypto engines are unable to
meet the throughput requirements of storage for all
possible storage workloads. PCPU is also expected to
be correlated with the application level IOps because

of software setup costs required on a per IO basis.
The power trends for reads vs. writes will continue
as long as eMMC controllers increase read perfor-
mance at a faster pace than write performance.

5.2 The EMOS (Energy MOdeling
for Storage) Simulator

The EMOS simulator takes as input a sequence of
timestamped disk requests and the total size of the
filesystem cache. It emulates the file caching mech-
anism of the operation system to identify hits and
misses. Each IO is broken into small primitive oper-
ations, each of which has been empirically measured
for its energy consumption.

Ideally, component power numbers
(PCPU , PDRAM , and PEMMC) would be gener-
ated for every platform. It is infeasible for a single
company to take on this task, but the possibility
exists for scaling out the data capture to a broader
set of manufacturers. For the purposes of this
paper, the EMOS simulator is tuned and tested on
the Microsoft Surface RT, and Samsung Nexus S
platforms.

For each platform, the average energy needed for
completing a given IO type (read/write, size, cache
hit/miss) is measured. The energy values are ag-
gregated from DRAM, CPU, eMMC, and Core (idle
energy values are subtracted). A table such as Ta-
ble 4 can be populated to summarize the measured
energy consumption required for each type of stor-
age request. We show only a few request sizes in the

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 115

Figure 14: Experimental validation of EMOS on An-
droid shows greater than 80% accuracy for predict-
ing 4KB IO microbenchmark energy consumption.

table for the sake of brevity.

Simulation of cache behavior: Cache hits and
misses have different storage request energy con-
sumption. Since many factors affect the actual cache
hit or miss behavior (e.g., replacement policy, cache
size, prefetching algorithm, etc.), a subset of the pos-
sible cache characteristics was selected for EMOS.
For example, only the LRU (Least Recently Used)
cache replacement policy is simulated, but the cache
size and prefetch policy are configurable.

EMOS was validated using the 4 KB random IO
micro-benchmarks on the Android platform without
any changes to the default cache size, or prefetch
policy. The measured versus calculated energy con-
sumption of the system were compared for workloads
of 100% reads, 100% writes, and a 50%/50% mix.
Figure 14 shows that while the model is accurate for
pure read and write workloads, it is only 80% accu-
rate for a mixed workload. We attribute this to the
IO scheduler and the file cache software behaving
differently when there is a mix of reads and writes,
as well as changes in eMMC controller behavior for
mixed workloads. Future investigations are planned
to fully account for these behaviors.

6 Discussion: Reducing Mo-
bile Storage Energy

We suggest ways to reduce the energy consumption
of the storage stack through hardware and software
modifications.

6.1 Partially-Encrypted File systems

While full-disk encryption thwarts a wide range of
physical security attacks, it may be an overkill for
some scenarios. It puts an unnecessary burden on

accessing data that does not require encryption. For
example, most OS files, application binaries, some
caches, and possibly even media purchased online
may not need to be encrypted. A naive solution
would be to partition the disk into encrypted and
unencrypted file systems / partitions. However, if
free space cannot be dynamically shifted between
the partitions, this solution may result in wasted
disk space. More importantly, some entity has to
make decisions about which files to store in which file
systems, and the user would need to explicitly make
some of these decisions in order to achieve optimal
and appropriate partitioning. For example, a user
may or may not wish his or her personal media files
to be visible if a mobile device is stolen.

Partially-encrypted filesystems that allow some
data to be encrypted while other data is unencrypted
represent a better solution for mobile storage sys-
tems. This removes the concern over lost disk space,
but some or all of the difficulties associated with the
encrypt-or-not decision remain. Nevertheless, opens
the option for individual applications to make some
decisions about the privacy and security of files they
own, perhaps splitting some files in two in order to
encrypt only a portion of the data contained within.
This increases development overhead, but it does
provide applications with a knob to tune their en-
ergy requirements.

GNU Privacy Guard [19] for Linux and Encrypt-
ing File Systems [15] on Windows provide such ser-
vices. However, care must be taken to ensure that
unencrypted copies of private data not be left in the
filesystem at any point unless the user is cognizant
(and accepting) of this vulnerability. Additional se-
curity and privacy systems are needed to fully secure
partially-encrypted file systems. Once the data from
an encrypted file has been decrypted for usage, it
must be actively tracked using taint analysis. Infor-
mation flow control tools [14, 18, 46] are required to
ensure that unencrypted copies of data are not left
behind on persistent storage for attackers to exploit.

6.2 Storage Hardware Virtualization

Low-cost storage targeted to mobile platforms re-
lies on storage software features. Isolation between
applications is provided using managed languages,
per-application users and groups, and virtual ma-
chines on Android and Windows RT for applications
developed in Java and .NET, respectively. Storage
software overhead can be reduced by moving much
of this complexity into the storage hardware [8].

Mobile storage can be built in a manner such that
each application is provided with the illusion of a

11

116 12th USENIX Conference on File and Storage Technologies USENIX Association

private filesystem. In fact, Windows RT already pro-
vides such isolation using only software [28]. Moving
such isolation mechanisms into hardware can enable
managed languages to directly use native APIs for
applications to obtain native software like energy-
usage with isolation guarantees.

6.3 SoC Offload Engines for Storage

Various components inside mobile platforms have
moved their latency- and energy-intensive tasks to
hardware. Audio, video, radio, and location sensors
have dedicated SoC engines for frequent, narrowly-
focused tasks, such as decompression, echo cancel-
lation, and digital signal processing. This type of
optimization may also be appropriate for storage.
For example, the SoC can fully support encryption
and improve hardware virtualization. Some SoC’s
already support encryption in hardware, but they
do not meet the throughput expectations of applica-
tions. Crypto engines inside SoCs must be designed
to match the throughput of the eMMC device at
various block sizes to reduce the dependence of the
OS on energy-hungry general-purpose CPU for en-
cryption. Dedicated hardware engines for file system
activity could provide metadata or data access func-
tionality while ensuring privacy, and security.

7 Related Work

To our knowledge, a comprehensive study of storage
systems on mobile platforms from the perspective of
energy has not been presented to date. Kim et al [21]
present a comprehensive analysis of the performance
of secondary storage devices, such as SD cards of-
ten used on mobile platforms. Past research stud-
ies have presented energy analysis of other mobile
subsystems, such as networking [4, 17], location
sensing [41], the CPU complex [24], graphics [40],
and other system components [5]. Carroll et al. [7]
present the storage energy consumption of SD cards
using native IO. Shye et al. [38] implement a logger
to help analyze and optimize energy consumption by
collecting traces of software activities.

Energy estimation and optimization tools [12, 47,
16, 25, 31, 30, 34, 33, 45] have been devised to esti-
mate how much energy an application consumes dur-
ing its execution. This paper uses similar techniques
to analyze energy requirements from the perspective
of the storage stack as opposed to a broader OS per-
spective or a narrower application perspective.

Energy consumption of storage software has been
analyzed in the past for distributed systems [23],

servers [32, 37, 39], PCs [29] and embedded sys-
tems [10], as opposed to the mobile platforms an-
alyzed in this paper. Mobile storage systems are
sufficiently different from these systems because of
their security, privacy, and isolation requirements.
This paper examines the energy overhead of these
requirements.
Storage systems using new memory technologies

like phase-change memory (PCM) focus on analyz-
ing and eliminating the overhead from software [8,
11, 22, 44]. However, existing storage work for new
memory technologies focuses only on native IO per-
formance. This paper also includes analysis of man-
aged language environments.

8 Conclusions

Battery life is a key concern for mobile devices such
as phones and tablets. Although significant research
has gone into improving the energy efficiency of these
devices, the impact of storage (and associated APIs)
on battery life has not received much attention. In
part this is due to the low idle power draw of storage
devices such as eMMC storage.
This paper takes a principled look at the energy

consumed by storage hardware and software on mo-
bile devices. Measurements across a set of storage-
intensive microbenchmarks show that storage soft-
ware may consume as much as 200x more energy
than storage hardware on an Android phone and a
Windows RT tablet. The two biggest energy con-
sumers are encryption and managed language en-
vironments. Energy consumed by storage APIs in-
creases by up to 6.0x when encryption is enabled
for security. Managed language storage APIs that
provide privacy, and isolation consume 25% more
energy compared to their native counterparts.
We build an energy model to help developers un-

derstand the energy costs of security and privacy
requirements of mobile apps. The EMOS model can
predict the energy required for a mixed read/write
micro-benchmark with 80% accuracy. The paper
also supplies some observations on how mobile stor-
age energy efficiency can be improved.

9 Acknowledgments

We would like to thank our shepherd, Brian Noble,
as well as the anonymous FAST reviewers. We would
like to thank Taofiq Ezaz, and Mohammad Jalali
for helping us with the Windows RT experimental
setup. We would also like to thank Lee Prewitt, and
Stefan Saroiu for their valuable feedback.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 117

References

[1] Android Application Tracing.
http://developer.android.com/tools/

debugging/debugging-tracing.html.

[2] Android Full System Tracing.
http://developer.android.com/tools/

debugging/systrace.html.

[3] Android Storage API.
http://developer.android.com/guide/

topics/data/data-storage.html.

[4] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy Consumption in
Mobile Phones: A Measurement Study and Im-
plications for Network Applications. In Proc.
ACM IMC, Chicago, IL, Nov. 2009.

[5] J. Bickford, H. A. Lagar-Cavilla, A. Var-
shavsky, V. Ganapathy, and L. Iftode. Security
versus Energy Tradeoffs in Host-Based Mobile
Malware Detection, June 2011.

[6] BitLocker Drive Encrytion.
http://windows.microsoft.com/en-us/

windows7/products/features/bitlocker.

[7] A. Carroll and G. Heiser. An Analysis of
Power Consumption in a Smartphone. In Proc.
USENIX ATC, Boston, MA, June 2010.

[8] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe,
user space access to fast, solid state disks. In
Proc. ACM ASPLOS, London, United King-
dom, Mar. 2012.

[9] F. Chen, D. A. Koufaty, and X. Zhang. Un-
derstanding Intrinsic Characteristics and Sys-
tem Implications of Flash Memory Based Solid
State Drives. In Proc. ACM SIGMETRICS,
Seattle, WA, June 2009.

[10] S. Choudhuri and R. N. Mahapatra. En-
ergy Characterization of Filesystems for Disk-
less Embedded Systems. In Proc. 41st DAC,
San Diego, CA, 2004.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
D. Burger, B. Lee, and D. Coetzee. Better I/O
Through Byte-Addressable, Persistent Memory.
In Proc. 22nd ACM SOSP, Big Sky, MT, Oct.
2009.

[12] M. Dong and L. Zhong. Self-Constructive High-
Rate System Energy Modeling for Battery-
Powered Mobile Systems. In Proc. 9th ACM
MobiSys, Washington, DC, June 2011.

[13] eMMC 4.51, JEDEC Standard.
http://www.jedec.org/standards-

documents/results/jesd84-b45.

[14] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. Taint-
Droid: An Information-Flow Tracking System
for Realtime Privacy MOnitoring on Smart-
phones. In Proc. 9th USENIX OSDI, Vancou-
ver, Canada, Oct. 2010.

[15] Encrypting File System for Windows.
http://technet.microsoft.com/en-

us/library/cc700811.aspx.

[16] J. Flinn and M. Satyanarayanan. Energy-Aware
Adaptation of Mobile Applications, Dec. 1999.

[17] R. Fonseca, P. Dutta, P. Levis, and I. Stoica.
Quanto: Tracking Energy in Networked Em-
bedded Systems. In Proc. 8th USENIX OSDI,
San Diego, CA, Dec. 2008.

[18] R. Geambasu, J. P. John, S. D. Gribble,
T. Kohno, and H. M. Levy. Keypad: An Au-
diting File SYstem for Theft-Prone Devices. In
Proc. 6th ACM EUROSYS, Salzburg, Austria,
Apr. 2011.

[19] GNU Privacy Guard: Encrypt files on Linux.
http://www.gnupg.org/.

[20] Java Native Interface.
http://developer.android.com/training/

articles/perf-jni.html.

[21] H. Kim, N. Agrawal, and C. Ungureanu. Revis-
iting Storage on Smartphones. 8(4):14:1–14:25,
2012.

[22] E. Lee, H. Bahn, and S. H. Noh. Unioning of
the Buffer Cache and Journaling Layers with
Non-volatile Memory. In Proc. 11th USENIX
FAST, San Jose, CA, Feb. 2013.

[23] J. Leverich and C. Kozyrakis. On the En-
ergy (In)efficiency of Hadoop Clusters. ACM
SIGOPS OSR, 44:61–65, 2010.

[24] A. P. Miettinen and J. K. Nurminen. Energy
Efficiency of Mobile Clients in Cloud Comput-
ing. In Proc. 2nd USENIX HotCloud, Boston,
MA, June 2010.

[25] R. Mittal, A. Kansal, and R. Chandra. Em-
powering Developers to Estimate App Energy
Consumption. In Proc. 18th ACM MobiCom,
Istanbul, Turkey, Aug. 2012.

[26] Monsoon Power Monitor.
http://www.msoon.com/LabEquipment/

PowerMonitor/.

[27] National Instruments 9206 DAQ Toolkit.
http://sine.ni.com/nips/cds/view/p/

lang/en/nid/209870.

[28] .NET Isolated Storage API.
http://msdn.microsoft.com/en-us/

13

118 12th USENIX Conference on File and Storage Technologies USENIX Association

library/system.io.isolatedstorage.

isolatedstoragefile.aspx.

[29] E. B. Nightingale and J. Flinn. Energy-
Efficiency and Storage Flexibility in the Blue
File System. In Proc. 5th USENIX OSDI, San
Francisco, CA, Dec. 2004.

[30] A. Pathak, Y. C. Hu, and M. Zhang. Where is
the energy spent inside my app?: Fine Grained
Energy Accounting on Smartphones. In Proc.
7th ACM EUROSYS, Bern, Switzerland, Apr.
2012.

[31] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and
Y.-M. Wang. Fine-Grained Power Modeling for
Smartphones using System Call Tracing. In
Proc. 6th ACM EUROSYS, Salzburg, Austria,
Apr. 2011.

[32] E. Pinheiro and R. Bianchini. Energy Conserva-
tion Techniques for Disk Array-Based Servers.
In Proc. 18th ACM ICS, Saint-Malo, France,
June 2004.

[33] F. Qian, Z. Wang, A. Gerber, Z. M. Mao,
S. Sen, and O. Spatschek. Profiling Resource
Usage for Mobile Applications: a Cross-layer
Approach. In Proc. 9th ACM MobiSys, Wash-
ington, DC, June 2011.

[34] A. Roy, S. M. Rumble, R. Stutsman, P. Levis,
D. Mazieres, and N. Zeldovich. Energy Man-
agement in Mobile Devices with Cinder Oper-
ating System. In Proc. 6th ACM EUROSYS,
Salzburg, Austria, Apr. 2011.

[35] Samsung eMMC 4.5 Prototype.
http://www.samsung.com/us/business/oem-

solutions/pdfs/eMMC_Product%20Overview.

pdf.

[36] Secure Digital Card Specification.
https://www.sdcard.org/downloads/pls/

simplified_specs/.

[37] P. Sehgal, V. Tarasov, and E. Zadok. Eval-
uating Performance and Energy in File Sys-
tem Server Workloads. In Proc. USENIX ATC,
Boston, MA, June 2010.

[38] A. Shye, B. Scholbrock, and G. Memik. Into
the wild: Studying real user activity patterns
to guide power optimizations for mobile archi-
tectures. In Proc. 42nd IEEE MICRO, New
York, NY, Dec. 2009.

[39] M. W. Storer, K. M. Greenan, E. L. Miller, and
K. Voruganti. Pergamum: Replacing Tape with
Energy Efficient, Reliable, Disk-Based Archival
Storage. In Proc. 6th USENIX FAST, San Jose,
CA, 2008.

[40] N. Thiagarajan, G. Aggarwal, A. Nicoara,
D. Boneh, and J. P. Signh. Who Killed My Bat-
tery: Analyzing Mobile Browser Energy Con-
sumption. In Proc. WWW, Lyon, France, Apr.
2012.

[41] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacob-
son, J. Hong, B. Krishnamachari, and N. Sadeh-
Koniecpol. A Framework for Energy Effi-
cient Mobile Sensing for Automatic Human
State Recognition. In Proc. 7th ACM Mobisys,
Krakow, Poland, June 2009.

[42] Windows Performance Toolkit.
http://msdn.microsoft.com/en-us/

performance/cc825801.aspx.

[43] Windows RT Storage API.
http://msdn.microsoft.com/en-us/

library/windows/apps/hh758325.aspx.

[44] X. Wu and A. L. N. Reddy. SCMFS: A File
System for Storage Class Memory. In Proc.
IEEE/ACM SC, Seattle, WA, Nov. 2011.

[45] C. Yoon, D. Kim, W. Jung, C. Kang, and
H. Cha. AppScope: Application Energy Meter-
ing Framework for Android Smartphones using
Kernel Activity Monitoring. In Proc. USENIX
ATC, Boston, MA, June 2012.

[46] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazieres. Making Information Flow Explicit
in HiStar. In Proc. 7th USENIX OSDI, Seattle,
WA, Dec. 2006.

[47] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P.
Dick, Z. M. Mao, and L. Yang. Accurate
online power estimation and automatic bat-
tery behavior based power model generation for
smartphones. In Proc. 8th IEEE/ACM/IFIP
CODES+ISSS, Taipei, Taiwan, 2010.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 119

ViewBox: Integrating Local File Systems with Cloud Storage Services

Yupu Zhang†, Charlotte Dragga†∗, Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†
† University of Wisconsin-Madison, ∗ NetApp, Inc.

Abstract
Cloud-based file synchronization services have become

enormously popular in recent years, both for their abil-

ity to synchronize files across multiple clients and for the

automatic cloud backups they provide. However, despite

the excellent reliability that the cloud back-end provides,

the loose coupling of these services and the local file sys-

tem makes synchronized data more vulnerable than users

might believe. Local corruption may be propagated to the

cloud, polluting all copies on other devices, and a crash or

untimely shutdown may lead to inconsistency between a

local file and its cloud copy. Even without these failures,

these services cannot provide causal consistency.

To address these problems, we present ViewBox, an

integrated synchronization service and local file system

that provides freedom from data corruption and inconsis-

tency. ViewBox detects these problems using ext4-cksum,

a modified version of ext4, and recovers from them using a

user-level daemon, cloud helper, to fetch correct data from

the cloud. To provide a stable basis for recovery,ViewBox

employs the view manager on top of ext4-cksum. The

view manager creates and exposes views, consistent in-

memory snapshots of the file system, which the synchro-

nization client then uploads. Our experiments show that

ViewBox detects and recovers from both corruption and

inconsistency, while incurring minimal overhead.

1 Introduction
Cloud-based file synchronization services, such as Drop-

box [11], SkyDrive [28], and Google Drive [13], provide a

convenient means both to synchronize data across a user’s

devices and to back up data in the cloud. While automatic

synchronization of files is a key feature of these services,

the reliable cloud storage they offer is fundamental to their

success. Generally, the cloud backend will checksum and

replicate its data to provide integrity [3] and will retain old

versions of files to offer recovery from mistakes or inad-

vertent deletion [11]. The robustness of these data protec-

tion features, along with the inherent replication that syn-

chronization provides, can provide the user with a strong

sense of data safety.

Unfortunately, this is merely a sense, not a reality; the

loose coupling of these services and the local file system

endangers data even as these services strive to protect it.

Because the client has no means of determining whether

file changes are intentional or the result of corruption,

it may send both to the cloud, ultimately spreading cor-

rupt data to all of a user’s devices. Crashes compound

this problem; the client may upload inconsistent data to

the cloud, download potentially inconsistent files from the

cloud, or fail to synchronize changed files. Finally, even

in the absence of failure, the client cannot normally pre-

serve causal dependencies between files, since it lacks sta-

ble point-in-time images of files as it uploads them. This

can lead to an inconsistent cloud image, which may in turn

lead to unexpected application behavior.

In this paper, we present ViewBox, a system that inte-

grates the local file system with cloud-based synchroniza-

tion services to solve the problems above. Instead of syn-

chronizing individual files, ViewBox synchronizes views,

in-memory snapshots of the local synchronized folder that

provide data integrity, crash consistency, and causal con-

sistency. Because the synchronization client only uploads

views in their entirety, ViewBox guarantees the correct-

ness and consistency of the cloud image, which it then

uses to correctly recover from local failures. Furthermore,

by making the server aware of views, ViewBox can syn-

chronize views across clients and properly handle con-

flicts without losing data.

ViewBox contains three primary components. Ext4-

cksum, a variant of ext4 that detects corrupt and incon-

sistent data through data checksumming, provides View-

Box’s foundation. Atop ext4-cksum, we place the view

manager, a file-system extension that creates and exposes

views to the synchronization client. The view manager

provides consistency through cloud journaling by creat-

ing views at file-system epochs and uploading views to

the cloud. To reduce the overhead of maintaining views,

the view manager employs incremental snapshotting by

keeping only deltas (changed data) in memory since the

last view. Finally, ViewBox handles recovery of damaged

data through a user-space daemon, cloud helper, that inter-

acts with the server-backend independently of the client.

We build ViewBox with two file synchronization ser-

vices: Dropbox, a highly popular synchronization service,

and Seafile, an open source synchronization service based

on GIT. Through reliability experiments, we demonstrate

that ViewBox detects and recovers from local data cor-

ruption, thus preventing the corruption’s propagation. We

also show that upon a crash, ViewBox successfully rolls

back the local file system state to a previously uploaded

view, restoring it to a causally consistent image. By com-

1

120 12th USENIX Conference on File and Storage Technologies USENIX Association

paring ViewBox to Dropbox or Seafile running atop ext4,

we find that ViewBox incurs less than 5% overhead across

a set of workloads. In some cases, ViewBox even im-

proves the synchronization time by 30%.

The rest of the paper is organized as follows. We first

show in Section 2 that the aforementioned problems ex-

ist through experiments and identify the root causes of

those problems in the synchronization service and the lo-

cal file system. Then, we present the overall architecture

of ViewBox in Section 3, describe the techniques used in

our prototype system in Section 4, and evaluate ViewBox

in Section 5. Finally, we discuss related work in Section

6 and conclude in Section 7.

2 Motivation
As discussed previously, the loosely-coupled design of

cloud-based file synchronization services and file systems

creates an insurmountable semantic gap that not only lim-

its the capabilities of both systems, but leads to incor-

rect behavior in certain circumstances. In this section,

we demonstrate the consequences of this gap, first explor-

ing several case studies wherein synchronization services

propagate file system errors and spread inconsistency. We

then analyze how the limitations of file synchronization

services and file systems directly cause these problems.

2.1 Synchronization Failures
We now present three case studies to show different fail-

ures caused by the semantic gap between local file sys-

tems and synchronization services. The first two of these

failures, the propagation of corruption and inconsistency,

result from the client’s inability to distinguish between le-

gitimate changes and failures of the file system. While

these problems can be warded off by using more advanced

file systems, the third, causal inconsistency, is a funda-

mental result of current file-system semantics.

2.1.1 Data Corruption

Data corruption is not uncommon and can result from a

variety of causes, ranging from disk faults to operating

system bugs [5, 8, 12, 22]. Corruption can be disastrous,

and one might hope that the automatic backups that syn-

chronization services provide would offer some protec-

tion from it. These backups, however, make them likely

to propagate this corruption; as clients cannot detect cor-

ruption, they simply spread it to all of a user’s copies, po-

tentially leading to irrevocable data loss.

To investigate what might cause disk corruption to

propagate to the cloud, we first inject a disk corruption

to a block in a file synchronized with the cloud (by flip-

ping bits through the device file of the underlying disk).

We then manipulate the file in several different ways,

and observe which modifications cause the corruption to

be uploaded. We repeat this experiment for Dropbox,

ownCloud, and Seafile atop ext4 (both ordered and data

Data Metadata

FS Service write mtime ctime atime

ext4

(Linux)

Dropbox LG LG LG L

ownCloud LG LG L L

Seafile LG LG LG LG

ZFS

(Linux)

Dropbox L L L L

ownCloud L L L L

Seafile L L L L

HFS+

(Mac

OS X)

Dropbox LG LG L L

ownCloud LG LG L L

GoogleDrive LG LG L L

SugarSync LG L L L

Syncplicity LG LG L L

Table 1: Data Corruption Results. “L”: corruption

remains local. “G”: corruption is propagated (global).

journaling modes) and ZFS [2] in Linux (kernel 3.6.11)

and Dropbox, ownCloud, Google Drive, SugarSync, and

Syncplicity atop HFS+ in Mac OS X (10.5 Lion).

We execute both data operations and metadata-only op-

erations on the corrupt file. Data operations consist of

both appends and in-place updates at varying distances

from the corrupt block, updating both the modification

and access times; these operations never overwrite the

corruption. Metadata operations change only the time-

stamps of the file. We use touch -a to set the access

time, touch -m to set the modification time, and chown

and chmod to set the attribute-change time.

Table 1 displays our results for each combination of

file system and service. Since ZFS is able to detect lo-

cal corruption, none of the synchronization clients propa-

gate corruption. However, on ext4 and HFS+, all clients

propagate corruption to the cloud whenever they detect a

change to file data and most do so when the modification

time is changed, even if the file is otherwise unmodified.

In both cases, clients interpret the corrupted block as a

legitimate change and upload it. Seafile uploads the cor-

ruption whenever any of the timestamps change. Sugar-

Sync is the only service that does not propagate corrup-

tion when the modification time changes, doing so only

once it explicitly observes a write to the file or it restarts.

2.1.2 Crash Inconsistency

The inability of synchronization services to identify legit-

imate changes also leads them to propagate inconsistent

data after crash recovery. To demonstrate this behavior,

we initialize a synchronized file on disk and in the cloud

at version v0. We then write a new version, v1, and inject

a crash which may result in an inconsistent version v1′ on
disk, with mixed data from v0 and v1, but the metadata

remains v0. We observe the client’s behavior as the sys-

tem recovers. We perform this experiment with Dropbox,

ownCloud, and Seafile on ZFS and ext4.

Table 2 shows our results. Running the synchroniza-

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 121

Upload Download OOS

FS Service local ver. cloud ver.

ext4

(ordered)

Dropbox
√

×
√

ownCloud
√ √ √

Seafile N/A N/A N/A

ext4

(data)

Dropbox
√

× ×
ownCloud

√ √
×

Seafile
√

× ×

ZFS

Dropbox
√

× ×
ownCloud

√ √
×

Seafile
√

× ×

Table 2: Crash Consistency Results. There are three

outcomes: uploading the local (possibly inconsistent) version to

cloud, downloading the cloud version, and OOS (out-of-sync), in

which the local version and the cloud version differ but are not

synchronized. “×” means the outcome does not occur and “
√
”

means the outcome occurs. Because in some cases the Seafile

client fails to run after the crash, its results are labeled “N/A”.

tion service on top of ext4 with ordered journaling pro-

duces erratic and inconsistent behavior for both Dropbox

and ownCloud. Dropbox may either upload the local, in-

consistent version of the file or simply fail to synchronize

it, depending on whether it had noticed and recorded the

update in its internal structures before the crash. In addi-

tion to these outcomes, ownCloud may also download the

version of the file stored in the cloud if it successfully syn-

chronized the file prior to the crash. Seafile arguably ex-

hibits the best behavior. After recovering from the crash,

the client refuses to run, as it detects that its internal meta-

data is corrupted. Manually clearing the client’s meta-

data and resynchronizing the folder allows the client to

run again; at this point, it detects a conflict between the

local file and the cloud version.

All three services behave correctly on ZFS and ext4

with data journaling. Since the local file system provides

strong crash consistency, after crash recovery, the local

version of the file is always consistent (either v0 or v1).

Regardless of the version of the local file, both Dropbox

and Seafile always upload the local version to the cloud

when it differs from the cloud version. OwnCloud, how-

ever, will download the cloud version if the local version

is v0 and the cloud version is v1. This behavior is cor-

rect for crash consistency, but it may violate causal con-

sistency, as we will discuss.

2.1.3 Causal Inconsistency

The previous problems occur primarily because the file

system fails to ensure a key property—either data integrity

or consistency—and does not expose this failure to the file

synchronization client. In contrast, causal inconsistency

derives not from a specific failing on the file system’s part,

but from a direct consequence of traditional file system se-

mantics. Because the client is unable to obtain a unified

view of the file system at a single point in time, the client

has to upload files as they change in piecemeal fashion,

and the order in which it uploads files may not correspond

to the order in which they were changed. Thus, file syn-

chronization services can only guarantee eventual consis-

tency: given time, the image stored in the cloudwill match

the disk image. However, if the client is interrupted—for

instance, by a crash, or even a deliberate powerdown—the

image stored remotely may not capture the causal order-

ing between writes in the file system enforced by primi-

tives like POSIX’s sync and fsync, resulting in a state

that could not occur during normal operation.

To investigate this problem, we run a simple experiment

in which a series of files are written to a synchronization

folder in a specified order (enforced by fsync). During

multiple runs, we vary the size of each file, as well as

the time between file writes, and check if these files are

uploaded to the cloud in the correct order. We perform

this experiment with Dropbox, ownCloud, and Seafile on

ext4 and ZFS, and find that for all setups, there are always

cases in which the cloud state does not preserve the causal

ordering of file writes.

While causal inconsistency is unlikely to directly cause

data loss, it may lead to unexpected application behav-

ior or failure. For instance, suppose the user employs a

file synchronization service to store the library of a photo-

editing suite that stores photos as both full images and

thumbnails, using separate files for each. When the user

edits a photo, and thus, the corresponding thumbnail as

well, it is entirely possible that the synchronization ser-

vice will upload the smaller thumbnail file first. If a fa-

tal crash, such as a hard-drive failure, then occurs before

the client can finish uploading the photo, the service will

still retain the thumbnail in its cloud storage, along with

the original version of the photo, and will propagate this

thumbnail to the other devices linked to the account. The

user, accessing one of these devices and browsing through

their thumbnail gallery to determine whether their data

was preserved, is likely to see the new thumbnail and as-

sume that the file was safely backed up before the crash.

The resultant mismatch will likely lead to confusion when

the user fully reopens the file later.

2.2 Where Synchronization Services Fail

Our experiments demonstrate genuine problems with file

synchronization services; in many cases, they not only

fail to prevent corruption and inconsistency, but actively

spread them. To better explain these failures, we present a

brief case-study of Dropbox’s local client and its interac-

tions with the file system. While Dropbox is merely one

service among many, it is well-respected and established,

with a broad user-base; thus, any of its flaws are likely

to be endemic to synchronization services as a whole and

not merely isolated bugs.

Like many synchronization services, Dropbox actively

3

122 12th USENIX Conference on File and Storage Technologies USENIX Association

monitors its synchronization folder for changes using a

file-system notification service, such as Linux’s inotify

or Mac OS X’s Events API. While these services inform

Dropbox of both namespace changes and changes to file

content, they provide this information at a fairly coarse

granularity—per file, for inotify, and per directory for the

Events API, for instance. In the event that these services

fail, or that Dropbox itself fails or is closed for a time,

Dropbox detects changes in local files by examining their

statistics, including size and modification timestamps

Once Dropbox has detected that a file has changed, it

reads the file, using a combination of rsync and file chunk-

ing to determine which portions of the file have changed

and transmits them accordingly [10]. If Dropbox detects

that the file has changed while being read, it backs off

until the file’s state stabilizes, ensuring that it does not up-

load a partial combination of several separate writes. If it

detects that multiple files have changed in close temporal

proximity, it uploads the files from smallest to largest.

Throughout the entirety of the scanning and upload pro-

cess, Dropbox records information about its progress and

the current state of its monitored files in a local SQLite

database. In the event that Dropbox is interrupted by a

crash or deliberate shut-down, it can then use this private

metadata to resume where it left off.

Given this behavior, the causes of Dropbox’s inability

to handle corruption and inconsistency become apparent.

As file-system notification services provide no informa-

tion on what file contents have changed, Dropbox must

read files in their entirety and assume that any changes

that it detects result from legitimate user action; it has

no means of distinguishing unintentional changes, like

corruption and inconsistent crash recovery. Inconsistent

crash recovery is further complicated by Dropbox’s inter-

nal metadata tracking. If the system crashes during an up-

load and restores the file to an inconsistent state, Dropbox

will recognize that it needs to resume uploading the file,

but it cannot detect that the contents are no longer consis-

tent. Conversely, if Dropbox had finished uploading and

updated its internal timestamps, but the crash recovery re-

verted the file’s metadata to an older version, Dropbox

must upload the file, since the differing timestamp could

potentially indicate a legitimate change.

2.3 Where Local File Systems Fail

Responsibility for preventing corruption and inconsis-

tency hardly rests with synchronization services alone;

much of the blame can be placed on local file systems,

as well. File systems frequently fail to take the preven-

tative measures necessary to avoid these failures and, in

addition, fail to expose adequate interfaces to allow syn-

chronization services to deal with them. As summarized

in Table 3, neither a traditional file system, ext4, nor a

modern file system, ZFS, is able to avoid all failures.

FS Corruption Crash Causal

ext4 (ordered) × × ×
ext4 (data) ×

√
×

ZFS
√ √

×

Table 3: Summary of File System Capabilities. This

table shows the synchronization failures each file system is able

to handle correctly. There are three types of failures: Corrup-

tion (data corruption), Crash (crash inconsistency), and Causal

(causal inconsistency). “
√
” means the failure does not occur

and “×” means the failure may occur.

File systems primarily prevent corruption via check-

sums. When writing a data or metadata item to disk, the

file system stores a checksum over the item as well. Then,

when it reads that item back in, it reads the checksum and

uses that to validate the item’s contents. While this tech-

nique correctly detects corruption, file system support for

it is limited. ZFS [6] and btrfs [23] are some of the few

widely available file systems that employ checksums over

the whole file system; ext4 uses checksums, but only over

metadata [9]. Even with checksums, however, the file

system can only detect corruption, requiring other mech-

anisms to repair it.

Recovering from crashes without exposing inconsis-

tency to the user is a problem that has dogged file systems

since their earliest days and has been addressed with a va-

riety of solutions. The most common of these is journal-

ing, which provides consistency by grouping updates into

transactions, which are first written to a log and then later

checkpointed to their fixed location. While journaling is

quite popular, seeing use in ext3 [26], ext4 [20], XFS [25],

HFS+ [4], and NTFS [21], among others, writing all data

to the log is often expensive, as doing so doubles all write

traffic in the system. Thus, normally, these file systems

only log metadata, which can lead to inconsistencies in

file data upon recovery, even if the file system carefully

orders its data and metadata writes (as in ext4’s ordered

mode, for instance). These inconsistencies, in turn, cause

the erratic behavior observed in Section 2.1.2.

Crash inconsistency can be avoided entirely using

copy-on-write, but, as with file-system checksums, this

is an infrequently used solution. Copy-on-write never

overwrites data or metadata in place; thus, if a crash oc-

curs mid-update, the original state will still exist on disk,

providing a consistent point for recovery. Implementing

copy-on-write involves substantial complexity, however,

and only recent file systems, like ZFS and btrfs, support it

for personal use.

Finally, avoiding causal inconsistency requires access

to stable views of the file system at specific points in time.

File-system snapshots, such as those provided by ZFS or

Linux’s LVM [1], are currently the only means of obtain-

ing such views. However, snapshot support is relatively

uncommon, and when implemented, tends not to be de-

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 123

signed for the fine granularity at which synchronization

services capture changes.

2.4 Summary
As our observations have shown, the sense of safety pro-

vided by synchronization services is largely illusory. The

limited interface between clients and the file system, as

well as the failure of many file systems to implement key

features, can lead to corruption and flawed crash recov-

ery polluting all available copies, and causal inconsis-

tency may cause bizarre or unexpected behavior. Thus,

naively assuming that these services will provide com-

plete data protection can lead instead to data loss, espe-

cially on some of the most commonly-used file systems.

Even for file systems capable of detecting errors and

preventing their propagation, such as ZFS and btrfs, the

separation of synchronization services and the file system

incurs an opportunity cost. Despite the presence of correct

copies of data in the cloud, the file system has no means

to employ them to facilitate recovery. Tighter integration

between the service and the file system can remedy this,

allowing the file system to automatically repair damaged

files. However, this makes avoiding causal inconsistency

even more important, as naive techniques, such as simply

restoring the most recent version of each damaged file, are

likely to directly cause it.

3 Design
To remedy the problems outlined in the previous section,

we propose ViewBox, an integrated solution in which the

local file system and the synchronization service cooper-

ate to detect and recover from these issues. Instead of a

clean-slate design, we structure ViewBox around ext4 (or-

dered journalingmode), Dropbox, and Seafile, in the hope

of solving these problems with as few changes to existing

systems as possible.

Ext4 provides a stable, open-source, and widely-used

solution on which to base our framework. While both

btrfs and ZFS already provide some of the functionality

we desire, they lack the broad deployment of ext4. Ad-

ditionally, as it is a journaling file system, ext4 also bears

some resemblance to NTFS and HFS+, the Windows and

Mac OS X file systems; thus, many of our solutions may

be applicable in these domains as well.

Similarly, we employ Dropbox because of its reputation

as one of the most popular, as well as one of the most ro-

bust and reliable, synchronization services. Unlike ext4, it

is entirely closed source, making it impossible to modify

directly. Despite this limitation, we are still able to make

significant improvements to the consistency and integrity

guarantees that both Dropbox and ext4 provide. However,

certain functionalities are unattainable without modifying

the synchronization service. Therefore, we take advan-

tage of an open source synchronization service, Seafile,

to show the capabilities that a fully integrated file system

and synchronization service can provide. Although we

only implement ViewBox with Dropbox and Seafile, we

believe that the techniques we introduce apply more gen-

erally to other synchronization services.

In this section, we first outline the fundamental goals

driving ViewBox. We then provide a high-level overview

of the architecture with which we hope to achieve these

goals. Our architecture performs three primary functions:

detection, synchronization, and recovery; we discuss each

of these in turn.

3.1 Goals
In designing ViewBox, we focus on four primary goals,

based on both resolving the problems we have identified

and onmaintaining the features that make users appreciate

file-synchronization services in the first place.

Integrity: Most importantly, ViewBox must be able to

detect local corruption and prevent its propagation

to the rest of the system. Users frequently depend

on the synchronization service to back up and pre-

serve their data; thus, the file system should never

pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox

should maintain causal consistency between the

client’s local file system and the cloud and prevent

the synchronization service from uploading inconsis-

tent data. Furthermore, if the synchronization service

provides the necessary functionality, ViewBox must

provide multi-client consistency: file-system states

on multiple clients should be synchronized properly

with well-defined conflict resolution.

Recoverability: While the previous properties focus on

containing faults, containment is most useful if the

user can subsequently repair the faults. ViewBox

should be able to use the previous versions of the files

on the cloud to recover automatically. At the same

time, it should maintain causal consistency when

necessary, ideally restoring the file system to an im-

age that previously existed.

Performance: Improvements in data protection cannot

come at the expense of performance. ViewBox must

perform competitively with current solutions even

when running on the low-end systems employed

by many of the users of file synchronization ser-

vices. Thus, naive solutions, like synchronous repli-

cation [17], are not acceptable.

3.2 Fault Detection
The ability to detect faults is essential to prevent them

from propagating and, ultimately, to recover from them as

well. In particular, we focus on detecting corruption and

data inconsistency. While ext4 provides some ability to

detect corruption through its metadata checksums, these

5

124 12th USENIX Conference on File and Storage Technologies USENIX Association

6

E0 E1 E2 E3

Synced View

Frozen View

Active View

5

4

6

E0 E1 E2 E3

5

4

6

E0 E1 E2 E3

6

54

7

E0 E1 E2 E3

6

545

(a) Uploading E1 as View 5 (b) View 5 is synchronized (c) Freezing E3 as View 6 (d) Uploading View 6

FS Epoch

Figure 1: Synchronizing Frozen Views. This figure shows how view-based synchronization works, focusing on how to

upload frozen views to the cloud. The x-axis represents a series of file-system epochs. Squares represent various views in the

system, with a view number as ID. A shaded active view means that the view is not at an epoch boundary and cannot be frozen.

do not protect the data itself. Thus, to correctly detect

all corruption, we add checksums to ext4’s data as well,

storing them separately so that we may detect misplaced

writes [6, 18], as well as bit flips. Once it detects corrup-

tion, ViewBox then prevents the file from being uploaded

until it can employ its recovery mechanisms.

In addition to allowing detection of corruption resulting

from bit-flips or bad disk behavior, checksums also allow

the file system to detect the inconsistent crash recovery

that could result from ext4’s journal. Because checksums

are updated independently of their corresponding blocks,

an inconsistently recovered data block will not match its

checksum. As inconsistent recovery is semantically iden-

tical to data corruption for our purposes—both comprise

unintended changes to the file system—checksums pre-

vent the spread of inconsistent data, as well. However,

they only partially address our goal of correctly restoring

data, which requires stronger functionality.

3.3 View-based Synchronization
Ensuring that recovery proceeds correctly requires us to

eliminate causal inconsistency from the synchronization

service. Doing so is not a simple task, however. It requires

the client to have an isolated view of all data that has

changed since the last synchronization; otherwise, user

activity could cause the remote image to span several file

system images but reflect none of them.

While file-system snapshots provide consistent, static

images [16], they are too heavyweight for our purposes.

Because the synchronization service stores all file data re-

motely, there is no reason to persist a snapshot on disk.

Instead, we propose a system of in-memory, ephemeral

snapshots, or views.

3.3.1 View Basics

Views represent the state of the file system at specific

points in time, or epochs, associated with quiescent points

in the file system. We distinguish between three types

of views: active views, frozen views, and synchronized

views. The active view represents the current state of the

local file system as the user modifies it. Periodically, the

file system takes a snapshot of the active view; this be-

comes the current frozen view. Once a frozen view is up-

loaded to the cloud, it then becomes a synchronized view,

and can be used for restoration. At any time, there is only

one active view and one frozen view in the local system,

while there are multiple synchronized views on the cloud.

To provide an example of how views work in practice,

Figure 1 depicts the state of a typical ViewBox system. In

the initial state, (a), the system has one synchronized view

in the cloud, representing the file system state at epoch 0,

and is in the process of uploading the current frozen view,

which contains the state at epoch 1. While this occurs,

the user can make changes to the active view, which is

currently in the middle of epoch 2 and epoch 3.

Once ViewBox has completely uploaded the frozen

view to the cloud, it becomes a synchronized view, as

shown in (b). ViewBox refrains from creating a new

frozen view until the active view arrives at an epoch

boundary, such as a journal commit, as shown in (c). At

this point, it discards the previous frozen view and cre-

ates a new one from the active view, at epoch 3. Finally,

as seen in (d), ViewBox begins uploading the new frozen

view, beginning the cycle anew.

Because frozen views are created at file-system epochs

and the state of frozen views is always static, synchroniz-

ing frozen views to the cloud provides both crash consis-

tency and causal consistency, given that there is only one

client actively synchronizing with the cloud. We call this

single-client consistency.

3.3.2 Multi-client Consistency

When multiple clients are synchronized with the cloud,

the server must propagate the latest synchronized view

from one client to other clients, to make all clients’ state

synchronized. Critically, the server must propagate views

in their entirety; partially uploaded views are inherently

inconsistent and thus should not be visible. However, be-

cause synchronized views necessarily lag behind the ac-

tive views in each file system, the current active file sys-

tem may have dependencies that would be invalidated by

a remote synchronized view. Thus, remote changes must

be applied to the active view in a way that preserves local

causal consistency.

To achieve this, ViewBox handles remote changes in

two phases. In the first phase, ViewBox applies remote

changes to the frozen view. If a changed file does not ex-

ist in the frozen view, ViewBox adds it directly; otherwise,

it adds the file under a new name that indicates a conflict

(e.g., “foo.txt” becomes “remote.foo.txt”). In the second

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 125

Cloud

Local

Client

0

Remote

Client 0

0

Frozen View

Active View

Synced View

Frozen View

Active View

0

0

1

1

1

1

1

0

0

0

0

0

1

3

1

1

2

2

3

(a) Directly applying remote updates

3

(b) Merging and handling potential conflicts

Figure 2: Handling Remote Updates. This figure demon-

strates two different scenarios where remote updates are han-

dled. While case (a) has no conflicts, case (b) may, because it

contains concurrent updates.

phase, ViewBox merges the newly created frozen view

with the active view. ViewBox propagates all changes

from the new frozen view to the active view, using the

same conflict handling procedure. At the same time, it

uploads the newly merged frozen view. Once the second

phase completes, the active view is fully updated; only

after this occurs can it be frozen and uploaded.

To correctly handle conflicts and ensure no data is lost,

we follow the same policy as GIT [14]. This can be sum-

marized by the following three guidelines:

• Preserve any local or remote change; a change could

be the addition, modification, or deletion of a file.

• When there is a conflict between a local change and

a remote change, always keep the local copy un-

touched, but rename and save the remote copy.

• Synchronize and propagate both the local copy and

the renamed remote copy.

Figure 2 illustrates how ViewBox handles remote

changes. In case (a), both the remote and local clients

are synchronized with the cloud, at view 0. The remote

client makes changes to the active view, and subsequently

freezes and uploads it to the cloud as view 1. The local

client is then informed of view 1, and downloads it. Since

there are no local updates, the client directly applies the

changes in view 1 to its frozen view and propagates those

changes to the active view.

In case (b), both the local client and the remote client

perform updates concurrently, so conflicts may exist. As-

suming the remote client synchronizes view 1 to the cloud

first, the local client will refrain from uploading its frozen

view, view 2, and download view 1 first. It then merges

the two views, resolving conflicts as described above,

to create a new frozen view, view 3. Finally, the local

client uploads view 3 while simultaneously propagating

the changes in view 3 to the active view.

In the presence of simultaneous updates, as seen in case

(b), this synchronization procedure results in a cloud state

that reflects a combination of the disk states of all clients,

rather than the state of any one client. Eventually, the

different client and cloud states will converge, providing

multi-client consistency. This model is weaker than our

single-client model; thus, ViewBox may not be able to

provide causal consistency for each individual client un-

der all circumstances.

Unlike single-client consistency, multi-client consis-

tency requires the cloud server to be aware of views, not

just the client. Thus, ViewBox can only provide multi-

client consistency for open source services, like Seafile;

providing it for closed-source services, like Dropbox, will

require explicit cooperation from the service provider.

3.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistent

views of the file system state, ViewBox is now capable

of performing correct recovery. There are effectively two

types of recovery to handle: recovery of corrupt files, and

recovery of inconsistent files at the time of a crash.

In the event of corruption, if the file is clean in both the

active view and the frozen view, we can simply recover

the corrupt block by fetching the copy from the cloud. If

the file is dirty, the file may not have been synchronized

to the cloud, making direct recovery impossible, as the

block fetched from cloud will not match the checksum.

If recovering a single block is not possible, the entire file

must be rolled back to a previous synchronized version,

which may lead to causal inconsistency.

Recovering causally-consistent images of files that

were present in the active view at the time of a crash faces

the same difficulties as restoring corrupt files in the active

view. Restoring each individual file to its most recent syn-

chronized version is not correct, as other files may have

been written after the now-corrupted file and, thus, de-

pend on it; to ensure these dependencies are not broken,

these files also need to be reverted. Thus, naive restoration

can lead to causal inconsistency, even with views.

Instead, we present users with the choice of individu-

ally rolling back damaged files, potentially risking causal

inconsistency, or reverting to the most recent synchro-

nized view, ensuring correctness but risking data loss. As

we anticipate that the detrimental effects of causal incon-

sistency will be relatively rare, the former option will be

usable in many cases to recover, with the latter available in

the event of bizarre or unexpected application behavior.

4 Implementation

Now that we have provided a broad overview of View-

Box’s architecture, we delve more deeply into the

specifics of our implementation. As with Section 3, we

divide our discussion based on the three primary compo-

nents of our architecture: detection, as implemented with

our new ext4-cksum file system; view-based synchroniza-

tion using our view manager, a file-system agnostic ex-

tension to ext4-cksum; and recovery, using a user-space

recovery daemon called cloud helper.

7

126 12th USENIX Conference on File and Storage Technologies USENIX Association

Group

Descriptors

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks
Superblock

Checksum

Region

Figure 3: Ext4-cksum Disk Layout. This graph shows

the layout of a block group in ext4-cksum. The shaded checksum

region contains data checksums for blocks in the block group.

4.1 Ext4-cksum
Like most file systems that update data in place, ext4

provides minimal facilities for detecting corruption and

ensuring data consistency. While it offers experimental

metadata checksums, these do not protect data; similarly,

its default ordered journaling mode only protects the con-

sistency of metadata, while providing minimal guarantees

about data. Thus, it requires changes to meet our require-

ments for integrity and consistency. We now present ext4-

cksum, a variant of ext4 that supports data checksums to

protect against data corruption and to detect data inconsis-

tency after a crash without the high cost of data journaling.

4.1.1 Checksum Region

Ext4-cksum stores data checksums in a fixed-sized check-

sum region immediately after the inode table in each block

group, as shown in Figure 3. All checksums of data blocks

in a block group are preallocated in the checksum region.

This region acts similarly to a bitmap, except that it stores

checksums instead of bits, with each checksum mapping

directly to a data block in the group. Since the region

starts at a fixed location in a block group, the location

of the corresponding checksum can be easily calculated,

given the physical (disk) block number of a data block.

The size of the region depends solely on the total num-

ber of blocks in a block group and the length of a check-

sum, both of which are determined and fixed during file

system creation. Currently, ext4-cksum uses the built-in

crc32c checksum, which is 32 bits. Therefore, it reserves

a 32-bit checksum for every 4KB block, imposing a space

overhead of 1/1024; for a regular 128MB block group, the

size of the checksum region is 128KB.

4.1.2 Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding

checksum must be verified. Before the file system issues

a read of a data block from disk, it gets the correspond-

ing checksum by reading the checksum block. After the

file system reads the data block into memory, it verifies

the block against the checksum. If the initial verification

fails, ext4-cksum will retry. If the retry also fails, ext4-

cksum will report an error to the application. Note that in

this case, if ext4-cksum is running with the cloud helper

daemon, ext4-cksum will try to get the remote copy from

cloud and use that for recovery. The read part of a read-

modify-write is handled in the same way.

A read of a data block from disk always incurs an ad-

ditional read for the checksum, but not every checksum

read will cause high latency. First, the checksum read

can be served from the page cache, because the checksum

blocks are considered metadata blocks by ext4-cksum and

are kept in the page cache like other metadata structures.

Second, even if the checksum read does incur a disk

I/O, because the checksum is always in the same block

group as the data block, the seek latency will be minimal.

Third, to avoid checksum reads as much as possible, ext4-

cksum employs a simple prefetching policy: always read

8 checksum blocks (within a block group) at a time. Ad-

vanced prefetching heuristics, such as those used for data

prefetching, are applicable here.

Ext4-cksum does not update the checksum for a dirty

data block until the data block is written back to disk. Be-

fore issuing the disk write for the data block, ext4-cksum

reads in the checksum block and updates the correspond-

ing checksum. This applies to all data write-backs, caused

by a background flush, fsync, or a journal commit.

Since ext4-cksum treats checksum blocks as metadata

blocks, with journaling enabled, ext4-cksum logs all dirty

checksum blocks in the journal. In ordered journaling

mode, this also allows the checksum to detect incon-

sistent data caused by a crash. In ordered mode, dirty

data blocks are flushed to disk before metadata blocks

are logged in the journal. If a crash occurs before the

transaction commits, data blocks that have been flushed

to disk may become inconsistent, because the metadata

that points to them still remains unchanged after recovery.

As the checksum blocks are metadata, they will not have

been updated, causing a mismatch with the inconsistent

data block. Therefore, if such a block is later read from

disk, ext4-cksum will detect the checksum mismatch.

To ensure consistency between a dirty data block and

its checksum, data write-backs triggered by a background

flush and fsync can no longer simultaneously occur with

a journal commit. In ext4 with ordered journaling, be-

fore a transaction has committed, data write-backs may

start and overwrite a data block that was just written by

the committing transaction. This behavior, if allowed in

ext4-cksum, would cause a mismatch between the already

logged checksum block and the newly written data block

on disk, thus making the committing transaction inconsis-

tent. To avoid this scenario, ext4-cksum ensures that data

write-backs due to a background flush and fsync always

occur before or after a journal commit.

4.2 View Manager

To provide consistency, ViewBox requires file synchro-

nization services to upload frozen views of the local file

system, which it implements through an in-memory file-

system extension, the view manager. In this section, we

detail the implementation of the view manager, beginning

with an overview. Next, we introduce two techniques,

cloud journaling and incremental snapshotting, which are

key to the consistency and performance provided by the

view manager. Then, we provide an example that de-

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 127

scribes the synchronization process that uploads a frozen

view to the cloud. Finally, we briefly discuss how to inte-

grate the synchronization client with the view manager to

handle remote changes and conflicts.

4.2.1 View Manager Overview

The view manager is a light-weight kernel module that

creates views on top of a local file system. Since it only

needs to maintain two local views at any time (one frozen

view and one active view), the view manager does not

modify the disk layout or data structures of the underly-

ing file system. Instead, it relies on a modified tmpfs to

present the frozen view in memory and support all the

basic file system operations to files and directories in it.

Therefore, a synchronization client now monitors the ex-

posed frozen view (rather than the actual folder in the lo-

cal file system) and uploads changes from the frozen view

to the cloud. All regular file system operations from other

applications are still directly handled by ext4-cksum. The

view manager uses the active view to track the on-going

changes and then reflects them to the frozen view. Note

that the current implementation of the view manager is

tailored to our ext4-cksum and it is not stackable [29]. We

believe that a stackable implementation would make our

view manager compatible with more file systems.

4.2.2 Consistency through Cloud Journaling

As we discussed in Section 3.3.1, to preserve consis-

tency, frozen views must be created at file-system epochs.

Therefore, the view manager freezes the current active

view at the beginning of a journal commit in ext4-cksum,

which serves as a boundary between two file-system

epochs. At the beginning of a commit, the current running

transaction becomes the committing transaction. When a

new running transaction is created, all operations belong-

ing to the old running transaction will have completed,

and operations belonging to the new running transaction

will not have started yet. The view manager freezes the

active view at this point, ensuring that no in-flight op-

eration spans multiple views. All changes since the last

frozen view are preserved in the new frozen view, which

is then uploaded to the cloud, becoming the latest syn-

chronized view.

To ext4-cksum, the cloud acts as an external journaling

device. Every synchronized view on the cloud matches a

consistent state of the local file system at a specific point

in time. Although ext4-cksum still runs in ordered jour-

naling mode, when a crash occurs, the file system now

has the chance to roll back to a consistent state stored on

cloud. We call this approach cloud journaling.

4.2.3 Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves bet-

ter performance and lower overhead through a technique

called incremental snapshotting. The view manager al-

ways keeps the frozen view in memory and the frozen

view only contains the data that changed from the previ-

ous view. The active view is thus responsible for tracking

all the files and directories that have changed since it last

was frozen. When the view manager creates a new frozen

view, it marks all changed files copy-on-write, which pre-

serves the data at that point. The new frozen view is then

constructed by applying the changes associated with the

active view to the previous frozen view.

The view manager uses several in-memory and on-

cloud structures to support this incremental snapshotting

approach. First, the view manager maintains an inode

mapping table to connect files and directories in the frozen

view to their corresponding ones in the active view. The

view manager represents the namespace of a frozen view

by creating frozen inodes for files and directories in tmpfs

(their counterparts in the active view are thus called active

inodes), but no data is usually stored under frozen inodes

(unless the data is copied over from the active view due

to copy-on-write). When a file in the frozen view is read,

the view manager finds the active inode and fetches data

blocks from it. The inode mapping table thus serves as a

translator between a frozen inode and its active inode.

Second, the viewmanager tracks namespace changes in

the active view by using an operation log, which records

all successful namespace operations (e.g., create, mkdir,

unlink, rmdir, and rename) in the active view. When the

active view is frozen, the log is replayed onto the previous

frozen view to bring it up-to-date, reflecting the new state.

Third, the view manager uses a dirty table to track what

files and directories are modified in the active view. Once

the active view becomes frozen, all these files are marked

copy-on-write. Then, by generating inotify events based

on the operation log and the dirty table, the view man-

ager is able to make the synchronization client check and

upload these local changes to the cloud.

Finally, the view manager keeps view metadata on the

server for every synchronized view, which is used to iden-

tify what files and directories are contained in a synchro-

nized view. For services such as Seafile, which internally

keeps the modification history of a folder as a series of

snapshots [24], the view manager is able to use its snap-

shot ID (called commit ID by Seafile) as the view meta-

data. For services like Dropbox, which only provides file-

level versioning, the view manager creates a view meta-

data file for every synchronized view, consisting of a list

of pathnames and revision numbers of files in that view.

The information is obtained by querying the Dropbox

server. The view manager stores these metadata files in

a hidden folder on the cloud, so the correctness of these

files is not affected by disk corruption or crashes.

4.2.4 Uploading Views to the Cloud

Now, we walk through an example in Figure 4 to explain

how the view manager uploads views to the cloud. In the

9

128 12th USENIX Conference on File and Storage Technologies USENIX Association

D Op Log 6

F2

F3

Dirty Table 6

unlink F1

create F3

Frozen View 5

Active View 6

D

F2 F3

F1 F2

Frozen View 6

D

F2 F3

Op Log 7

Dirty Table 7

unlink F2

Active View 7

D

F3

Figure 4: Incremental Snapshotting. This figure illus-

trates how the view manager creates active and frozen views.

example, the synchronization service is Dropbox.

Initially, the synchronization folder (D) contains two

files (F1 and F2). While frozen view 5 is being synchro-

nized, in active view 6, F1 is deleted, F2 is modified, and

F3 is created. The view manager records the two names-

pace operations (unlink and create) in the operation log,

and adds F2 and F3 to the dirty table. When frozen view

5 is completely uploaded to the cloud, the view manager

creates a view metadata file and uploads it to the server.

Next, the view manager waits for the next journal com-

mit and freezes active view 6. The view manager first

marks F2 and F3 in the dirty table copy-on-write, preserv-

ing new updates in the frozen view. Then, it creates active

view 7 with a new operation log and a new dirty table,

allowing the file system to operate without any interrup-

tion. After that, the view manager replays the operation

log onto frozen view 5 such that the namespace reflects

the state of frozen view 6.

Finally, the view manager generates inotify events

based on the dirty table and the operation log, thus caus-

ing the Dropbox client to synchronize the changes to the

cloud. Since F3 is not changed in active view 7, the

client reading its data from the frozen view would cause

the view manager to consult the inode mapping table (not

shown in the figure) and fetch requested data directly from

the active view. Note that F2 is deleted in active view 7.

If the deletion occurs before the Dropbox client is able to

upload F2, all data blocks of F2 are copied over and at-

tached to the copy of F2 in the frozen view. If Dropbox

reads the file before deletion occurs, the view manager

fetches those blocks from active view 7 directly, without

making extra copies. After frozen view 6 is synchronized

to the cloud, the view manager repeats the steps above,

constantly uploading views from the local system.

4.2.5 Handling Remote Changes

All the techniques we have introduced so far focus on

how to provide single-client consistency and do not re-

quire modifications to the synchronization client or the

server. They work well with proprietary synchronization

services such as Dropbox. However, when there are mul-

tiple clients running ViewBox and performing updates at

the same time, the synchronization service itself must be

view-aware. To handle remote updates correctly, we mod-

ify the Seafile client to perform the two-phase synchro-

nization described in Section 3.3.2. We choose Seafile

to implement multi-client consistency, because both its

client and server are open-source. More importantly, its

data model and synchronization algorithm is similar to

GIT, which fits our view-based synchronization well.

4.3 Cloud Helper
When corruption or a crash occurs, ViewBox performs re-

covery using backup data on the cloud. Recovery is per-

formed through a user-level daemon, cloud helper. The

daemon is implemented in Python, which acts as a bridge

between the local file system and the cloud. It interacts

with the local file system using ioctl calls and communi-

cates with the cloud through the service’s web API.

For data corruption, when ext4-cksum detects a check-

sum mismatch, it sends a block recovery request to the

cloud helper. The request includes the pathname of the

corrupted file, the offset of the block inside the file, and

the block size. The cloud helper then fetches the requested

block from the server and returns the block to ext4-cksum.

Ext4-cksum reverifies the integrity of the block against the

data checksum in the file system and returns the block to

the application. If the verification still fails, it is possibly

because the block has not been synchronized or because

the block is fetched from a different file in the synchro-

nized view on the server with the same pathname as the

corrupted file.

When a crash occurs, the cloud helper performs a scan

of the ext4-cksum file system to find potentially incon-

sistent files. If the user chooses to only roll back those

inconsistent files, the cloud helper will download them

from the latest synchronized view. If the user chooses

to roll back the whole file system, the cloud helper will

identify the latest synchronized view on the server, and

download files and construct directories in the view. The

former approach is able to keep most of the latest data

but may cause causal inconsistency. The latter guaran-

tees causal consistency, but at the cost of losing updates

that took place during the frozen view and the active view

when the crash occurred.

5 Evaluation
We now present the evaluation results of our ViewBox

prototype. We first show that our system is able to re-

cover from data corruption and crashes correctly and pro-

vide causal consistency. Then, we evaluate the under-

lying ext4-cksum and view manager components sepa-

rately, without synchronization services. Finally we study

the overall synchronization performance of ViewBox with

Dropbox and Seafile.

We implemented ViewBox in the Linux 3.6.11 kernel,

with Dropbox client 1.6.0, and Seafile client and server

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 129

Service Data Metadata

ViewBox w/ write mtime ctime atime

Dropbox DR DR DR DR

Seafile DR DR DR DR

Table 4: Data Corruption Results of ViewBox. In

all cases, the local corruption is detected (D) and recovered

(R) using data on the cloud.

Service Upload Download Out-of-sync

ViewBox w/ local ver. cloud ver. (no sync)

Dropbox ×
√

×
Seafile ×

√
×

Table 5: Crash Consistency Results of ViewBox.
The local version is inconsistent and rolled back to the pre-

vious version on the cloud.

Workload ext4 ext4-cksum Slowdown

(MB/s) (MB/s)

Seq. write 103.69 99.07 4.46%

Seq. read 112.91 108.58 3.83%

Rand. write 0.70 0.69 1.42%

Rand. read 5.82 5.74 1.37%

Table 6: Microbenchmarks on ext4-cksum. This

figure compares the throughput of several micro benchmarks

on ext4 and ext4-cksum. Sequential write/read are writ-

ing/reading a 1GB file in 4KB requests. Random write/read

are writing/reading 128MB of a 1GB file in 4KB requests.

For sequential read workload, ext4-cksum prefetches 8

checksum blocks for every disk read of a checksum block.

Workload ext4 ext4-cksum Slowdown

(MB/s) (MB/s)

Fileserver 79.58 66.28 16.71%

Varmail 2.90 3.96 -36.55%

Webserver 150.28 150.12 0.11%

Table 7: Macrobenchmarks on ext4-cksum. This

table shows the throughput of three workloads on ext4 and

ext4-cksum. Fileserver is configured with 50 threads per-

forming creates, deletes, appends, and whole-file reads and

writes. Varmail emulates a multi-threaded mail server in

which each thread performs a set of create-append-sync,

read-append-sync, read, and delete operations. Webserver

is a multi-threaded read-intensive workload.

1.8.0. All experiments are performed on machines with

a 3.3GHz Intel Quad Core CPU, 16GB memory, and a

1TB Hitachi Deskstar hard drive. For all experiments, we

reserve 512MB of memory for the view manager.

5.1 Cloud Helper
We first perform the same set of fault injection experi-

ments as in Section 2. The corruption and crash test re-

sults are shown in Table 4 and Table 5. Because the local

state is initially synchronized with the cloud, the cloud

helper is able to fetch the redundant copy from cloud and

recover from corruption and crashes. We also confirm that

ViewBox is able to preserve causal consistency.

5.2 Ext4-cksum
We now evaluate the performance of standalone ext4-

cksum, focusing on the overhead caused by data check-

summing. Table 6 shows the throughput of several mi-

crobenchmarks on ext4 and ext4-cksum. From the table,

one can see that the performance overhead is quite min-

imal. Note that checksum prefeteching is important for

sequential reads; if it is disabled, the slowdown of the

workload increases to 15%.

We perform a series of macrobenchmarks using

Filebench on both ext4 and ext4-cksum with checksum

prefetching enabled. The results are shown in Table 7.

For the fileserver workload, the overhead of ext4-cksum

is quite high, because there are 50 threads reading and

writing concurrently and the negative effect of the extra

seek for checksum blocks accumulates. The webserver

workload, on the other hand, experiences little overhead,

because it is dominated by warm reads.

It is surprising to notice that ext4-cksum greatly outper-

forms ext4 in varmail. This is actually a side effect of the

ordering of data write-backs and journal commit, as dis-

cussed in Section 4.1.2. Note that because ext4 and ext4-

cksum are not mounted with “journal async commit”, the

commit record is written to disk with a cache flush and

the FUA (force unit access) flag, which ensures that when

the commit record reaches disk, all previous dirty data (in-

cluding metadata logged in the journal) have already been

forced to disk. When running varmail in ext4, data blocks

written by fsyncs from other threads during the journal

commit are also flushed to disk at the same time, which

causes high latency. In contrast, since ext4-cksum does

not allow data write-back from fsync to run simultane-

ously with the journal commit, the amount of data flushed

is much smaller, which improves the overall throughput

of the workload.

5.3 View Manager
We now study the performance of various file system op-

erations in an active view when a frozen view exists. The

view manager runs on top of ext4-cksum.

We first evaluate the performance of various operations

that do not cause copy-on-write (COW) in an active view.

These operations are create, unlink, mkdir, rmdir, rename,

utime, chmod, chown, truncate and stat. We run a work-

load that involves creating 1000 8KB files across 100 di-

rectories and exercising these operations on those files and

directories. We prevent the active view from being frozen

so that all these operations do not incur a COW. We see a

11

130 12th USENIX Conference on File and Storage Technologies USENIX Association

Normalized Response Time

Operation Before COW After COW

unlink (cold) 484.49 1.07

unlink (warm) 6.43 0.97

truncate (cold) 561.18 1.02

truncate (warm) 5.98 0.93

rename (cold) 469.02 1.10

rename (warm) 6.84 1.02

overwrite (cold) 1.56 1.10

overwrite (warm) 1.07 0.97

Table 8: Copy-on-write Operations in the View Man-
ager. This table shows the normalized response time (against

ext4) of various operations on a frozen file (10MB) that trig-

ger copy-on-write of data blocks. “Before COW”/”After COW”

indicates the operation is performed before/after affected data

blocks are COWed.

small overhead (mostly less than 5% except utime, which

is around 10%) across all operations, as compared to their

performance in the original ext4., This overhead is mainly

caused by operation logging and other bookkeeping per-

formed by the view manager.

Next, we show the normalized response time of oper-

ations that do trigger copy-on-write in Table 8. These

operations are performed on a 10MB file after the file is

created and marked COW in the frozen view. All oper-

ations cause all 10MB of file data to be copied from the

active view to the frozen view. The copying overhead is

listed under the “Before COW” column, which indicates

that these operations occur before the affected data blocks

are COWed. When the cache is warm, which is the com-

mon case, the data copying does not involve any disk I/O

but still incurs up to 7x overhead. To evaluate the worst

case performance (when the cache is cold), we deliber-

ately force the system to drop all caches before we per-

form these operations. As one can see from the table, all

data blocks are read from disk, thus causing much higher

overhead. Note that cold cache cases are rare and may

only occur during memory pressure. We further measure

the performance of the same set of operations on a file that

has already been fully COWed. As shown under the “Af-

ter COW” column, the overhead is negligible, because no

data copying is performed.

5.4 ViewBox with Dropbox and Seafile
We assess the overall performance of ViewBox using

three workloads: openssh (building openssh from its

source code), iphoto edit (editing photos in iPhoto), and

iphoto view (browsing photos in iPhoto). The latter two

workloads are from the iBench trace suite [15] and are

replayed using Magritte [27]. We believe that these work-

loads are representative of ones people run with synchro-

nization services.

The results of running all three workloads on View-

Box with Dropbox and Seafile are shown in Table 9. In

all cases, the runtime of the workload in ViewBox is at

most 5% slower and sometimes faster than that of the un-

modified ext4 setup, which shows that view-based syn-

chronization does not have a negative impact on the fore-

ground workload. We also find that the memory over-

head of ViewBox (the amount of memory consumed by

the view manager to store frozen views) is minimal, at

most 20MB across all three workloads.

We expect the synchronization time of ViewBox to be

longer because ViewBox does not start synchronizing the

current state of the file system until it is frozen, which

may cause delays. The results of openssh confirm our ex-

pectations. However, for iphoto view and iphoto edit, the

synchronization time on ViewBox with Dropbox is much

greater than that on ext4. This is due to Dropbox’s lack

of proper interface support for views, as described in Sec-

tion 4.2.3. Because both workloads use a file system im-

age with around 1200 directories, to create the view meta-

data for each view, ViewBox has to query the Dropbox

server numerous times, creating substantial overhead. In

contrast, ViewBox can avoid this overhead with Seafile

because it has direct access to Seafile’s internal metadata.

Thus, the synchronization time of iphoto view in View-

Box with Seafile is near that in ext4.

Note that the iphoto edit workload actually has a much

shorter synchronization time on ViewBox with Seafile

than on ext4. Because the photo editing workload in-

volves many writes, Seafile delays uploading when it de-

tects files being constantly modified. After the workload

finishes, many files have yet to be uploaded. Since frozen

views prevent interference, ViewBox can finish synchro-

nizing about 30% faster.

6 Related Work
ViewBox is built upon various techniques, which are re-

lated to many existing systems and research work.

Using checksums to preserve data integrity and consis-

tency is not new; as mentioned in Section 2.3, a num-

ber of existing file systems, including ZFS, btrfs, WAFL,

and ext4, use them in various capacities. In addition, a

variety of research work, such as IRON ext3 [22] and

Z2FS [31], explores the use of checksums for purposes be-

yond simply detecting corruption. IRON ext3 introduces

transactional checksums, which allow the journal to issue

all writes, including the commit block, concurrently; the

checksum detects any failures that may occur. Z2FS uses

page cache checksums to protect the system from corrup-

tion in memory, as well as on-disk. All of these systems

rely on locally stored redundant copies for automatic re-

covery, which may or may not be available. In contrast,

ext4-cksum is the first work of which we are aware that

employs the cloud for recovery. To our knowledge, it is

also the first work to add data checksumming to ext4.

Similarly, a number of works have explored means

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 131

ext4 + Dropbox ViewBox with Dropbox ext4 + Seafile ViewBox with Seafile

Workload Runtime Sync Time Runtime Sync Time Runtime Sync Time Runtime Sync Time

openssh 36.4 49.0 36.0 64.0 36.0 44.8 36.0 56.8

iphoto edit 577.4 2115.4 563.0 2667.3 566.6 857.6 554.0 598.8

iphoto view 149.2 170.8 153.4 591.0 150.0 166.6 156.4 175.4

Table 9: ViewBox Performance. This table compares the runtime and sync time (in seconds) of various workloads running

on top of unmodified ext4 and ViewBox using both Dropbox and Seafile. Runtime is the time it takes to finish the workload and sync

time is the time it takes to finish synchronizing.

of providing greater crash consistency than ordered and

metadata journaling provide. Data journaling mode in

ext3 and ext4 provides full crash consistency, but its high

overhead makes it unappealing. OptFS [7] is able to

achieve data consistency and deliver high performance

through an optimistic protocol, but it does so at the cost of

durability while still relying on data journaling to handle

overwrite cases. In contrast, ViewBox avoids overhead by

allowing the local file system to work in ordered mode,

while providing consistency through the views it synchro-

nizes to the cloud; it then can restore the latest view after

a crash to provide full consistency. Like OptFS, this sac-

rifices durability, since the most recent view on the cloud

will always lag behind the active file system. However,

this approach is optional, and, in the normal case, ordered

mode recovery can still be used.

Due to the popularity of Dropbox and other synchro-

nization services, there are many recent works studying

their problems. Our previous work [30] examines the

problem of data corruption and crash inconsistency in

Dropbox and proposes techniques to solve both problems.

We build ViewBox on these findings and go beyond the

original proposal by introducing view-based synchroniza-

tion, implementing a prototype system, and evaluating our

system with various workloads. Li et al. [19] notice that

frequent and short updates to files in the Dropbox folder

generate excessive amounts of maintenance traffic. They

propose a mechanism called update-batched delayed syn-

chronization (UDS), which acts as middleware between

the synchronized Dropbox folder and an actual folder on

the file system. UDS batches updates from the actual

folder and applies them to the Dropbox folder at once,

thus reducing the overhead of maintenance traffic. The

way ViewBox uploads views is similar to UDS in that

views also batch updates, but it differs in that ViewBox

is able to batch all updates that reflect a consistent disk

image while UDS provides no such guarantee.

7 Conclusion
Despite their near-ubiquity, file synchronization services

ultimately fail at one of their primary goals: protecting

user data. Not only do they fail to prevent corruption and

inconsistency, they actively spread it in certain cases. The

fault lies equally with local file systems, however, as they

often fail to provide the necessary capabilities that would

allow synchronization services to catch these errors. To

remedy this, we propose ViewBox, an integrated system

that allows the local file system and the synchronization

client to work together to prevent and repair errors.

Rather than synchronize individual files, as current

file synchronization services do, ViewBox centers around

views, in-memory file-system snapshots which have their

integrity guaranteed through on-disk checksums. Since

views provide consistent images of the file system, they

provide a stable platform for recovery that minimizes the

risk of restoring a causally inconsistent state. As they re-

main in-memory, they incur minimal overhead.

We implement ViewBox to support both Dropbox and

Seafile clients, and find that it prevents the failures that we

observe with unmodified local file systems and synchro-

nization services. Equally importantly, it performs com-

petitively with unmodified systems. This suggests that the

cost of correctness need not be high; it merely requires ad-

equate interfaces and cooperation.

Acknowledgments
We thank the anonymous reviewers and Jason Flinn (our

shepherd) for their comments. We also thank the mem-

bers of the ADSL research group for their feedback. This

material is based upon work supported by the NSF under

CNS-1319405, CNS-1218405, and CCF-1017073 as well

as donations from EMC, Facebook, Fusion-io, Google,

Huawei, Microsoft, NetApp, Sony, and VMware. Any

opinions, findings, and conclusions, or recommendations

expressed herein are those of the authors and do not nec-

essarily reflect the views of the NSF or other institutions.

References
[1] lvcreate(8) - linux man page.

[2] ZFS on Linux. http://zfsonlinux.org.

[3] Amazon. Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/.

[4] Apple. Technical Note TN1150. http://developer.apple.

com/technotes/tn/tn1150.html, March 2004.

[5] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca

Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. An Analysis of Data Corruption in the

Storage Stack. In Proceedings of the 6th USENIX Sym-

posium on File and Storage Technologies (FAST ’08), San

Jose, California, February 2008.

13

132 12th USENIX Conference on File and Storage Technologies USENIX Association

[6] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File
Systems. http://opensolaris.org/os/community/zfs/docs/

zfs˙last.pdf, 2007.
[7] Vijay Chidambaram, Thanumalayan Sankaranarayana Pil-

lai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Princi-
ples (SOSP ’13), Farmington, PA, November 2013.

[8] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating Sys-
tem Errors. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages 73–
88, Banff, Canada, October 2001.

[9] Jonathan Corbet. Improving ext4: bigalloc, inline data,
and metadata checksums. http://lwn.net/Articles/469805/,
November 2011.

[10] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna
Sperotto, Ramin Sadre, and Aiko Pras. Inside Dropbox:
Understanding Personal Cloud Storage Services. In Pro-
ceedings of the 2012 ACM conference on Internet mea-
surement conference (IMC ’12), Boston, MA, November
2012.

[11] Dropbox. The dropbox tour. https://www.dropbox.com/

tour.

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A Gen-
eral Approach to Inferring Errors in Systems Code. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), pages 57–72, Banff, Canada,
October 2001.

[13] Google. Google drive. http://www.google.com/drive/

about.html.

[14] David Greaves, Junio Hamano, et al. git-read-tree(1): -
linux man page. http://linux.die.net/man/1/git-read-tree.

[15] Tyler Harter, Charlotte Dragga, Michael Vaughn, Andrea
C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A
File is Not a File: Understanding the I/O Behavior of
Apple Desktop Applications. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP
’11), pages 71–83, Cascais, Portugal.

[16] Dave Hitz, James Lau, and Michael Malcolm. File Sys-
tem Design for an NFS File Server Appliance. In Proceed-
ings of the USENIX Winter Technical Conference (USENIX
Winter ’94), San Francisco, California, January 1994.

[17] Minwen Ji, Alistair C Veitch, and John Wilkes. Seneca: re-
mote mirroring done write. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’03), San Antonio,
Texas, June 2003.

[18] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R.
Goodson, Kiran Srinivasan, Randy Thelen, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Parity
Lost and Parity Regained. In Proceedings of the 6th
USENIX Symposium on File and Storage Technologies
(FAST ’08), pages 127–141, San Jose, California, Febru-
ary 2008.

[19] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y.
Zhao, Cheng Jin, Zhi-Li Zhang, and Yafei Dai. Efficient
Batched Synchronization in Dropbox-like Cloud Storage
Services. In Proceedings of the 14th International Middle-

ware Conference (Middleware 13’), Beijing, China, De-
cember 2013.

[20] Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Andreas Dilger, Alex Tomas, Laurent Vivier, and Bull
S.A.S. The New Ext4 Filesystem: Current Status and Fu-
ture Plans. In Ottawa Linux Symposium (OLS ’07), Ottawa,
Canada, July 2007.

[21] Microsoft. How ntfs works. http://technet.microsoft.com/

en-us/library/cc781134(v=ws.10).aspx, March 2003.

[22] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[23] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The
Linux B-Tree Filesystem. ACM Transactions on Storage
(TOS), 9(3):9:1–9:32, August 2013.

[24] Seafile. Seafile. http://seafile.com/en/home/.

[25] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,
Mike Nishimoto, and Geoff Peck. Scalability in the XFS
File System. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’96), San Diego, California,
January 1996.

[26] Stephen C. Tweedie. Journaling the Linux ext2fs File Sys-
tem. In The Fourth Annual Linux Expo, Durham, North
Carolina, May 1998.

[27] Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. ROOT: Replaying Multi-

threaded Traces with Resource-Oriented Ordering. In Pro-
ceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP ’13), Farmington, PA, November
2013.

[28] Microsoft Windows. Skydrive. http://windows.microsoft.
com/en-us/skydrive/download.

[29] Erez Zadok, Ion Badulescu, and Alex Shender. Extending
File Systems Using Stackable Templates. In Proceedings
of the USENIX Annual Technical Conference (USENIX
’99), Monterey, California, June 1999.

[30] Yupu Zhang, Charlotte Dragga, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. *-Box: Towards
Reliabil-ity and Consistency in Dropbox-like File
Synchronization Services. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’13), San Jose, California, June 2013.

[31] Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Zettabyte Reliability with
Flexible End-to-end Data Integrity. In Proceedings of the
29th IEEE Conference on Massive Data Storage (MSST
’13), Long Beach, CA, May 2013.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 133

CRAID: Online RAID Upgrades Using Dynamic Hot Data Reorganization

A. Miranda§, T. Cortes§‡

§Barcelona Supercomputing Center (BSC–CNS) ‡Technical University of Catalonia (UPC)

Abstract
Current algorithms used to upgrade RAID arrays typi-
cally require large amounts of data to be migrated, even
those that move only the minimum amount of data re-
quired to keep a balanced data load. This paper presents
CRAID, a self-optimizing RAID array that performs an
online block reorganization of frequently used, long-term
accessed data in order to reduce this migration even fur-
ther. To achieve this objective, CRAID tracks frequently
used, long-term data blocks and copies them to a ded-
icated partition spread across all the disks in the array.
When new disks are added, CRAID only needs to ex-
tend this process to the new devices to redistribute this
partition, thus greatly reducing the overhead of the up-
grade process. In addition, the reorganized access patterns
within this partition improve the array’s performance,
amortizing the copy overhead and allowing CRAID to
offer a performance competitive with traditional RAIDs.

We describe CRAID’s motivation and design and we
evaluate it by replaying seven real-world workloads in-
cluding a file server, a web server and a user share. Our
experiments show that CRAID can successfully detect
hot data variations and begin using new disks as soon as
they are added to the array. Also, the usage of a dedicated
partition improves the sequentiality of relevant data ac-
cess, which amortizes the cost of reorganizations. Finally,
we prove that a full-HDD CRAID array with a small dis-
tributed partition (<1.28% per disk) can compete in per-
formance with an ideally restriped RAID-5 and a hybrid
RAID-5 with a small SSD cache.

1 Introduction

Storage architectures based on Redundant Arrays of
Independent Disks (RAID) [36, 10] are a popular choice
to provide reliable, high performance storage at an accept-
able economic and spatial cost. Due to the ever-increasing
demand of storage capabilities, however, applications of-
ten require larger storage capacity or higher performance,
which is normally achieved by adding new devices to the
existing RAID volume. Nevertheless, several challenges
arise when upgrading RAID arrays in this manner:

1. To regain uniformity in the data distribution, certain
blocks must be moved to the new disks. Traditional

approaches that try to preserve the round-robin or-
der [15, 7, 49] end up redistributing large amounts
of data between old and new disks, regardless of the
number of new and old disks.

2. Alternative methods that migrate a minimum amount
of data, can have problems to keep a uniform data
distribution after several upgrade operations (like the
Semi-RR algorithm [13]) or limit the array’s perfor-
mance (GSR [47]).

3. Existing RAID solutions with redundancy mecha-
nisms, like RAID-5 and RAID-6, have the additional
overhead of recalculating and updating the associated
parities, as well as the necessary metadata updates as-
sociated to stripe migration.

4. RAID solutions are widely used in online services
where clients and applications need to access data con-
stantly. In these services, the downtime cost can be
extremely high [35], and thus any strategy to upgrade
RAID arrays should be able to interleave its job with
normal I/O operations.

To address the challenges above, in this paper we pro-
pose a novel approach called CRAID, whose purpose is
to minimize the overhead of the upgrade process by re-
distributing only “relevant data” in real-time. To do that,
CRAID tracks data that is currently being used by clients
and reorganizes it in a specific partition. This partition
allows the volume to maintain the performance and distri-
bution uniformity of the data that is actually being used
by clients and, at the same time, significantly reduce the
amount of data that must be migrated to new devices.

Our proposal is based on the notion that providing good
levels of performance and load balance for the current
working set suffices to preserve the QoS1 of the RAID ar-
ray. This notion is born from the following observations
about long-term access patterns in storage: (i) data in a
storage system displays a non-uniform access frequency
distribution: when considering coarse-granularity time
spans, “frequently accessed” data is usually a small frac-
tion of the total data; (ii) this active data set exhibits long-
term temporal locality and is stable, with small amounts
of data losing or gaining importance gradually; (iii) even

1In this paper, the term QoS refers to the performance and load
distribution levels offered by the RAID array.

134 12th USENIX Conference on File and Storage Technologies USENIX Association

Trace Year Workload Reads (GB) Writes (GB) R/W Total accessed Accesses to
Total Unique Total Unique ratio data (GB) Top 20% data

cello99 1999 research 73.73 10.52 129.91 10.92 0.62 203.65 65.77%
deasna 2002 research/email 672.4 23.32 231.57 45.45 2.54 903.97 86.88%
home02 2001 NFS share 269.29 9.07 66.35 4.49 3.94 335.64 61.36%
webresearch 2009 web server – – 3.37 0.51 – 3.37 51.33%
webusers 2009 web server 1.16 0.45 6.85 0.50 0.09 8.01 56.17%
wdev 2007 test server 2.76 0.2 8.77 0.42 0.21 11.54 72.44%
proj 2007 file server 2152.74 1238.86 367.05 168.88 7.33 2519.79 57.64%

Table 1: Summary statistics of 1-week long traces from seven different systems.

within the active data set, usage is heavily skewed, with
“really popular” data receiving over 90% accesses [29].

These observations are largely intuitive and similar to
the findings on short-term access patterns of other re-
searchers [14, 20, 38, 2, 37, 42, 41, 5]. To our knowledge,
however, there have not been any attempts to apply this
information to the upgrade process of RAID arrays.

This paper makes the following contributions: we
prove that using a large cache-like partition that uses all
storage devices can be better than using dedicated de-
vices due to the improved parallelism, in some cases even
when the dedicated devices are faster. Additionally, we
demonstrate that information about hot data can be used
to reduce the overhead of rebalancing a storage system.

The paper is organized as follows: (i) we study the char-
acteristics of several I/O workloads and show how the
findings motivate CRAID (§2), (ii) we present the design
of an online block reorganization system that adapts to
changes in the I/O working set (§3), (iii) we evaluate sev-
eral well-known cache management algorithms and their
effectiveness in capturing long-term access patterns (§4),
and (iv) we simulate CRAID under several real-system
workloads to evaluate its merits and weaknesses (§5).

2 Characteristics of I/O Workloads

In this section we investigate the characteristics of several
I/O workloads, focusing on those properties that directly
motivate CRAID. In order for CRAID to be successful,
the cost of reorganizing data must be lower than the po-
tential gain obtained from the improved distribution, or
it would not make sense to reorganize this data. Thus,
we need to prove that long-term working sets exist and
that they account for a large fraction of I/O. To do that,
we analyzed a collection of well-known traces taken from
several real systems. To increase the scope of our analysis,
we use traces representing many different workloads and
collected at different points in time over the last 13 years.
Even if some of these traces are rather old, they can be
helpful to establish a historical perspective on long-term
hot data. Table 1 summarizes key statistics for one week
of these traces, which we describe in detail below:

• The cello99 traces are a set of well-known block-level
traces used in many storage-related studies [22, 34, 46,
51]. Collected at HP Labs in 1999, they include one
year of I/O workloads from a research cluster.

• The deasna traces [12] were taken from the NFS sys-
tem at Harvard’s Department of Engineering and Ap-
plied Sciences over the course of six weeks, in mid-fall
2002. Workload is a mix of research and email.

• The home02 traces [12] were collected in 2001 from
one of fourteen disk arrays in the Harvard CAMPUS
NFS system. This system served over 10,000 school
and administration accounts and consisted of three
NFS servers connected to fourteen 53GB disk arrays.
The traces collect six weeks worth of I/O operations.

• The MSRC traces [31] are block-level traces of stor-
age volumes collected over one week at Microsoft Re-
search Cambridge data center in 2007. The traces col-
lected I/O requests on 36 volumes in 13 servers (179
disks). We use the wdev and proj servers, a test web
server (4 volumes) and a server of project files (5 vol-
umes), as they contain the most requests.

• The SRCMap traces are block-level traces collected by
the Systems Research Laboratory (SyLab) at Florida
International University in 2009 [41]. The traces were
collected for three weeks at three production systems
with several workloads. We use the webresearch and
webusers workloads as they include the most requests.
The first was an Apache web server managing FIU re-
search projects, and the second a web server hosting
faculty, staff, and graduate student web sites.

Our analysis of the traces shows that the following ob-
servations are consistent across all traces and, thus, vali-
date the theoretical applicability of CRAID.

Obs. 1 Data usage is highly skewed with a small percent-
age of blocks being heavily accessed.

Fig. 1 (top row), shows the CDF for block access fre-
quency for each workload. All traces show that the dis-
tribution of access frequencies is highly skewed: for read

USENIX Association 12th USENIX Conference on File and Storage Technologies 135

(a) cello99 (b) deasna (c) home02 (d) webresearch

(e) webusers (f) wdev (g) proj

Figure 1: Block-frequency and working-set overlap for 1-week traces from seven different systems. The top row plots depict the CDF
of block accesses for different frequencies: a point (f , p1) on the block percentage curve indicates that p1% of total blocks were
accessed at most f times. Bottom row plots depict changes in the daily working-sets of the workloads: a bar (d, p2) indicates that
days d and d +1 had p2% blocks in common. This is shown for all blocks and for the 20% blocks receiving more accesses.

requests ≈76–98% blocks are accessed 50 times or less,
while for write requests this value rises to ≈89–98%. On
the other hand, a small fraction of blocks (≈0.05–0.7%) is
very heavily accessed in all cases (read or write requests).

This skew can also be seen in Table 1: the top 20%
most frequently accessed blocks account for a large frac-
tion (≈51–83%) of all accesses, which are similar results
to those reported in previous studies [14, 24, 5, 41, 29].

Obs. 2 Working-sets remain stable over long durations.

Based on the first observation, we hypothesize that data
usage exhibits long-term temporal locality. By long-term,
we refer to a locality of hours or days, rather than seconds
or minutes which is more typical of memory accesses. It
is fairly common for a developer to work on a limited
number of projects or for a user to access only a fraction
of his data (like personal pictures or videos) over a few
days or weeks. Even in servers, the popularity of the data

accessed may result in long-term temporal locality. For
instance, a very popular video uploaded to the web will
receive bursts of accesses for several weeks or months.

Fig. 1 (bottom row), depicts the changes in the daily
working-sets for each of the workloads. Each bar repre-
sents the percentage of unique blocks that are accessed
both in day d and d +1. Most workloads show a signifi-
cant overlap (≈55%–80%) between the blocks accessed
in immediately successive days, and we also observe that
there is a substantial overlap even when considering the
top 20% most accessed blocks. Trace deasna is partic-
ularly interesting because it shows low values of over-
lap (≈20%–35%) when considering all accesses, which
increases to ≈55%–80% for the top 20% blocks. This
means that the working-set for this particular workload
is more diverse but still contains a significant amount of
heavily reused blocks. Based on the observations above,
it seems reasonable that exploiting long-term temporal

136 12th USENIX Conference on File and Storage Technologies USENIX Association

locality and non-uniform access distribution can deal per-
formance benefits. CRAID’s goal is to use these to amor-
tize the cost of data rebalancing during RAID upgrades.

3 CRAID Overview
The goal behind CRAID is to reduce the amount of data
that needs to be migrated in reconfigurations while pro-
viding QoS levels similar to those of traditional RAID.

CRAID claims a small portion of each device and uses
it to create a cache partition (PC) that will be used to place
copies of heavily accessed data blocks. The aim of this
partition is to separate data that is currently important for
clients from data that is rarely (if ever) used. Data not cur-
rently being accessed is kept in an archive partition (PA)
that uses the remainder of the disks. Notice that this parti-
tion can be managed by any data allocation strategy, but it
is important that the archive can grow gracefully and any
archived data is accessed with acceptable performance.

Effectively optimizing the layout of heavily used
blocks within a small partition is beneficial for several
reasons:

(i) It is possible to create a large cache by using a small
fraction of all available disks, which allows impor-
tant data to be cache-resident for longer periods.

(ii) A disk-based cache is a persistent cache: any opti-
mized layout continues to be valid as long as it is
warranted by access semantics, even if it is neces-
sary to shutdown or reconfigure the storage system.

(iii) The size of the partition can be easily configured by
an administrator or an automatic process to better
suit storage demands.

(iv) Clustering frequently accessed data together offers
the opportunity to improve access patterns: data ac-
cesses that were originally scattered can be sequen-
tialized if the layout is appropriate. This also helps
reduce seek times and rotational delays in all disks
since “hot” blocks are placed close to each other.

(v) Whenever new devices are added, current strategies
need to redistribute large amounts of data to be able
to use them effectively and also to maintain QoS lev-
els (e.g. performance or load balance). A disk-based
cache offers a unique possibility to maintain QoS by
redistributing only most accessed data. This should
reduce the cost of the upgrade process significantly.

(vi) Extending the partition over all devices has three ad-
vantages over using dedicated devices. First, it maxi-
mizes the potential parallelism offered by the storage
system. Second, it is much more likely to saturate a
reduced set of dedicated devices than a large array.
Third, benefits can be gained with the existing set of
devices, without having to acquire more.

I /O MONITOR

I/O REDIRECTOR

LBAorig LBAcache

LBAorig LBAcache

LBAorig LBAcache

MAPPING CACHE

I/O request

update

lookup

PA P→ C
copy

send I/O
to PC

CRAID A

B.1

B.2

C.2

PC P→ A
updateD

C.1

S
to

ra
g

e
 D

e
v

ic
e

s

Figure 2: CRAID’s I/O control flow.
Fig. 2 shows the control flow supported by CRAID’s

architecture: when an I/O request enters the system (A),
it is captured by CRAID’s I/O monitor which determines
if the accessed data must be considered “active”. If so,
data blocks are copied to the caching partition if they
are not already in it (B.1) and an appropriate mapping
〈LBAoriginal ,LBAcache〉 is stored in the mapping cache
(B.2). From this point on, an I/O redirector will redirect
all future accesses to LBAoriginal to the caching partition
(C.1 and C.2). This continues until the I/O monitor de-
cides that data is no longer active and removes the entry
from the mapping cache. Any update to the contents of
the data is then written back to PA (D). This flow means
that the upgrade process begins immediately when a new
disk is added to CRAID (which forces PC to grow), and
is interleaved with the array’s normal I/O operation. This
permits CRAID to use the new disks from the moment
they are added to the array.

4 Detailed Design
This section elaborates on CRAID’s design details by dis-
cussing its individual components mentioned in §3: the
I/O monitor, the I/O redirector and the mapping cache.

4.1 I/O Monitor
The I/O monitor is responsible for analyzing I/O requests
to identify the working set and schedule the appropriate
operations to copy data between partitions. The I/O mon-
itor uses a conservative definition of working set that in-
cludes the latest k distinct blocks that have been more
active, where k is PC’s current capacity.

When a request forces an eviction in PC, the I/O moni-
tor checks if the cached copy is dirty and, if so, schedules
the corresponding I/O operations to update the original
data. Otherwise, the data is replaced by the newly cached
block. Currently, the I/O monitor supports the following
simple policies in order to make replacement decisions:

• Least Recently Used (LRU) uses recency of access to
decide if a block has to be replaced.

USENIX Association 12th USENIX Conference on File and Storage Technologies 137

• Least Frequently Used with Dynamic Aging (LFUDA)
uses popularity of access and replaces the block with
the smallest key Ki = (Ci ∗Fi)+L, where Ci is the re-
trieval cost, Fi is a frequency count and L is a running
age factor that starts at 0 and is updated for each re-
placed block [3].

• Greedy-Dual-Size with Frequency (GDSF) includes
the size of the original request, Si, and replaces the
block with minimum Ki = (Ci ∗Fi)/Si +L [21, 9, 3].

• Adaptive Replacement Cache (ARC) [28] balances be-
tween recency and frequency in an online and self-
tuning fashion. ARC adapts to changes in the work-
load by tracking ghost hits (recently evicted entries)
and replaces either the LRU or LFU block depending
on recent history.

• Weighted LRU (WLRUw) is a simple extension of the
LRU algorithm that tries to find the least recently used
block that is also clean (i.e. not dirty). In order to avoid
lengthy O(k) traversals it uses a parameter w ∈ R to
limit the number of blocks that will be evaluated to
k ∗w. If no suitable candidate is found in k ∗w steps,
the LRU block is replaced.

We evaluate the effectiveness of these basic strategies
to accurately predict the workload in §5.1. We imple-
mented these basic strategies instead of more complex
ones because these algorithms are typically extremely ef-
ficient and consume few resources, which makes them
suitable to be included in a RAID controller. Further-
more, their prediction rates are usually quite high. Ex-
ploring more sophisticated strategies and/or data mining
approaches to model complex data interrelations is left
for the future.

The I/O monitor is also in charge of rebalancing PC.
When new devices are added, the I/O monitor invalidates
all the blocks contained in PC (writing back to PA the
copies that need updating) and starts filling it with the
current working set when blocks are requested. This con-
servative approach allows us to create long sequential
chains of potentially related blocks, which improves the
sequentiality and parallelism of the data in PC. Note that
since PC always holds ‘hot blocks’, the rebalancing is
never completely finished unless the working set remains
stable for a long time. Nevertheless, as we show in §5,
the cost of this ‘on-line’ monitoring and rebalancing is
amortized by the performance obtained.

4.2 Mapping Cache
The mapping cache is an in-memory data structure used
to translate block addresses in the PA to their correspond-
ing copies in PC. The structure stores, for each block
copied to PC, the block’s LBA in PA, the corresponding

LBA in PC and a flag indicating if the cached copy has
been modified.

Our current implementation uses a tree-based binary
structure to handle mappings, which ensures that the to-
tal time complexity for a lookup operation is given by
O(log k). Concerning memory, for every block in PC,
CRAID stores 4 bytes for each LBA and 1 dirty bit, plus
8 additional bytes for the structure pointer. Assuming that
all k blocks are occupied, that the configured block size
is 4KB and PC size of S GB, the worst case memory re-
quirement is 2×S MB for LBAs, S/25 for the dirty infor-
mation, and 4× S MB for the tree pointers. Thus, in the
worst case, CRAID requires memory of 0.58% the size
of the cache partition, or ≈5.9MB per GB, an acceptable
requirement for a RAID controller.

Notice that the destruction of the mapping cache can
lead to data loss since block updates are performed in
place in the cache partition. Failure resilience of the map-
ping cache is provided by maintaining a persistent log of
which cached data blocks have been modified and their
translations. This ensures that these blocks, whose cached
copies were not identical to the original data, can be suc-
cessfully recovered. Blocks that were not dirty in PC don’t
need to be recovered and are invalidated.

4.3 I/O Redirector
The I/O redirector is responsible for intercepting all read
and write requests sent to the CRAID volume and redirect
them to the appropriate partition. For each request, it first
checks the mapping cache for an existing cached copy. If
none is found, the request is served from PA. Otherwise,
the request is dispatched to the appropriate location in PC.
Multi-block I/Os are split as required.

5 Evaluation

In this section we evaluate CRAID’s behavior using a
storage simulator. We seek to answer the following ques-
tions: (1) How well does CRAID capture working sets?
(2) How does CRAID impact performance? (3) How sen-
sitive is load balance to CRAID’s I/O redirection? To an-
swer these questions, we evaluate CRAID under realistic
workloads, using detailed simulations where we replay
the real-time storage traces described in §2. Since some
of these traces include data collected over several weeks
or months, which makes them intractable for fine-grained
simulations, we simulate an entire continuous week (168
hours) chosen at random from each dataset. Note that
in this paper, we only describe the evaluations of sev-
eral CRAID variants that use RAID-5 in PC. For brevity’s
sake, we do not include similar results with RAID-0 [4].

Simulation system. The simulator consists of a workload
generator and a simulated storage subsystem composed of

138 12th USENIX Conference on File and Storage Technologies USENIX Association

0 1 p0 2 3 p1

5 p3 6 7 p4 8

p6 10 11 p7 12 13

15 16 p9 17 18 p10

4 p2

p5 9

14 p8

p11 19

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

parity group 0 parity group 1 parity group 2

(a) RAID-5

0 1 2 3 p0 16

4 5 6 p1 7 18

8 9 p2 10 11 p6

12 p3 13 14 15 22

17

p5

20

23

p4

19

21

p7

RAID set 0 RAID set 1

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

(b) RAID-5+

2 3 p0' 7 9 p1'

12 p3' 13 14 p4'

0 1 p0 2 3 p1

5 p3 6 7 p4 8

10 p2'

4 p2

p5 9

p6 10 11 p7 12 13 14 p8

parity group 0 parity group 1 parity group 2

parity group 0' parity group 1' parity group 2'

c
a

c
h

e

p
a

rt
it

io
n

a
rc

h
iv

e

p
a

rt
it

io
n

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

(c) CRAID-5

2 3 p0' 7 9 p1'

12 p3' 13 17 p4'

0 1 2 3 p0 12

4 5 6 p1 7 14

10 p2'

13 p3

p4 15

8 9 p2 10 11 p5 16 17

parity group 0' parity group 1' parity group 2'

c
a

c
h

e

p
a

rt
it

io
n

a
rc

h
iv

e

p
a

rt
it

io
n

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

RAID set 0 RAID set 1

(d) CRAID-5+

2 3 7 9 p0'

12 13 14 p1' 17

0 1 p0 2 3 p1

5 p3 6 7 p4 8

4 p2

p5 9

p6 10 11 p7 12 13 14 p8

parity group 0 parity group 1 parity group 2

d
e

d
ic

a
te

d

c
a

c
h

e
 p

a
rt

it
io

n
a

rc
h

iv
e

p

a
rt

it
io

n

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

15 16 p9 17 18 p10 p11 19

Disk 5 Disk 6 Disk 7 Disk 8 Disk 9 Disk 10Disk 11Disk 12

(e) CRAID-5ssd

2 3 7 9 p0'

12 13 14 p1' 17

0 1 2 3 p0 16

4 5 6 p1 7 18

17 p4

p5 19

8 9 p2 10 11 p6 20 21

d
e

d
ic

a
te

d
 c

a
c
h

e
 p

a
rt

it
io

n
a

rc
h

iv
e

p

a
rt

it
io

n

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

12 p3 13 14 15 22 23 p7

Disk 5 Disk 6 Disk 7 Disk 8 Disk 9 Disk 10Disk 11Disk 12

RAID set 0 RAID set 1

(f) CRAID-5+
ssd

Data Hot Data Parity

Figure 3: Overview of the different allocation policies evaluated.

an array controller and appropriate storage components.
For each request recorded in the traces, the workload gen-
erator issues a corresponding I/O request at the appropri-
ate time and sends it down to the array controller.
The array controller’s main component is the I/O pro-
cessor which encompasses the functions of both the I/O
monitor and the I/O redirector. According to the incoming
I/O address, it checks the mapping cache and forwards it
to the caching partition’s segment of the appropriate disk.
The workload generator, the mapping cache and the
I/O processor are implemented in C++, while the dif-
ferent storage components are implemented in DiskSim.
DiskSim [8] is an accurate and thoroughly validated disk
system simulator developed in the Carnegie Mellon Uni-
versity, which has been used extensively in research
projects to study storage architectures [1, 32, 50, 25].
All experiments use a simulated testbed consisting of Sea-
gate Cheetah 15,000 RPM disks [39], each with a capacity
of 146GB and 16MB of cache. This is the latest (vali-
dated) disk model available to Disksim. Though some-
what old, we decided to use these disks in order to use
the detailed simulation model offered by Disksim, rather
than a less detailed one. Besides, since our analysis is a
comparative one, the disks’ performance should benefit
or harm all strategies equally. For the simulations involv-

Trace LRU LFUDA GDSF ARC WLRU0.5

cello99 65.23 65.23 48.75 65.66 65.22
deasna 89.63 89.90 67.24 89.65 89.73
home02 93.91 93.86 77.93 93.92 93.90
webresearch 81.14 78.92 54.41 82.38 82.14
webusers 80.40 78.72 60.49 81.01 81.40
wdev 91.04 91.88 32.78 91.06 91.02
proj 75.55 75.73 25.43 75.58 75.65

Table 2: Hit ratio (%) for each cache partition management
algorithm. Best and second best shown in bold.

ing SSDs, we use Microsoft Research’s idealized SSD
model [1]. Since the capacity and number of disks in the
original traced systems differs from our testbed, we deter-
mine the datasets for each trace via static analysis. These
datasets are mapped onto the simulated disks uniformly
so that all disks have the same access probability.
Strategies evaluated. All experiments evaluate the six
following allocation policies, an overview of which is
shown in Fig. 3:

• RAID-5: A RAID-5 configuration that uses all disks
available. Stripes are as long as possible but are divided
into parity groups to improve the robustness and recov-

USENIX Association 12th USENIX Conference on File and Storage Technologies 139

Trace LRU LFUDA GDSF ARC WLRU0.5

cello99 34.76 34.76 51.24 34.31 33.76
deasna 10.36 10.09 32.74 10.34 10.34
home02 6.08 6.13 22.06 6.07 6.08
webresearch 18.84 21.06 45.58 17.60 18.83
webusers 19.58 21.26 39.50 18.98 19.28
wdev 8.88 8.04 67.13 8.85 8.58
proj 24.42 24.24 74.55 24.39 24.72

Table 3: Replacement ratio (%) for each cache partition man-
agement algorithm. Best and second best in bold.

erability of the array (Fig. 3a). This policy will help
establish a comparison baseline as it provides maxi-
mum parallelism and ideal workload distribution. No-
tice, however, that expanding such an array in real life
can be prohibitively expensive.

• RAID-5+: A RAID-5 configuration that has been ex-
panded and restriped several times. Each expansion
phase adds 30% additional disks [27] that constitute
a new independent RAID-5. Thus the system can be
considered a collection of independent RAID-5 arrays
(or sets), each with its own stripe size, that have been
added to expand the storage capacity (see Fig. 3b). This
serves as a comparison baseline to a realistic system
upgraded many times.

• CRAID-5 and CRAID-5+: CRAID configurations
that use RAID-5 for the caching partition. CRAID-5
also uses RAID-5 for the archive partition while
CRAID-5+ uses RAID-5+. The first one serves to eval-
uate the performance impact of using CRAID on an
ideally restriped RAID-5 and the effects on perfor-
mance of data transfers from/to the cache. With the
second one, we evaluate the benefits of using CRAID
in a storage system that has grown several times, with
a PA that grows by aggregation.

• CRAID-5ssd and CRAID-5+
ssd: CRAID configurations

analogous to CRAID-5 and CRAID-5+ but using a
fixed number of SSDs for the cache partition. This al-
lows us to evaluate the advantages, if any, of using disk-
based CRAID against using dedicated SSDs, which is
a common solution offered by storage vendors.

We simulate RAID-5 and RAID-5+ in their ideal state,
i.e., when the dataset has been completely restriped. The
reason is that since CRAID is permanently in an “expan-
sion” phase and sacrifices a small amount of capacity, in
order to be useful its performance should be closer to an
optimum RAID-5 array, rather than one being restriped.
All the arrays simulated use 50 disks, a number cho-
sen based on the datasets of the traces examined, except
those for CRAID-5ssd and CRAID-5+

ssd that include 5 ad-
ditional SSDs (10%) for the dedicated cache. RAID-5
uses a parity group size of 10 disks both as a stand-alone

 0
 2
 4
 6
 8

 10
 12
 14

 0.02 0.04 0.08 0.16 0.32

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(a) cello99

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.08 0.16 0.32 0.64 1.28

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(b) deasna

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0.02 0.04 0.08 0.16 0.32

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(c) home02

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0.004 0.008 0.016 0.032 0.064

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(d) webusers

 0
 1
 2
 3
 4
 5
 6

 0.002 0.004 0.008 0.016 0.032

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(e) wdev

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.016 0.032 0.064 0.128 0.256

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(f) proj

RAID-5

RAID-5+
CRAID-5

CRAID-5+
CRAID-5ssd
CRAID-5ssd+

Figure 4: Comparison of I/O response time (read requests).

allocation policy and as a part of a CRAID configuration.
Similarly, RAID-5+ begins with 10 disks and adds a new
array of 3, 4, 5, 7, 9 and 12 disks (+30%) in each expan-
sion step until the 50-disk mark is reached. The stripe
unit for all policies is 128KB based on Chen’s and Lee’s
work [11]. In all experiments, the cache partition begins
in a cold state.

5.1 Cache Partition Management
Here we evaluate the effectiveness to capture the work-
ing set of the different cache algorithms supported by the
I/O monitor (refer to §4.1). In this experiment we are
concerned with the ideal results of the prediction algo-
rithms to select the best one for CRAID. Thus, we use
a simplified disk model that resolves each I/O instantly,
and allows us to measure the properties of each algorithm
with no interferences. The remaining experiments use the
more realistic disk model.

Tables 2 and 3 show, respectively, the hit and replace-
ment ratio delivered by each algorithm using a PC size of
0.1% the weekly working set. We observe that, for each
trace, all algorithms except one show similar hit and re-

140 12th USENIX Conference on File and Storage Technologies USENIX Association

(a) cello99

(b) webusers

Figure 5: Sequential access distribution (CDF) for the cello99
and webusers traces. Sequentiality percentages captured each
second. Other traces show similar results.

placement ratios with the ARC algorithm showing the
best results in both evaluations. The only exception is the
GDSF algorithm, which shows significantly worse results
due to the addition of the request size as a metric which
does not seem very useful in this kind of scenario.

For CRAID strategies based on RAID-5, however, evic-
tions of clean blocks are preferred as long as the effec-
tiveness of the algorithm is not compromised. This is be-
cause evicting a dirty block forces CRAID to update the
original blocks and its parity in the PA, which requires 4
additional I/Os (2 reads and 2 writes). In this regard, the
WLRU strategy is more suitable since it helps reduce the
number of I/O operations needed to keep consistency: if
the data block replaced has not been modified, there’s no
need to copy it back to PA. Thus, in the following exper-
iments we configure the I/O monitor with the WLRU0.5
algorithm since it shows hit and replacement ratios simi-
lar to ARC, and reduces the amount of dirty evictions.

5.2 Response Time
In this section we evaluate the performance impact of us-
ing CRAID. For each allocation policy and configuration,
we measure the response time of each read and write re-
quest occurred during the simulations. Figs. 4 and 6 show
the response time measurements2 of each CRAID variant,

295% confidence interval.

compared to the RAID-5 and RAID-5+ baselines.
Note that each strategy was simulated with different

cache partition sizes in order to estimate the influence of
this parameter on performance. In the results shown in
this section, the cache partition is successively doubled
until no evictions have to be performed. This represents
the best case for CRAID since data movement between
the partitions is reduced to a minimum.

Read requests. The results for read requests are shown in
Fig. 4. First, we observe that requests take notably longer
to complete in RAID-5+ than in RAID-5 in all cases. This
is to be expected since the longer stripes in RAID-5 in-
crease its potential parallelism and provide a more effec-
tive workload distribution.
Second, in most traces, hybrid strategies CRAID-5 and
CRAID-5+ offer performance comparable to that of an
ideal RAID-5, or even better for certain cache sizes (e.g.
webusers trace, Fig. 4d). The explanation lies in the fact
that CRAID’s cache partition is able to better exploit
the spatial locality available in commonly used data: co-
locating hot data in a small area of each disk helps reduce
seek times when compared to the same data being ran-
domly spread over the entire disk, and also increases the
sequentiality of access patterns. This can be seen in Fig. 5,
that shows the probability distribution (CDF) of the se-
quential access percentage for the cello99 and webusers
traces (computed as #Seq Access

#Accesses and aggregated per sec-
ond of simulation). Here we see that access sequentiality
in CRAID-5 and CRAID-5+ is similar to that of RAID-5
and significantly better than that of RAID-5+. This helps
reduce the response time per request and contributes to
the overall performance of the array.
Nevertheless, CRAID’s effectiveness depends on how
well hot data is predicted. Despite the good results shown
in §5.1, Fig. 4f shows that performance results for the
proj trace are not as good as in the other traces. Table 4
shows that CRAID’s best hit ratio for the proj trace is
lower than in other traces (e.g. 85.25% vs. 99.51% in
home02) and that its eviction count is higher. These two
factors contribute to more data being transferred to the
cache partition and explain the drop in performance.
Most interestingly, the performance and sequentiality pro-
vided by CRAID-5+ is similar to that of CRAID-5, even
though it uses a RAID-5+ strategy for the archive par-
tition. This proves that the cache partition is absorb-
ing most of the I/O, and the array behaves like an ideal
RAID-5, regardless of the strategy used for stale data.
Third, increasing the size of the cache partition improves
read response times in all CRAID-5 variants. This is to be
expected since a larger cache partition increases the prob-
ability of a cache hit and also decreases the number of
evictions, which greatly improves the effectiveness of the
strategy. In most traces, however, once a certain partition

USENIX Association 12th USENIX Conference on File and Storage Technologies 141

Trace Best hit ratio Worst eviction ratio
reads writes reads writes

cello99 97.85% 98.88% 21.28% 9.53%
deasna 99.53% 97.80% 0.92% 3.17%
home02 99.51% 99.53% 3.32% 2.59%
webresearch - 98.76% - 7.66%
webusers 94.95% 99.33% 16.65% 6.56%
wdev 98.62% 99.40% 1.90% 10.76%
proj 85.25% 88.45% 21.97% 9.13%

Table 4: Best hit ratio and worst eviction ratio (all simulations).

Strategy Mean 99th pctile Max

Ioq Cdev Ioq Cdev Ioq Cdev

CRAID-5+ 2.11 8.65 20 44 381 50
CRAID-5+

ssd 4.74 6.49 45 23 427 40

Table 5: Comparison of CRAID’s SSD-dedicated vs. full-HDD
approach. Ioq: ioqueue size, Cdev: concurrent devices. Trace:
wdev, PC size: 0.002%. Other traces show similar results.

size SM is reached, response times stop improving (e.g.
deasna with SM = 0.16% or home02 with SM = 0.08%,
Figs. 4b and 4c, respectively). Examination of these traces
shows that CRAID is able to achieve a near maximum hit
ratio with a partition of size SM , and increasing it further
provides barely noticeable benefits.
Finally, we see that the performance with dedicated SSDs
is better than using a distributed partition for most traces.
This is to be expected since SSDs are significantly faster
than HDDs, and requests can be completed fast enough to
avoid saturating the devices. Note, however, that for some
PC sizes, full-HDD CRAID is able to offer similar per-
formance levels (Figs. 4a, 4b, 4d, and 4e), and, given the
difference in $/GB between SSDs and HDDs, it might be
an appropriate option when it is not possible to add 10%
SSDs to the storage architecture. Additionally, a full-SSD
RAID should also benefit from the improved parallelism
offered by an optimized PC.

Write requests. The results for write requests are shown
in Fig. 6. Similarly to read requests, we observe that
write requests are significantly slower in RAID-5+ than
in RAID-5, for all traces. Most importantly, the hybrid
strategies CRAID-5 and CRAID-5+ perform better than
traditional RAID-5 in all traces except webusers, where
performance is slightly below that of RAID-5.
These improved response times can be explained by two
reasons. First, since write requests are always served from
the cache partition (except in the case of an eviction), re-
sponse times benefit greatly from the improved spatial
locality and sequentiality provided by the cache parti-
tion.3 Second, the smaller the PC fragment for each disk

3Obviously, as long as the prediction of the working set is accurate.

 0
 50

 100
 150
 200
 250
 300

 0.02 0.04 0.08 0.16 0.32

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(a) cello99

 0
 10
 20
 30
 40
 50
 60
 70

 0.08 0.16 0.32 0.64 1.28

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(b) deasna

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0.02 0.04 0.08 0.16 0.32

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(c) home02

 0
 5

 10
 15
 20
 25
 30

 0.002 0.004 0.008 0.016 0.032

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(d) webresearch

 0
 5

 10
 15
 20
 25
 30

 0.004 0.008 0.016 0.032 0.064

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(e) webusers

 0
 2
 4
 6
 8

 10
 12

 0.002 0.004 0.008 0.016 0.032

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(f) wdev

 0

 5

 10

 15

 20

 25

 0.016 0.032 0.064 0.128 0.256

re
sp

on
se

 ti
m

e
(m

s)

cache size (% per disk)

(g) proj

RAID-5

RAID-5+

CRAID-5

CRAID-5+

CRAID-5ssd
CRAID-5ssd+

Figure 6: Comparison of I/O response time (write requests).

is, the more likely it is that accesses to this fragment ben-
efit from the disk’s internal cache. This explains why re-
sponse times in Fig. 6 increase slightly for larger partition
sizes: a smaller PC means more evictions in CRAID, but
it also means a smaller fragment for each disk and a more
effective use of its internal cache. The effect of this inter-
nal cache is highly beneficial, to the point that it amortizes
the additional work produced by extra evictions.
On the other hand, SSD-based strategies CRAID-5ssd
and CRAID-5+

ssd show significantly worse response times
than their full-HDD counterparts in some traces (see
Figs. 6a, 6c, 6f, or 6g). Examination of these traces re-
veals that the I/O queues in the dedicated SSDs have
significantly more pending requests than those in full-
HDD CRAID. Also, the number of concurrently active
disks during the simulation is lower (see Table 5). In ad-

142 12th USENIX Conference on File and Storage Technologies USENIX Association

Trace CRAID-5 PC CRAID-5+ PC
best cv worst cv best cv worst cv

cello99 0.02% 0.32% 0.02% 0.32%
deasna 0.08% 1.28% 0.08% 1.28%
home02 0.02% 0.32% 0.02% 0.32%
webresearch 0.002% 0.032% 0.002% 0.032%
webusers 0.004% 0.064% 0.004% 0.064%
wdev 0.002% 0.032% 0.002% 0.032%
proj 0.016% 0.256% 0.016% 0.256%

Table 6: Influence of PC size on workload distribution.

dition, we discovered that Disksim’s SSD model does not
simulate a read/write cache. Thus, the lower number of
pending requests coupled with the HDD cache benefit ex-
plained above, makes full-HDD CRAID faster for write
requests in some traces.

5.3 Workload Distribution
In this experiment we evaluate CRAID’s ability to main-
tain a uniform workload distribution. For each second
of simulation we measure the I/O load in MB received
by each disk and we compute the coefficient of variation
as a metric to evaluate the uniformity of its distribution.
The coefficient of variation (cv) expresses the standard
deviation as a percentage of the average (σ

µ), and can be
interpreted as how the actual workload deviates from an
ideal distribution.4 We perform this experiment for all
strategies described and uses the same PC sizes of §5.2.

Impact of CRAID. Figs. 7a and 7b show CDFs of cv per
% of samples (seconds) for the deasna and wdev traces,
respectively. Notice that for CRAID strategies we show
both the best and worst curves obtained (Table 6 shows
the correspondence with actual PC sizes) and we compare
them with the results for RAID-5 and RAID-5+.
We observe that there is a significant difference between
the workload distribution provided by RAID-5 and that of
RAID-5+, which is to be expected since the “segmented”
nature of RAID-5+ naturally hinders a uniform work-
load distribution. Most interestingly, all CRAID strategies
demonstrate a workload distribution very similar to (and
sometimes better than) RAID-5. More importantly, this
benefit appears in even those CRAID configurations that
use RAID-5+ for the archive partition, despite its poor
performance and uneven distribution. This proves that
the cache partition is successful in absorbing most I/O,
and that it behaves close to an ideal RAID-5 despite the
cost of additional data transfers.

Influence of the cache partition size. Though barely no-
ticeable, an unexpected result is that, in all traces, the
workload distribution degrades as the cache partition
grows (see Table 6). Examination of the traces shows that

4The smaller cv is, the more uniform the data distribution.

a larger cache partition slightly increases the probability
that certain subsets of disks are more used than others due
to the different layout of data blocks. This is reasonable
since our current prototype doesn’t perform direct actions
to enforce a certain workload distribution, but rather re-
lies on the strategy used for the cache partition. Improv-
ing CRAID to employ workload-aware layouts is one of
the subjects of our future investigation.

Workload with dedicated SSDs. The curves shown in
Figs. 7a and 7b show a worse workload distribution for
CRAID-5ssd and CRAID-5+

ssd when compared to the full-
HDD strategies. This is to be expected since the dedicated
SSDs absorb much of the I/O workload and end up de-
grading the global workload of the system. Note that this
does not necessarily mean that the workload directed to
the dedicated disks is unbalanced, but rather that the other
devices are underutilized. This proves that a spread par-
tition has a higher chance of producing a balanced work-
load, and can compete in performance, than a dedicated
one, even if the devices used for the latter are faster.

6 Discussion and Future Work

While our experiences with CRAID have been positive
in RAID-0 and RAID-5 storage, we believe that they can
also be applied to RAID-6 or more general erasure codes,
since the overall principle still applies: rebalancing hot
data should require less work than producing an ideal dis-
tribution. The main caveat of our solution, however, is the
cost of additional parity computations and I/O operations
for dirty blocks, which directly increases with the num-
ber of parity blocks required. Whether this cost can be
leveraged by the performance benefits obtained, will be
explored in a fully-fledged prototype.

It should also be possible to extend the proposed
solution beyond RAID arrays, adapting the techniques
to distributed or tiered storage. Specifically, we believe
the monitoring of interesting data could be adapted
to work with pseudo-randomized data distributions like
CRUSH [43] or Random Slicing [30] in order to reduce
data migration during upgrades. What to do with blocks
that stop being interesting is a promising line of research.

Additionally, while the current CRAID prototype has
served to verify that it is possible to amortize the cost
of a RAID upgrade by using knowledge about hot data
blocks, it uses simple algorithms for prediction and ex-
pansion. We envision several ways to improve the current
prototype that can serve as subjects of future research.

Smarter prediction. The current version of CRAID does
not take into account the relations between blocks in or-
der to copy them to the caching partition, but rather relies
on the fact that blocks accessed consecutively in a short

USENIX Association 12th USENIX Conference on File and Storage Technologies 143

(a) deasna (b) wdev

Figure 7: CRAID workload distribution: full-HDD (top) vs SSD-dedicated (bottom). Figures show CDFs of cv per % of samples
(seconds) for traces deasna and wdev. Other traces show similar results.

period of time tend to be related. More sophisticated tech-
niques to detect block correlations could improve CRAID
significantly, allowing the I/O monitor to migrate data to
PC before it is actually needed.

Smarter rebalancing. The current invalidation of the en-
tire PC when new disks are added is overkill. Though it
benefits the parallelism of the data distribution and new
disks can be used immediately, the current strategy was
devised to test if our hypothesis held in the simplest case,
without complex algorithms. Since working sets should
not change drastically, CRAID could benefit greatly from
strategies to rebalance the small amount of data in PC
more intelligently, like those in §7.2.

Improved data layout. Similarly, currently CRAID does
not make any effort to allocate related blocks close to
each other. Alternate layout strategies more focused on
preserving semantic relations between blocks might yield
great benefits. For instance, it might be interesting to eval-
uate the effect of copying entire stripes to the cache par-
tition as a way to preserve spatial locality. Besides, this
could help reduce the number of parity computations, thus
reducing the background I/O present in the array.

7 Related Work

We examine the literature by organizing it into data layout
optimization techniques and RAID upgrade strategies.

7.1 Data Layout Optimization

Early works on optimized data layouts by Wong [45],
Vongsathorn et al. [42] and Ruemmler and Wilkes [37]
argued that placing frequently accessed data in the center
of the disk served to minimize the expected head move-
ment. Specifically, the latter proved that the best results in
I/O performance came from infrequent shuffling (weekly)
with small (block/track) granularity. Akyurek and Salem
also showed the importance of reorganization at the block
level, and the advantages of copying over shuffling [2].

Hu et al. [48, 33] proposed an architecture called Disk
Caching Disk (DCD), where an additional disk (or parti-
tion) is used as a cache to convert small random writes
into large log appends, thus improving overall I/O per-
formance. Similarly to DCD, iCache [16] adds a log-disk
along with a piece of NVRAM to create a two-level cache
hierarchy for iSCSI requests, coalescing small requests
into large ones before writing data. HP’s AutoRAID [44],
on the other hand, extends traditional RAID by partition-
ing storage in a mirrored zone and a RAID-5 zone. Writes
are initially made to the mirrored zone and later migrated
in large chunks to RAID-5, thus reducing the space over-
head of redundancy information and increasing parallel
bandwidth for subsequent reads of active data.

Li et al. proposed C-Miner [26], which used data min-
ing techniques to model the correlations between differ-
ent block I/O requests. Hidrobo and Cortes [18] accu-
rately model disk behavior and compute placement alter-
natives to estimate the benefits of each distribution. Simi-
lar techniques could be used in CRAID to infer complex
access patterns and reorganize hot data more effectively.

144 12th USENIX Conference on File and Storage Technologies USENIX Association

ALIS [20] and, more recently, BORG [5], reorganize
frequently accessed blocks (and block sequences) so that
they are placed sequentially on a dedicated disk area. Con-
trary to CRAID, neither explores multi-disk systems.

7.2 RAID Upgrade Strategies
There are several deterministic approaches to improve the
extensibility of RAID-5. HP’s AutoRAID allows an on-
line capacity expansion without data migration, by which
newly created RAID volumes use all disks and previously
created ones use only the original disks.

Conventional approaches redistribute data and preserve
the round-robin order. Gonzalez and Cortes proposed
a Gradual Assimilation (GA) algorithm [15] to control
the overhead of expanding a RAID-5 system, but it has
a large redistribution cost since all parities still need to
be modified after data migration. US patent #6000010
presents a method to scale RAID-5 volumes that elim-
inates the need to rewrite data and parity blocks to the
original disks [23]. This, however, may lead to an uneven
distribution of parity blocks and penalize write requests.

MDM [17] reduces data movement by exchanging
some blocks between the original and new disks. It
also eliminates parity modification costs since all par-
ity blocks are maintained, but it is unable to increase
(only keep) the storage efficiency by adding new disks.
FastScale [50] minimizes data migration by moving only
data blocks between old and new disks. It also optimizes
the migration process by accessing physically sequential
data with a single I/O request and by minimizing the num-
ber of metadata writes. At the moment, however, it cannot
be used in RAID-5. More recently, GSR [47] divides data
on the original array into two sections and moves the sec-
ond one onto the new disks keeping the layout of most
stripes. Its main limitation is performance: after upgrades,
accesses to the first section are served by original disks,
and accesses to the second are served only by newer disks.

Due to the development of object-based storage, ran-
domized RAID is becoming more popular, since it seems
to have better scalability. The cut-and-paste strategy pro-
posed by Brinkmann et al. [6] uses a randomized func-
tion to place data across disks. When a disk is added
to disks, it cuts off ranges of data [1/(n+ 1),1/n] from
the original n disks, and pastes them to the new disk.
Also based on a random hash function, Seo and Zim-
mermann [40] proposed finding a sequence of disks addi-
tions that minimized the data migration cost. On the other
hand, the algorithm proposed in SCADDAR [13] moves a
data block only if the destination disk is one of the newly
added disks. This reduces migration significantly, but pro-
duces an unbalanced distribution after several expansions.

RUSH [19] and CRUSH [43] are the first methods with
dedicated support for replication, and offer a probabilis-
tically optimal data distribution with minimal migration.

Their main drawback is that they require new capacity to
be added in chunks and the number of disks in a chunk
must be enough to hold a complete redundancy group.
More recently, Miranda et al.’s Random Slicing [30] used
a small table with information on insertion and removal
operations to reduce the required randomness and deliver
a uniform load distribution with minimal migration.

These randomized strategies are designed for object-
based storage systems, and focus only on how blocks are
mapped to disks, ignoring the inner data layout of each
individual disk. In this regard, CRAID manages blocks
rather than objects and is thus more similar to determinis-
tic (and extensible) RAID algorithms. To our knowledge,
however, it is the first strategy that uses information about
data blocks to reduce the overhead of the upgrade process.

8 Conclusions

In this paper, we propose and evaluate CRAID, a self-
optimizing RAID architecture that automatically reorga-
nizes frequently used data in a dedicated caching parti-
tion. CRAID is designed to accelerate the upgrade pro-
cess of traditional RAID architectures by limiting it to
this partition, which contains the data that is currently
important and on which certain QoS levels must be kept.

We analyze CRAID using seven real-world traces of
different workloads and collected at several times in the
last decade. Our analysis shows that CRAID is highly suc-
cessful in predicting the data workload and its variations.
Further, if an appropriate data distribution is used for
the cache partition, CRAID optimizes the performance
of read and write traffic due to the increased locality and
sequentiality of frequently accessed data. Specifically, we
show that it is possible to achieve a QoS competitive with
an ideal RAID-5 or RAID+SSD array, by creating a small
RAID-5 partition of at most 1.28% the available storage,
regardless of the layout outside the partition.

In summary, we believe that CRAID is a novel ap-
proach to building RAID architectures that can offer re-
duced expansion times and I/O performance improve-
ments. In addition, its ability to combine several layouts
can serve as a starting point to design newer allocation
strategies more conscious about data semantics.

Acknowledgments
We wish to thank anonymous reviewers and our shep-
herd C.S. Lui for their comments and suggestions for im-
provement. Special thanks go to André Brinkmann, Marı́a
S. Pérez and BSC’s SSRG team for insightful feedback
that improved initial drafts significantly. This work was
partially supported by the Spanish and Catalan Govern-
ments (grants SEV-2011-00067, TIN2012-34557, 2009-
SGR-980), and EU’s FP7/2007–2013 (grant RI-283493).

USENIX Association 12th USENIX Conference on File and Storage Technologies 145

References

[1] A G R AWA L , N . , P R A B H A K A R A N , V. , W O B B E R ,
T. , D AV I S , J . , M A N A S S E , M . , A N D PA N I G R A H Y,
R . Design tradeoffs for SSD performance. In USENIX
2008 Annual Technical Conference on Annual Technical
Conference (2008), pp. 57–70.

[2] A K Y Ü R E K , S . , A N D S A L E M , K . Adaptive block
rearrangement. ACM Transactions on Computer Systems
(TOCS) 13, 2 (1995), 89–121.

[3] A R L I T T, M . , C H E R K A S O VA , L . , D I L L E Y, J . ,
F R I E D R I C H , R . , A N D J I N , T. Evaluating content
management techniques for web proxy caches. ACM SIG-
METRICS Performance Evaluation Review 27, 4 (2000),
3–11.

[4] A R T I A G A , E . , A N D M I R A N D A , A . PRACE-2IP De-
liverable D12.4. Performance Optimized Lustre. INFRA-
2011-2.3.5 – Second Implementation Phase of the Eu-
ropean High Performance Computing (HPC) service
PRACE (2012).

[5] B H A D K A M K A R , M . , G U E R R A , J . , U S E C H E , L . ,
B U R N E T T, S . , L I P TA K , J . , R A N G A S WA M I , R . ,
A N D H R I S T I D I S , V. BORG: block-reORGanization
for self-optimizing storage systems. In Proccedings of the
7th conference on File and storage technologies (2009),
USENIX Association, pp. 183–196.

[6] B R I N K M A N N , A . , S A L Z W E D E L , K . , A N D

S C H E I D E L E R , C . Efficient, Distributed Data Place-
ment Strategies for Storage Area Networks. In Proceed-
ings of the 12th ACM Symposium on Parallel Algorithms
and Architectures (SPAA) (2000), pp. 119–128.

[7] B R O W N , N . Online RAID-5 resizing. drivers/md/raid5.
c in the source code of Linux Kernel 2.6. 18, 2006.

[8] B U C Y, J . , S C H I N D L E R , J . , S C H L O S S E R , S . ,
A N D G A N G E R , G . The DiskSim Simulation Environ-
ment Version 4.0 Reference Manual (CMU-PDL-08-101).
Parallel Data Laboratory (2008), 26.

[9] C A O , P. , A N D I R A N I , S . Cost-aware WWW proxy
caching algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems (1997),
vol. 193.

[10] C H E N , P. , L E E , E . , G I B S O N , G . , K AT Z , R . ,
A N D PAT T E R S O N , D . RAID: High-performance, reli-
able secondary storage. ACM Computing Surveys (CSUR)
26, 2 (1994), 145–185.

[11] C H E N , P. M . , A N D L E E , E . K . Striping in a RAID
level 5 disk array, vol. 23. ACM, 1995.

[12] E L L A R D , D . , L E D L I E , J . , M A L K A N I , P. , A N D

S E LT Z E R , M . Passive NFS tracing of email and re-
search workloads. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (2003),
USENIX Association, pp. 203–216.

[13] G O E L , A . , S H A H A B I , C . , YA O , S . , A N D Z I M -
M E R M A N N , R . SCADDAR: An efficient randomized
technique to reorganize continuous media blocks. In Data

Engineering, 2002. Proceedings. 18th International Con-
ference on (2002), IEEE, pp. 473–482.

[14] G Ó M E Z , M . , A N D S A N T O N J A , V. Characterizing
temporal locality in I/O workload. In Proc. of the Inter-
national Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (2002).

[15] G O N Z A L E Z , J . , A N D C O R T E S , T. Increasing the
capacity of RAID5 by online gradual assimilation. In
Proceedings of the international workshop on Storage net-
work architecture and parallel I/Os (2004), ACM, pp. 17–
24.

[16] H E , X . , YA N G , Q . , A N D Z H A N G , M . A caching
strategy to improve iSCSI performance. In Local Com-
puter Networks, 2002. Proceedings. LCN 2002. 27th An-
nual IEEE Conference on (2002), IEEE, pp. 278–285.

[17] H E T Z L E R , S . R . , E T A L . Data storage array scaling
method and system with minimal data movement. US
Patent 8,239,622.

[18] H I D R O B O , F. , A N D C O R T E S , T. Autonomic storage
system based on automatic learning. In High Performance
Computing-HiPC 2004. Springer, 2005, pp. 399–409.

[19] H O N I C K Y, R . , A N D M I L L E R , E . L . Replication
under scalable hashing: A family of algorithms for scal-
able decentralized data distribution. In Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th
International (2004), IEEE, p. 96.

[20] H S U , W. , S M I T H , A . , A N D Y O U N G , H . The auto-
matic improvement of locality in storage systems. ACM
Transactions on Computer Systems (TOCS) 23, 4 (2005),
424–473.

[21] J I N , S . , A N D B E S TAV R O S , A . GreedyDual* Web
caching algorithm: exploiting the two sources of temporal
locality in Web request streams. Computer Communica-
tions 24, 2 (2001), 174–183.

[22] L E E , S . , A N D B A H N , H . Data allocation in MEMS-
based mobile storage devices. Consumer Electronics,
IEEE Transactions on 52, 2 (2006), 472–476.

[23] L E G G , C . Method of increasing the storage capacity of
a level five RAID disk array by adding, in a single step, a
new parity block and N–1 new data blocks which respec-
tively reside in a new columns, where N is at least two,
Dec. 7 1999. US Patent 6,000,010.

[24] L E U N G , A . , PA S U PAT H Y, S . , G O O D S O N , G . ,
A N D M I L L E R , E . Measurement and analysis of large-
scale network file system workloads. In USENIX 2008
Annual Technical Conference on Annual Technical Con-
ference (2008), pp. 213–226.

[25] L I , D . , A N D WA N G , J . EERAID: energy efficient
redundant and inexpensive disk array. In Proceedings of
the 11th workshop on ACM SIGOPS European workshop
(2004), ACM, p. 29.

[26] L I , Z . , C H E N , Z . , S R I N I VA S A N , S . , A N D Z H O U ,
Y. C-miner: Mining block correlations in storage systems.
In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (2004), vol. 186, USENIX Associa-
tion.

146 12th USENIX Conference on File and Storage Technologies USENIX Association

[27] LY M A N , P. How much information? 2003.
http://www.sims.berkeley.edu/research/
projects/how-much-info-2003/ (2003).

[28] M E G I D D O , N . , A N D M O D H A , D . ARC: A self-
tuning, low overhead replacement cache. In Proceedings
of the 2nd USENIX Conference on File and Storage Tech-
nologies (2003), pp. 115–130.

[29] M I R A N D A , A . , A N D C O R T E S , T. Analyzing Long-
Term Access Locality to Find Ways to Improve Dis-
tributed Storage Systems. In Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on (2012), IEEE, pp. 544–553.

[30] M I R A N D A , A . , E F F E R T, S . , K A N G , Y. ,
M I L L E R , E . L . , B R I N K M A N N , A . , A N D

C O R T E S , T. Reliable and randomized data distri-
bution strategies for large scale storage systems. In High
Performance Computing (HiPC), 2011 18th International
Conference on (2011), IEEE, pp. 1–10.

[31] N A R AYA N A N , D . , D O N N E L LY, A . , A N D R O W-
S T R O N , A . Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Storage
(TOS) 4, 3 (2008), 10.

[32] N A R AYA N A N , D . , T H E R E S K A , E . , D O N N E L LY,
A . , E L N I K E T Y, S . , A N D R O W S T R O N , A . Migrat-
ing server storage to SSDs: analysis of tradeoffs. In Pro-
ceedings of the 4th ACM European conference on Com-
puter systems (2009), ACM, pp. 145–158.

[33] N I G H T I N G A L E , T. , H U , Y. , A N D YA N G , Q . The
design and implementation of DCD device driver for
UNIX. In Proceedings of the 1999 USENIX Technical
Conference (1999), pp. 295–308.

[34] PA R K , J . , C H U N , H . , B A H N , H . , A N D K O H , K .
G-MST: A dynamic group-based scheduling algorithm for
MEMS-based mobile storage devices. Consumer Electron-
ics, IEEE Transactions on 55, 2 (2009), 570–575.

[35] PAT T E R S O N , D . , E T A L . A simple way to estimate
the cost of downtime. In Proc. 16th Systems Administra-
tion Conf.— LISA (2002), pp. 185–8.

[36] PAT T E R S O N , D . , G I B S O N , G . , A N D K AT Z , R . A
case for redundant arrays of inexpensive disks (RAID),
vol. 17. ACM, 1988.

[37] R U E M M L E R , C . , A N D W I L K E S , J . Disk shuf-
fling. Tech. rep., Technical Report HPL-91-156, Hewlett
Packard Laboratories, 1991.

[38] R U E M M L E R , C . , A N D W I L K E S , J . UNIX disk ac-
cess patterns. In Proceedings of the Winter 1993 USENIX
Technical Conference (1993), pp. 405–420.

[39] Seagate Cheetah 15K.5 FC product manual. http://www.
seagate.com/staticfiles/support/disc/manuals/
enterprise/cheetah/15K.5/FC/100384772f.pdf
Last retrieved Sept. 9, 2013.

[40] S E O , B . , A N D Z I M M E R M A N N , R . Efficient disk
replacement and data migration algorithms for large disk
subsystems. ACM Transactions on Storage (TOS) 1, 3
(2005), 316–345.

[41] V E R M A , A . , K O L L E R , R . , U S E C H E , L . , A N D

R A N G A S WA M I , R . SRCMap: energy proportional stor-
age using dynamic consolidation. In Proceedings of the
8th USENIX conference on File and storage technologies
(2010), USENIX Association, pp. 20–20.

[42] V O N G S AT H O R N , P. , A N D C A R S O N , S . A system
for adaptive disk rearrangement. Software: Practice and
Experience 20, 3 (1990), 225–242.

[43] W E I L , S . A . , B R A N D T, S . A . , M I L L E R , E . L . ,
A N D M A LT Z A H N , C . Crush: Controlled, scalable, de-
centralized placement of replicated data. In Proceedings
of the 2006 ACM/IEEE conference on Supercomputing
(2006), ACM, p. 122.

[44] W I L K E S , J . , G O L D I N G , R . , S TA E L I N , C . , A N D

S U L L I VA N , T. The HP AutoRAID hierarchical storage
system. ACM Transactions on Computer Systems (TOCS)
14, 1 (1996), 108–136.

[45] W O N G , C . Minimizing expected head movement in one-
dimensional and two-dimensional mass storage systems.
ACM Computing Surveys (CSUR) 12, 2 (1980), 167–178.

[46] W O N G , T. , G A N G E R , G . , W I L K E S , J . , E T A L .
My Cache Or Yours?: Making Storage More Exclusive.
School of Computer Science, Carnegie Mellon University,
2000.

[47] W U , C . , A N D H E , X . Gsr: A global stripe-based redis-
tribution approach to accelerate raid-5 scaling. In Parallel
Processing (ICPP), 2012 41st International Conference
on (2012), IEEE, pp. 460–469.

[48] YA N G , Q . , A N D H U , Y. DCD—disk caching disk: A
new approach for boosting I/O performance. In Computer
Architecture, 1996 23rd Annual International Symposium
on (1996), IEEE, pp. 169–169.

[49] Z H A N G , G . , S H U , J . , X U E , W. , A N D Z H E N G ,
W. SLAS: An efficient approach to scaling round-robin
striped volumes. ACM Transactions on Storage (TOS) 3,
1 (2007), 3.

[50] Z H E N G , W. , A N D Z H A N G , G . FastScale: accelerate
RAID scaling by minimizing data migration. In Proceed-
ings of the 9th USENIX Conference on File and Storage
Technologies (FAST) (2011).

[51] Z H U , Q . , C H E N , Z . , TA N , L . , Z H O U , Y. , K E E -
T O N , K . , A N D W I L K E S , J . Hibernator: helping disk
arrays sleep through the winter. In ACM SIGOPS Operat-
ing Systems Review (2005), vol. 39, ACM, pp. 177–190.

USENIX Association 12th USENIX Conference on File and Storage Technologies 147

STAIR Codes: A General Family of Erasure Codes for Tolerating Device
and Sector Failures in Practical Storage Systems

Mingqiang Li and Patrick P. C. Lee
The Chinese University of Hong Kong

mingqiangli.cn@gmail.com, pclee@cse.cuhk.edu.hk

Abstract

Practical storage systems often adopt erasure codes to
tolerate device failures and sector failures, both of which
are prevalent in the field. However, traditional erasure
codes employ device-level redundancy to protect against
sector failures, and hence incur significant space over-
head. Recent sector-disk (SD) codes are available only
for limited configurations due to the relatively strict as-
sumption on the coverage of sector failures. By making a
relaxed but practical assumption, we construct a general
family of erasure codes called STAIR codes, which effi-
ciently and provably tolerate both device and sector fail-
ures without any restriction on the size of a storage array
and the numbers of tolerable device failures and sector
failures. We propose the upstairs encoding and down-
stairs encoding methods, which provide complementary
performance advantages for different configurations. We
conduct extensive experiments to justify the practical-
ity of STAIR codes in terms of space saving, encod-
ing/decoding speed, and update cost. We demonstrate
that STAIR codes not only improve space efficiency over
traditional erasure codes, but also provide better compu-
tational efficiency than SD codes based on our special
code construction.

1 Introduction
Mainstream disk drives are known to be susceptible to
both device failures [25,37] and sector failures [1, 36]: a
device failure implies the loss of all data in the failed
device, while a sector failure implies the data loss in
a particular disk sector. In particular, sector failures
are of practical concern not only in disk drives, but
also in emerging solid-state drives as they often appear
as worn-out blocks after frequent program/erase cycles
[8, 14, 15, 43]. In the face of device and sector failures,
practical storage systems often adopt erasure codes to
provide data redundancy [32]. However, existing erasure
codes often build on tolerating device failures and pro-
vide device-level redundancy only. To tolerate additional
sector failures, an erasure code must be constructed with
extra parity disks. A representative example is RAID-6,
which uses two parity disks to tolerate one device fail-
ure together with one sector failure in another non-failed

device [21, 39]. If the sector failures can span a num-
ber of devices, the same number of parity disks must be
provisioned. Clearly, dedicating an entire parity disk for
tolerating a sector failure is too extravagant.

To tolerate both device and sector failures in a space-
efficient manner, sector-disk (SD) codes [27, 28] and the
earlier PMDS codes [5] (which are a subset of SD codes)
have recently been proposed. Their idea is to introduce
parity sectors, instead of entire parity disks, to tolerate a
given number of sector failures. However, the construc-
tions of SD codes are known only for limited configu-
rations (e.g., the number of tolerable sector failures is
no more than three), and some of the known construc-
tions rely on exhaustive searches [6, 27, 28]. An open is-
sue is to provide a general construction of erasure codes
that can efficiently tolerate both device and sector fail-
ures without any restriction on the size of a storage array,
the number of tolerable device failures, or the number of
tolerable sector failures.

In this paper, we make the first attempt to develop such
a generalization, which we believe is of great theoretical
and practical interest to provide space-efficient fault tol-
erance for today’s storage systems. After carefully ex-
amining the assumption of SD codes on failure cover-
age, we find that although SD codes have relaxed the as-
sumption of the earlier PMDS codes to comply with how
most storage systems really fail, the assumption remains
too strict. By reasonably relaxing the assumption of SD
codes on sector failure coverage, we construct a general
family of erasure codes called STAIR codes, which effi-
ciently tolerate both device and sector failures.

Specifically, SD codes devote s sectors per stripe to
coding, and tolerate the failure of any s sectors per stripe.
We relax this assumption in STAIR codes by limiting
the number of devices that may simultaneously contain
sector failures, and by limiting the number of simulta-
neous sector failures per device. The new assumption
of STAIR codes is based on the strong locality of sector
failures found in practice: sector failures tend to come
in short bursts, and are concentrated in small address
space [1, 36]. Consequently, as shown in §2, STAIR
codes are constructed to protect the sector failure cov-
erage defined by a vector e, rather than all combinations
of s sector failures.

148 12th USENIX Conference on File and Storage Technologies USENIX Association

With the relaxed assumption, the construction of
STAIR codes can be based on existing erasure codes.
For example, STAIR codes can build on Reed-Solomon
codes (including standard Reed-Solomon codes [26, 30,
34] and Cauchy Reed-Solomon codes [7, 33]), which
have no restriction on code length and fault tolerance.

We first define the notation and elaborate how the sec-
tor failure coverage is formulated for STAIR codes in §2.
Then the paper makes the following contributions:

• We present a baseline construction of STAIR codes.
Its idea is to run two orthogonal encoding phases
based on Reed-Solomon codes. See §3.

• We propose an upstairs decoding method, which
systematically reconstructs the lost data due to both
device and sector failures. The proof of fault toler-
ance of STAIR codes follows immediately from the
decoding method. See §4.

• Inspired by upstairs decoding, we extend the con-
struction of STAIR codes to regularize the code
structure. We propose two encoding methods: up-
stairs encoding and downstairs encoding, both of
which reuse computed parity results in subsequent
encoding. The two encoding methods provide com-
plementary performance advantages for different
configuration parameters. See §5.

• We extensively evaluate STAIR codes in terms of
space saving, encoding/decoding speed, and update
cost. We show that STAIR codes achieve signif-
icantly higher encoding/decoding speed than SD
codes through parity reuse. Most importantly, we
show the versatility of STAIR codes in supporting
any size of a storage array, any number of tolerable
device failures, and any number of tolerable sector
failures. See §6.

We review related work in §7, and conclude in §8.

2 Preliminaries
We consider a storage system with n devices, each of
which has its storage space logically segmented into a
sequence of continuous chunks (also called strips) of the
same size. We group each of the n chunks at the same
position of each device into a stripe, as depicted in Fig-
ure 1. Each chunk is composed of r sectors (or blocks).
Thus, we can view the stripe as a r × n array of sectors.
Using coding theory terminology, we refer to each sec-
tor as a symbol. Each stripe is independently protected
by an erasure code for fault tolerance, so our discussion
focuses on a single stripe.

Storage systems are subject to both device and sector
failures. A device failure can be mapped to the failure
of an entire chunk of a stripe. We assume that the stripe
can tolerate at most m (< n) chunk failures, in which
all symbols are lost. In addition to device failures, we

n

r

n

Zoom in
a stripe

Figure 1: A stripe for n = 8 and r = 4.

assume that sector failures can occur in the remaining
n − m devices. Each sector failure is mapped to a lost
symbol in the stripe. Suppose that besides the m failed
chunks, the stripe can tolerate sector failures in at most
m′ (≤ n − m) remaining chunks, each of which has a
maximum number of sector failures defined by a vector
e = (e0, e1, · · · , em′−1). Without loss of generality, we
arrange the elements of e in monotonically increasing
order (i.e., e0 ≤ e1 ≤ · · · ≤ em′−1). For example, sup-
pose that sector failures can only simultaneously appear
in at most three chunks (i.e., m′ = 3), among which at
most one chunk has two sector failures and the remain-
ing have one sector failure each. Then, we can express
e = (1, 1, 2). Also, let s =

∑m′−1
i=0 ei be the total num-

ber of sector failures defined by e. Our study assumes
that the configuration parameters n, r, m, and e (which
then determines m′ and s) are the inputs selected by sys-
tem practitioners for the erasure code construction.

Erasure codes have been used by practical storage sys-
tems to protect against data loss [32]. We focus on a
class of erasure codes with optimal storage efficiency
called maximum distance separable (MDS) codes, which
are defined by two parameters η and κ (< η). We de-
fine an (η, κ)-code as an MDS code that transforms κ
symbols into η symbols collectively called a codeword
(this operation is called encoding), such that any κ of
the η symbols can be used to recover the original κ un-
coded symbols (this operation is called decoding). Each
codeword is encoded from κ uncoded symbols by mul-
tiplying a row vector of the κ uncoded symbols with a
κ × η generator matrix of coefficients based on Galois
Field arithmetic. We assume that the (η, κ)-code is sys-
tematic, meaning that the κ uncoded symbols are kept
in the codeword. We refer to the κ uncoded symbols as
data symbols, and the η − κ coded symbols as parity
symbols. We use systematic MDS codes as the build-
ing blocks of STAIR codes. Examples of such codes are
standard Reed-Solomon codes [26, 30, 34] and Cauchy
Reed-Solomon codes [7, 33].

USENIX Association 12th USENIX Conference on File and Storage Technologies 149

Given parameters n, r, m, and e (and hence m′ and s),
our goal is to construct a STAIR code that tolerates both
m failed chunks and s sector failures in the remaining
n−m chunks defined by e. Note that some special cases
of e have the following physical meanings:

• If e = (1), the corresponding STAIR code is equiv-
alent to a PMDS/SD code with s = 1 [5, 27, 28]. In
fact, the STAIR code is a new construction of such
a PMDS/SD code.

• If e = (r), the corresponding STAIR code has the
same function as a systematic (n, n−m− 1)-code.

• If e = (ε, ε, · · · , ε) with m′ = n − m and some
constant ε < r, the corresponding STAIR code
has the same function as an intra-device redundancy
(IDR) scheme [10, 11, 36] that adopts a systematic
(r, r − ε)-code.

We argue that STAIR codes can be configured to pro-
vide more general protection than SD codes [6, 27, 28].
One major use case of STAIR codes is to protect against
bursts of contiguous sector failures [1, 36]. Let β be
the maximum length of a sector failure burst found in
a chunk. Then we should set e with its largest element
em′−1 = β. For example, when β = 2, we may set e
as our previous example e = (1, 1, 2), or a weaker and
lower-cost e = (1, 2). In some extreme cases, some disk
models may have longer sector failure bursts (e.g., with
β > 3) [36]. Take β = 4 for example. Then we can
define e = (1, 4), so that the corresponding STAIR code
can tolerate a burst of four sector failures in one chunk to-
gether with an additional sector failure in another chunk.
In contrast, such an extreme case cannot be handled by
SD codes, whose current construction can only tolerate
at most three sector failures in a stripe [6, 27, 28]. Thus,
although the numbers of device and sector failures (i.e.,
m and s, respectively) are often small in practice, STAIR
codes support a more general coverage of device and sec-
tor failures, especially for extreme cases.

STAIR codes also provide more space-efficient protec-
tion than the IDR scheme [10, 11, 36]. To protect against
a burst of β sector failures in any data chunk of a stripe,
the IDR scheme requires β additional redundant sectors
in each of the n − m data chunks. This is equivalent to
setting e = (β, β, · · · , β) with m′ = n − m in STAIR
codes. In contrast, the general construction of STAIR
codes allows a more flexible definition of e, where m′

can be less than n−m, and all elements of e except the
largest element em′−1 can be less than β. For example, to
protect against a burst of β = 4 sector failures for n = 8
and m = 2 (i.e., a RAID-6 system with eight devices),
the IDR scheme introduces a total of 4 × 6 = 24 redun-
dant sectors per stripe; if we define e = (1, 4) in STAIR
codes as above, then we only introduce five redundant
sectors per stripe.

3 Baseline Encoding
For general configuration parameters n, r, m, and e, the
main idea of STAIR encoding is to run two orthogonal
encoding phases using two systematic MDS codes. First,
we encode the data symbols using one code and obtain
two types of parity symbols: row parity symbols, which
protect against device failures, and intermediate parity
symbols, which will then be encoded using another code
to obtain global parity symbols, which protect against
sector failures. In the following, we elaborate the encod-
ing of STAIR codes and justify our naming convention.

We label different types of symbols for STAIR codes
as follows. Figure 2 shows the layout of an exemplary
stripe of a STAIR code for n = 8, r = 4, m = 2,
and e = (1, 1, 2) (i.e., m′ = 3 and s = 4). A stripe
is composed of n − m data chunks and m row parity
chunks. We also assume that there are m′ intermedi-
ate parity chunks and s global parity symbols outside the
stripe. Let di,j , pi,k, p′i,l, and gh,l denote a data symbol, a
row parity symbol, an intermediate parity symbol, and a
global parity symbol, respectively, where 0 ≤ i ≤ r− 1,
0 ≤ j ≤ n −m − 1, 0 ≤ k ≤ m − 1, 0 ≤ l ≤ m′ − 1,
and 0 ≤ h ≤ el − 1.

Figure 2 depicts the steps of the two orthogonal encod-
ing phases of STAIR codes. In the first encoding phase,
we use an (n+m′, n−m)-code denoted by Crow (which
is an (11,6)-code in Figure 2). We encode via Crow each
row of n−m data symbols to obtain m row parity sym-
bols and m′ intermediate parity symbols in the same row:
Phase 1: For i = 0, 1, · · · , r − 1,

di,0, di,1, · · · , di,n−m−1
Crow=⇒pi,0, pi,1, · · · , pi,m−1,

p′i,0, p
′
i,1, · · · , p′i,m′−1,

where C
=⇒ describes that the input symbols on the left

are used to generate the output symbols on the right us-
ing some code C. We call each pi,k a “row” parity symbol
since it is only encoded from the same row of data sym-
bols in the stripe, and we call each p′i,l an “intermediate”
parity symbol since it is not actually stored but is used in
the second encoding phase only.

In the second encoding phase, we use a (r+em′−1, r)-
code denoted by Ccol (which is a (6,4)-code in Figure 2).
We encode via Ccol each chunk of r intermediate parity
symbols to obtain at most em′−1 global parity symbols:
Phase 2: For l = 0, 1, · · · ,m′ − 1,

p′0,l, p
′
1,l, · · · , p′r−1,l

Ccol=⇒
em′−1︷ ︸︸ ︷

g0,l, g1,l, · · · , gel−1,l, ∗, · · · , ∗,

where “∗” represents a “dummy” global parity symbol
that will not be generated when el < em′−1, and we
only need to compute the “real” global parity symbols
g0,l, g1,l, · · · , gel−1,l. The intermediate parity symbols
will be discarded after this encoding phase. Note that

150 12th USENIX Conference on File and Storage Technologies USENIX Association

m′ intermediate
parity chunks

m row
parity chunks

em′-1

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

d3,3

d2,3

d0,4

d1,4

d3,4

d2,4

d0,5

d1,5

d3,5

d2,5

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

p′0,2

p′1,2

p′3,2

p′2,2

p′0,0

p′1,0

p′3,0

p′2,0

p′0,1

p′1,1

p′3,1

p′2,1r
n n

g0,2

g1,2

n m

g0,1g0,0

Encode with row

Encode
with col

Figure 2: Exemplary configuration: a STAIR code stripe for n = 8, r = 4, m = 2, and e = (1, 1, 2) (i.e., m′ = 3 and
s = 4). Throughout this paper, we use this configuration to explain the operations of STAIR codes.

each gh,l is in essence encoded from all the data symbols
in the stripe, and thus we call it a “global” parity symbol.

We point out that Crow and Ccol can be any systematic
MDS codes. In this work, we implement both Crow and
Ccol using Cauchy Reed-Solomon codes [7, 33], which
have no restriction on code length and fault tolerance.

From Figure 2, we see that the logical layout of global
parity symbols looks like a stair. This is why we name
this family of erasure codes STAIR codes.

In the following discussion, we use the exemplary con-
figuration in Figure 2 to explain the detailed operations
of STAIR codes. To simplify our discussion, we first as-
sume that the global parity symbols are kept outside a
stripe and are always available for ensuring fault toler-
ance. In §5, we will extend the encoding of STAIR codes
when the global parity symbols are kept inside the stripe
and are subject to both device and sector failures.

4 Upstairs Decoding
In this section, we justify the fault tolerance of STAIR
codes defined by m and e. We introduce an upstairs de-
coding method that systematically recovers the lost sym-
bols when both device and sector failures occur.

4.1 Homomorphic Property
The proof of fault tolerance of STAIR codes builds on
the concept of a canonical stripe, which is constructed
by augmenting the existing stripe with additional virtual
parity symbols. To illustrate, Figure 3 depicts how we
augment the stripe of Figure 2 into a canonical stripe. Let
d∗h,j and p∗h,k denote the virtual parity symbols encoded
with Ccol from a data chunk and a row parity chunk, re-
spectively, where 0 ≤ j ≤ n−m− 1, 0 ≤ k ≤ m− 1,
and 0 ≤ h ≤ em′−1−1. Specifically, we use Ccol to gen-
erate virtual parity symbols from the data and row parity
chunks as follows:

For j = 0, 1, · · · , n−m− 1,

d0,j , d1,j , · · · , dr−1,j
Ccol=⇒ d∗0,j , d

∗
1,j , · · · , d∗em′−1−1,j ;

and for k = 0, 1, · · · ,m− 1,

p0,k, p1,k, · · · , pr−1,k
Ccol=⇒ p∗0,k, p

∗
1,k, · · · , p∗em′−1−1,k.

The virtual parity symbols d∗h,j’s and p∗h,k’s, along with
the real and dummy global parity symbols, form em′−1

augmented rows of n + m′ symbols. To make our dis-
cussion simpler, we number the rows and columns of the
canonical stripe from 0 to r + em′−1 − 1 and from 0 to
n+m′ − 1, respectively, as shown in Figure 3.

Referring to Figure 3, we know that the upper r rows
of n + m′ symbols are codewords of Crow. We argue
that each of the lower em′−1 augmented rows is in fact
also a codeword of Crow. We call this the homomorphic
property, since the encoding of each chunk in the col-
umn direction preserves the coding structure in the row
direction. We formally prove the homomorphic property
in Appendix. We use this property to prove the fault tol-
erance of STAIR codes.

4.2 Proof of Fault Tolerance

We prove that for a STAIR code with configuration pa-
rameters n, r, m, and e, as long as the failure pattern
is within the failure coverage defined by m and e, the
corresponding lost symbols can always be recovered (or
decoded). In addition, we present an upstairs decoding
method, which systematically recovers the lost symbols
for STAIR codes.

For a stripe of the STAIR code, we consider the worst-
case recoverable failure scenario where there are m
failed chunks (due to device failures) and m′ additional
chunks that have e0, e1, · · · , em′−1 lost symbols (due to
sector failures), where 0 < e0 ≤ e1 ≤ · · · ≤ em′−1. We
prove that all the m′ chunks with sector failures can be
recovered with global parity symbols. In particular, we
show that these m′ chunks can be recovered in the order
of e0, e1, · · · , em′−1. Finally, the m failed chunks due to
device failures can be recovered with row parity chunks.

USENIX Association 12th USENIX Conference on File and Storage Technologies 151

m′ intermediate
parity chunks

m row
parity chunks

e m
′-1

au
gm

en
te

d
ro

w
s

Virtual parity symbols

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

d3,3

d2,3

d0,4

d1,4

d3,4

d2,4

d0,5

d1,5

d3,5

d2,5

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

p*
0,1

p*
1,1

p*
0,0

p*
1,0

d*
0,5d*

0,4d*
0,1 d*

0,2d*
0,0 d*

0,3

d*
1,5d*

1,4d*
1,1 d*

1,2d*
1,0 d*

1,3

r

p′0,2

p′1,2

p′3,2

p′2,2

p′0,0

p′1,0

p′3,0

p′2,0

p′0,1

p′1,1

p′3,1

p′2,1

g0,2

g1,2

g0,1g0,0

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3

4
5

Encode
with col

n m

Figure 3: A canonical stripe augmented from the stripe in Figure 2. The rows and columns are labeled from 0 to 5 and
0 to 10, respectively, for ease of presentation.

m′ intermediate
parity chunks

m row
parity chunks

Step 5 Step 6 Step 8

Step 8

Step 9

Step 10

Step 12

Step 11

Step 9

Step 10

Step 12

Step 11

Step 4Step 4Step 2 Step 3Step 1 Step 4

Step 7Step 6Step 2 Step 3Step 1 Step 5

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

d2,3

d0,4

d1,4

d2,4

d0,5

d1,5

g0,2

g1,2

g0,1g0,0

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3

4
5e m

′-1
au

gm
en

te
d

ro
w

s
r

n m

Figure 4: Upstairs decoding based on the canonical stripe in Figure 3.

4.2.1 Example

We demonstrate via our exemplary configuration how we
recover the lost data due to both device and sector fail-
ures. Figure 4 shows the sequence of our decoding steps.
Without loss of generality, we logically assign the col-
umn identities such that the m′ chunks with sector fail-
ures are in Columns n − m − m′ to n − m − 1, with
e0, e1, · · · , em′−1 lost symbols, respectively, and the m
failed chunks are in Columns n−m to n− 1. Also, the
sector failures all occur in the bottom of the data chunks.
Thus, the lost symbols form a stair, as shown in Figure 4.

The main idea of upstairs decoding is to recover the
lost symbols from left to right and bottom to top. First,
we see that there are n−m−m′ = 3 good chunks (i.e.,
Columns 0-2) without any sector failure. We encode via
Ccol (which is a (6,4)-code) each such good chunk to ob-
tain em′−1 = 2 virtual parity symbols (Steps 1-3). In
Row 4, there are now six available symbols. Thus, all the
unavailable symbols in this row can be recovered using
Crow (which is a (11,6)-code) due to the homomorphic
property (Step 4). Note that we only need to recover the
m′ = 3 symbols that will later be used to recover sector
failures. Column 3 (with e0 = 1 sector failure) now has
four available symbols. Thus, we can recover one lost
symbol and one virtual parity symbol using Ccol (Step
5). Similarly, we repeat the decoding for Column 4 (with
e1 = 1 sector failure) (Step 6). We see that Row 5 now
contains six available symbols, so we can recover one un-
available virtual parity symbol (Step 7). Then Column 5
(with e2 = 2 sector failures) now has four available sym-

Steps Detailed Descriptions
1 d0,0, d1,0, d2,0, d3,0 ⇒ d∗0,0, d

∗
1,0

2 d0,1, d1,1, d2,1, d3,1 ⇒ d∗0,1, d
∗
1,1

3 d0,2, d1,2, d2,2, d3,2 ⇒ d∗0,2, d
∗
1,2

4 d∗0,0, d
∗
0,1, d

∗
0,2, g0,0, g0,1, g0,2 ⇒ d∗0,3, d

∗
0,4, d

∗
0,5

5 d0,3, d1,3, d2,3, d∗0,3 ⇒ d3,3, d∗1,3
6 d0,4, d1,4, d2,4, d∗0,4 ⇒ d3,4, d∗1,4
7 d∗1,0, d

∗
1,1, d

∗
1,2, d

∗
1,3, d

∗
1,4, g1,2 ⇒ d∗1,5

8 d0,5, d1,5, d∗0,5, d
∗
1,5 ⇒ d2,5, d3,5

9 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,1, p0,2
10 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,1, p1,2
11 d2,0, d2,1, d2,2, d2,3, d2,4, d2,5 ⇒ p2,1, p2,2
12 d3,0, d3,1, d3,2, d3,3, d3,4, d3,5 ⇒ p3,1, p3,2

Table 1: Upstairs decoding: detailed steps for the exam-
ple in Figure 4. Steps 4, 7, and 9-12 use Crow, while
Steps 1-3, 5-6, and 8 use Ccol.

bols, so we can recover two lost symbols (Step 8). Now
all chunks with sector failures are recovered. Finally, we
recover the m = 2 lost chunks row by row using Crow
(Steps 9-12). Table 1 lists the detailed decoding steps of
our example in Figure 4.

4.2.2 General Case

We now generalize the steps of upstairs decoding.
(1) Decoding of the chunk with e0 sector failures: It

is clear that there are n − (m + m′) good chunks with-
out any sector failure in the stripe. We use Ccol to en-
code each such good chunk to obtain em′−1 virtual par-
ity symbols. Then each of the first e0 augmented rows
must now have n−m available symbols: n− (m+m′)

152 12th USENIX Conference on File and Storage Technologies USENIX Association

virtual parity symbols that have just been encoded and
m′ global parity symbols. Since an augmented row is a
codeword of Crow due to the homomorphic property, all
the unavailable symbols in this row can be recovered us-
ing Crow. Then, for the column with e0 sector failures, it
now has r available symbols: r − e0 good symbols and
e0 virtual parity symbols that have just been recovered.
Thus, we can recover the e0 sector failures as well as the
em′−1−e0 unavailable virtual parity symbols using Ccol.

(2) Decoding of the chunk with ei sector failures
(1 ≤ i ≤ m′ − 1): If ei = ei−1, we repeat the decod-
ing for the chunk with ei−1 sector failures. Otherwise, if
ei > ei−1, each of the next ei − ei−1 augmented rows
now has n − m available symbols: n − (m + m′) vir-
tual parity symbols that are first recovered from the good
chunks, i virtual parity symbols that are recovered while
the sector failures are recovered, and m′ − i global par-
ity symbols. Thus, all the unavailable virtual parity sym-
bols in these ei−ei−1 augmented rows can be recovered.
Then the column with ei sector failures now has r avail-
able symbols: r − ei good symbols and ei virtual parity
symbols that have been recovered. This column can then
be recovered using Ccol. We repeat this process until all
the m′ chunks with sector failures are recovered.

(3) Decoding of the m failed chunks: After all the m′

chunks with sector failures are recovered, the m failed
chunks can be recovered row by row using Crow.

4.3 Decoding in Practice
In §4.2, we describe an upstairs decoding method for the
worst case. In practice, we often have fewer lost symbols
than the worst case defined by m and e. To achieve effi-
cient decoding, our idea is to recover as many lost sym-
bols as possible via row parity symbols. The reason is
that such decoding is local and involves only the symbols
of the same row, while decoding via global parity sym-
bols involves almost all data symbols within the stripe.
In our implementation, we first locally recover any lost
symbols using row parity symbols whenever possible.
Then, for each chunk that still contains lost symbols, we
count the number of its remaining lost symbols. Next, we
globally recover the lost symbols with global parity sym-
bols using upstairs decoding as described in §4.2, except
those in the m chunks that have the most lost symbols.
These m chunks can be finally recovered via row parity
symbols after all other lost symbols have been recovered.

5 Extended Encoding: Relocating Global
Parity Symbols Inside a Stripe

We thus far assume that there are always s available
global parity symbols that are kept outside a stripe. How-
ever, to maintain the regularity of the code structure and
to avoid provisioning extra devices for keeping the global
parity symbols, it is desirable to keep all global parity

symbols inside a stripe. The idea is that in each stripe,
we store the global parity symbols in some sectors that
originally store the data symbols. A challenge is that
such inside global parity symbols are also subject to both
device and sector failures, so we must maintain their
fault tolerance during encoding. In this section, we pro-
pose two encoding methods, namely upstairs encoding
and downstairs encoding, which support the construc-
tion of inside global parity symbols, while preserving the
homomorphic property and hence the fault tolerance of
STAIR codes. These two encoding methods produce the
same values for parity symbols, but differ in computa-
tional complexities for different configurations. We show
how to deduce parity relations from the two encoding
methods, and also show that the two encoding methods
have complementary performance advantages for differ-
ent configurations.

5.1 Two New Encoding Methods
5.1.1 Upstairs Encoding
We let ĝh,l (0 ≤ l ≤ m′ − 1 and 0 ≤ h ≤ el − 1) be an
inside global parity symbol. Figure 5 illustrates how we
place the inside global parity symbols. Without loss of
generality, we place them at the bottom of the rightmost
data chunks, following the stair layout. Specifically, we
choose the m′ = 3 rightmost data chunks in Columns 3-
5 and place e0 = 1, e1 = 1, and e2 = 2 global parity
symbols at the bottom of these data chunks, respectively.
That is, the original data symbols d3,3, d3,4, d2,5, and
d3,5 are now replaced by the inside global parity symbols
ĝ0,0, ĝ0,1, ĝ0,2, and ĝ1,2, respectively.

To obtain the inside global parity symbols, we ex-
tend the upstairs decoding method in §4.2 and propose
a recovery-based encoding approach called upstairs en-
coding. We first set all the outside global parity symbols
to be zero (see Figure 5). Then we treat all m = 2 row
parity chunks and all s = 4 inside global parity symbols
as lost chunks and lost sectors, respectively. Now we “re-
cover” all inside global parity symbols, followed by the
m = 2 row parity chunks, using the upstairs decoding
method in §4.2. Since all outside global parity symbols
are set to be zero, we need not store them. The homomor-
phic property, and hence the fault tolerance property, re-
main the same as discussed in §4. Thus, in failure mode,
we can still use upstairs decoding to reconstruct lost sym-
bols. We call this encoding method “upstairs encoding”
because the parity symbols are encoded from bottom to
top as described in §4.2.

5.1.2 Downstairs Encoding

In addition to upstairs encoding, we present a different
encoding method called downstairs encoding, in which
we generate parity symbols from top to bottom and right
to left. We illustrate the idea in Figure 6, which depicts

USENIX Association 12th USENIX Conference on File and Storage Technologies 153

m′ intermediate
parity chunks

m row
parity chunks

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

ĝ0,0

d2,3

d0,4

d1,4

ĝ0,1

d2,4

d0,5

d1,5

ĝ1,2

ĝ0,2

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

p*
0,1

p*
1,1

p*
0,0

p*
1,0

d*
0,5d*

0,4d*
0,1 d*

0,2d*
0,0 d*

0,3

d*
1,5d*

1,4d*
1,1 d*

1,2d*
1,0 d*

1,3

p′0,2

p′1,2

p′3,2

p′2,2

p′0,0

p′1,0

p′3,0

p′2,0

p′0,1

p′1,1

p′3,1

p′2,1

g0,2=0

g1,2=0

g0,1=0g0,0=0

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3

4
5e m

′-1
au

gm
en

te
d

ro
w

s
r

n m

Figure 5: Upstairs encoding: we set outside global parity symbols to be zero and reconstruct the inside global parity
symbols using upstairs decoding (see §4.2).

m′ intermediate
parity chunks

m row
parity chunks

Step 7 Step 7 Step 7

Step 4

Step 1

Step 2

Step 7

Step 4

Step 1

Step 2

Step 7

Step 4

Step 1

Step 2

Step 3

Step 3

Step 1

Step 2

Step 6

Step 4

Step 1

Step 2

Step 5

Step 4

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

d2,3

d0,4

d1,4

d2,4

d0,5

d1,5

g0,2=0

g1,2=0

g0,1=0g0,0=0

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3

4
5e m

′-1
au

gm
en

te
d

ro
w

s
r

n m

Figure 6: Downstairs encoding: we compute the parity symbols from top to bottom and right to left.

the sequence of generating parity symbols. We still set
the outside global parity symbols to be zero. First, we
encode via Crow the n − m = 6 data symbols in each
of the first r − em′−1 = 2 rows (i.e., Rows 0 and 1) and
generate m+m′ = 5 parity symbols (including two row
parity symbols and three intermediate parity symbols)
(Steps 1-2). The rightmost column (i.e., Column 10)
now has r = 4 available symbols, including the two in-
termediate parity symbols that are just encoded and two
zeroed outside global parity symbols. Thus, we can re-
cover em′−1 = 2 intermediate parity symbols using Ccol
(Step 3). We can generate m + m′ = 5 parity sym-
bols (including one inside global parity symbol, two row
parity symbols, and two intermediate parity symbols) for
Row 2 using Crow (Step 4), followed by em′−2 = 1 and
em′−3 = 1 intermediate parity symbols in Columns 9
and 8 using Ccol, respectively (Steps 5-6). Finally, we
obtain the remaining m + m′ = 5 parity symbols (in-
cluding three global parity symbols and two row parity
symbols) for Row 3 using Crow (Step 7). Table 2 shows
the detailed steps of downstairs encoding for the example
in Figure 6.

In general, we start with encoding via Crow the rows
from top to bottom. In each row, we generate m + m′

symbols. When no more rows can be encoded because
of insufficient available symbols, we encode via Ccol the
columns from right to left to obtain new intermediate
parity symbols (initially, we obtain em′−1 symbols, fol-
lowed by em′−2 symbols, and so on). We alternately
encode rows and columns until all parity symbols are

Steps Detailed Descriptions

1 d0,0, d0,1, d0,2, d0,3, d0,4, d0,5 ⇒ p0,0, p0,1,
p′0,0, p

′
0,1, p

′
0,2

2 d1,0, d1,1, d1,2, d1,3, d1,4, d1,5 ⇒ p1,0, p1,1,
p′1,0, p

′
1,1, p

′
1,2

3 p′0,2, p
′
1,2, g0,2 = 0, g1,2 = 0 ⇒ p′2,2, p

′
3,2

4 d2,0, d2,1, d2,2, d2,3, d2,4, p′2,2 ⇒ ĝ0,2, p2,0, p2,1,
p′2,0, p

′
2,1

5 p′0,1, p
′
1,1, p

′
2,1, g0,1 = 0 ⇒ p′3,1

6 p′0,0, p
′
1,0, p

′
2,0, g0,0 = 0 ⇒ p′3,0

7 d3,0, d3,1, d3,2, p′3,0, p
′
3,1, p

′
3,2 ⇒ ĝ0,0, ĝ0,1, ĝ1,2,

p3,0, p3,1

Table 2: Downstairs decoding: detailed steps for the ex-
ample in Figure 6. Steps 1-2, 4, and 7 use Crow, while
Steps 3 and 5-6 use Ccol.

formed. We can generalize the steps as in §4.2.2, but
we omit the details in the interest of space.

It is important to note that the downstairs encoding
method cannot be generalized for decoding lost symbols.
For example, referring to our exemplary configuration,
we consider a worst-case recoverable failure scenario in
which both row parity chunks are entirely failed, and the
data symbols d0,3, d1,4, d2,2, and d3,2 are lost. In this
case, we cannot recover the lost symbols in the top row
first, but instead we must resort to upstairs decoding as
described in §4.2. Upstairs decoding works because we
limit the maximum number of chunks with lost symbols
(i.e., at most m+m′). This enables us to first recover the
leftmost virtual parity symbols of the augmented rows
first and gradually reconstruct lost symbols. On the other

154 12th USENIX Conference on File and Storage Technologies USENIX Association

ĝ0,0 ĝ0,1 ĝ1,2

ĝ0,2

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

R
is

er

Tread

Figure 7: A stair step with a tread and a riser.

hand, we do not limit the number of rows with lost sym-
bols in our configuration, so the downstairs method can-
not be used for general decoding.

5.1.3 Discussion
Note that both upstairs and downstairs encoding methods
always generate the same values for all parity symbols,
since both of them preserve the homomorphic property,
fix the outside global parity symbols to be zero, and use
the same schemes Crow and Ccol for encoding.

Also, both of them reuse parity symbols in the inter-
mediate steps to generate additional parity symbols in
subsequent steps. On the other hand, they differ in en-
coding complexity, due to the different ways of reusing
the parity symbols. We analyze this in §5.3.

5.2 Uneven Parity Relations
Before relocating the global parity symbols inside a
stripe, each data symbol contributes to m row parity sym-
bols and all s outside global parity symbols. However,
after relocation, the parity relations become uneven. That
is, some row parity symbols are also contributed by the
data symbols in other rows, while some inside global
parity symbols are contributed by only a subset of data
symbols in the stripe. Here, we discuss the uneven par-
ity relations of STAIR codes so as to better understand
the encoding and update performance of STAIR codes in
subsequent analysis.

To analyze how exactly each parity symbol is gener-
ated, we revisit both upstairs and downstairs encoding
methods. Recall that the row parity symbols and the in-
side global parity symbols are arranged in the form of
stair steps, each of which is composed of a tread (i.e.,
the horizontal portion of a step) and a riser (i.e., the ver-
tical portion of a step), as shown in Figure 7. If upstairs
encoding is used, then from Figure 4, the encoding of
each parity symbol does not involve any data symbol
on its right. Also, among the columns spanned by the
same tread, the encoding of parity symbols in each col-
umn does not involve any data symbol in other columns.
We can make similar arguments for downstairs encoding.
If downstairs encoding is used, then from Figure 6, the
encoding of each parity symbol does not involve any data
symbol below it. Also, among the rows spanned by the
same riser, the encoding of parity symbols in each row

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

ĝ0,0

d2,3

d0,4

d1,4

ĝ0,1

d2,4

d0,5

d1,5

ĝ1,2

ĝ0,2

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

d0,0

d3,0

d2,0

d0,1

d3,1

d2,1

d0,2

d3,2

d2,2

d0,3

ĝ0,0

d2,3

d0,4

ĝ0,1

d2,4

d0,5

ĝ1,2

ĝ0,2

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

d0,0

d1,0

d3,0

d2,0

d0,1

d1,1

d3,1

d2,1

d0,2

d1,2

d3,2

d2,2

d0,3

d1,3

ĝ0,0

d2,3

d0,4

d1,4

ĝ0,1

d2,4

d0,5

d1,5

ĝ1,2

ĝ0,2

p0,1

p1,1

p3,1

p2,1

p0,0

p1,0

p3,0

p2,0

d1,1 d1,2 d1,3 d1,4 d1,5d1,0

Figure 8: The data symbols that contribute to parity sym-
bols p2,0, ĝ0,1, and p1,1, respectively.

does not involve any data symbol in other rows.
As both upstairs and downstairs encoding methods

generate the same values of parity symbols, we can com-
bine the above arguments into the following property of
how each parity symbol is related to data symbols.

Property 1 (Parity relations in STAIR codes): In a
STAIR code stripe, a (row or inside global) parity sym-
bol in Row i0 and Column j0 (where 0 ≤ i0 ≤ r − 1
and n − m − m′ ≤ j0 ≤ n − 1) depends only on the
data symbols di,j’s where i ≤ i0 and j ≤ j0. Moreover,
each parity symbol is unrelated to any data symbol in any
other column (row) spanned by the same tread (riser).

Figure 8 illustrates the above property. For example,
p2,0 depends only on the data symbols di,j’s in Rows 0-2
and Columns 0-5. Note that ĝ0,1 in Column 4 is unrelated
to any data symbol in Column 3, which is spanned by
the same tread as Column 4. Similarly, p1,1 in Row 1 is
unrelated to any data symbol in Row 0, which is spanned
by the same riser as Row 1.

5.3 Encoding Complexity Analysis
We have proposed two encoding methods for STAIR
codes: upstairs encoding and downstairs encoding. Both
of them alternately encode rows and columns to obtain
the parity symbols. We can also obtain parity symbols
using the standard encoding approach, in which each par-
ity symbol is computed directly from a linear combina-
tion of data symbols as in classical Reed-Solomon codes.
We now analyze the computational complexities of these
three methods for different configuration parameters of
STAIR codes.

STAIR codes perform encoding over a Galois Field,
in which linear arithmetic can be decomposed into
the basic operations Mult XORs [31]. We define

USENIX Association 12th USENIX Conference on File and Storage Technologies 155

0

500

1000

1500

2000

2500

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=8

 #
 o

f M
ul

t_
X

O
R

s

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=16

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=24

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=32

Standard
Upstairs
Downstairs

Figure 9: Numbers of Mult XORs (per stripe) of the three encoding methods for STAIR codes versus different e’s
when n = 8, m = 2, and s = 4.

Mult XOR(R1,R2, α) as an operation that first mul-
tiplies a region R1 of bytes by a w-bit constant α in
Galois Field GF (2w), and then applies XOR-summing
to the product and the target region R2 of the same
size. For example, Y = α0 · X0 + α1 · X1

can be decomposed into two Mult XORs (assuming
Y is initialized as zero): Mult XOR(X0,Y, α0) and
Mult XOR(X1,Y, α1). Clearly, fewer Mult XORs im-
ply a lower computational complexity. To evaluate the
computational complexity of an encoding method, we
count its number of Mult XORs (per stripe).

For upstairs encoding, we generate m · r row parity
symbols and s virtual parity symbols along the row di-
rection, as well as s inside global parity symbols and
(n − m) · em′−1 − s virtual parity symbols along the
column direction. Its number of Mult XORs (denoted
by Xup) is:

Xup =

row direction︷ ︸︸ ︷
(n−m)× (m · r + s) +

column direction︷ ︸︸ ︷
r × [(n−m) · em′−1].

(1)
For downstairs encoding, we generate m · r row parity

symbols, s inside global parity symbols, and m′ · r − s
intermediate parity symbols along the row direction, as
well as s intermediate parity symbols along the column
direction. Its number of Mult XORs (denoted by Xdown)
is:

Xdown =

row direction︷ ︸︸ ︷
(n−m)×

[
(m+m′) · r

]
+

column direction︷ ︸︸ ︷
r × s . (2)

For standard encoding, we compute the number of
Mult XORs by summing the number of data symbols
that contribute to each parity symbol, based on the prop-
erty of uneven parity relations discussed in §5.2.

We show via a case study how the three encoding
methods differ in the number of Mult XORs. Figure 9
depicts the numbers of Mult XORs of the three encod-
ing methods for different e’s in the case where n = 8,
m = 2, and s = 4. Upstairs encoding and downstairs en-
coding incur significantly fewer Mult XORs than stan-
dard encoding most of the time. The main reason is that

both upstairs encoding and downstairs encoding often
reuse the computed parity symbols in subsequent encod-
ing steps. We also observe that for a given s, the num-
ber of Mult XORs of upstairs encoding increases with
em′−1 (see Equation (1)), while that of downstairs en-
coding increases with m′ (see Equation (2)). Since larger
m′ often implies smaller em′−1, the value of m′ often
determines which of the two encoding methods is more
efficient: when m′ is small, downstairs encoding wins;
when m′ is large, upstairs encoding wins.

In our encoding implementation of STAIR codes, for
given configuration parameters, we always pre-compute
the number of Mult XORs for each of the encoding
methods, and then choose the one with the fewest
Mult XORs.

6 Evaluation
We evaluate STAIR codes and compare them with other
related erasure codes in different practical aspects, in-
cluding storage space saving, encoding/decoding speed,
and update penalty.

6.1 Storage Space Saving
The main motivation for STAIR codes is to tolerate si-
multaneous device and sector failures with significantly
lower storage space overhead than traditional erasure
codes (e.g., Reed-Solomon codes) that provide only
device-level fault tolerance. Given a failure scenario de-
fined by m and e, traditional erasure codes need m+m′

chunks per stripe for parity, while STAIR codes need
only m chunks and s symbols (where m′ ≤ s). Thus,
STAIR codes save r×m′−s symbols per stripe, or equiv-
alently, m′ − s

r devices per system. In short, the saving
of STAIR codes depends on only three parameters s, m′,
and r (where s and m′ are determined by e).

Figure 10 plots the number of devices saved by STAIR
codes for s ≤ 4, m′ ≤ s, and r ≤ 32. As r increases,
the number of devices saved is close to m′. The saving
reaches the highest when m′ = s.

We point out that the recently proposed SD codes
[27,28] are also motivated for reducing the storage space

156 12th USENIX Conference on File and Storage Technologies USENIX Association

0 8 16 24 32
0

1

2

3

4
 s=1

 r

Sa
vi

ng
s (

of

 D
ev

ic
es

)

0 8 16 24 32
0

1

2

3

4
 s=2

 r
0 8 16 24 32

0

1

2

3

4
 s=3

 r
0 8 16 24 32

0

1

2

3

4
 s=4

 r

 m'=1
 m'=2
 m'=3
 m'=4

Figure 10: Space saving of STAIR codes over traditional erasure codes in terms of s, m′, and r.

over traditional erasure codes. Unlike STAIR codes, SD
codes always achieve a saving of s − s

r devices, which
is the maximum saving of STAIR codes. While STAIR
codes apparently cannot outperform SD codes in space
saving, it is important to note that the currently known
constructions of SD codes are limited to s ≤ 3 only
[6,27,28], implying that SD codes can save no more than
three devices. On the other hand, STAIR codes do not
have such limitations. As shown in Figure 10, STAIR
codes can save more than three devices for larger s.

6.2 Encoding/Decoding Speed
We evaluate the encoding/decoding speed of STAIR
codes. Our implementation of STAIR codes is writ-
ten in C. We leverage the GF-Complete open source li-
brary [31] to accelerate Galois Field arithmetic using In-
tel SIMD instructions. Our experiments compare STAIR
codes with the state-of-the-art SD codes [27, 28]. At the
time of this writing, the open-source implementation of
SD codes encodes stripes in a decoding manner without
any parity reuse. For fair comparisons, we extend the
SD code implementation to support the standard encod-
ing method mentioned in §5.3. We run our performance
tests on a machine equipped with an Intel Core i5-3570
CPU at 3.40GHz with SSE4.2 support. The CPU has a
256KB L2-cache and a 6MB L3-cache.

6.2.1 Encoding

We compare the encoding performance of STAIR codes
and SD codes for different values of n, r, m, and s. For
SD codes, we only consider the range of configuration
parameters where s ≤ 3, since no code construction is
available outside this range [6, 27, 28]. In addition, the
SD code constructions for s = 3 are only available in the
range n ≤ 24, r ≤ 24, and m ≤ 3 [27, 28]. For STAIR
codes, a single value of s can imply different configura-
tions of e (e.g., see Figure 9 in §5.3), each of which has
different encoding performance. Here, we take a conser-
vative approach to analyze the worst-case performance
of STAIR codes, that is, we test all possible configura-
tions of e for a given s and pick the one with the lowest
encoding speed.

Note that the encoding performance of both STAIR

codes and SD codes heavily depends on the word size
w of the adopted Galois Field GF (2w), where w is of-
ten set to be a power of 2. A smaller w often means a
higher encoding speed [31]. STAIR codes work as long
as n+m′ ≤ 2w and r + em′−1 ≤ 2w. Thus, we choose
w = 8 since it suffices for all of our tests. However, SD
codes may choose among w = 8, w = 16, and w = 32,
depending on configuration parameters. We choose the
smallest w that is feasible for the SD code construction.

We consider the metric encoding speed, defined as
the amount of data encoded per second. We construct
a stripe of size roughly 32MB in memory as in [27, 28].
We put random bytes in the stripe, and divide the stripe
into r × n sectors, each mapped to a symbol. We obtain
the averaged results over 10 runs.

Figures 11(a) and 11(b) present the encoding speed re-
sults for different values of n when r = 16 and for differ-
ent values of r when n = 16, respectively. In most cases,
the encoding speed of STAIR codes is over 1000MB/s,
which is significantly higher than the disk write speed
in practice (note that although disk writes can be paral-
lelized in disk arrays, the encoding operations can also be
parallelized with modern multi-core CPUs). The speed
increases with both n and r. The intuitive reason is that
the proportion of parity symbols decreases with n and r.
Compared to SD codes, STAIR codes improve the en-
coding speed by 106.03% on average (in the range from
29.30% to 225.14%). The reason is that STAIR codes
reuse encoded parity information in subsequent encoding
steps by upstairs/downstairs encoding (see §5.3), while
such an encoding property is not exploited in SD codes.

We also evaluate the impact of stripe size on the en-
coding speed of STAIR codes and SD codes for given n
and r. We fix n = 16 and r = 16, and vary the stripe
size from 128KB to 512MB. Note that a stripe of size
128KB implies a symbol of size 512 bytes, the standard
sector size in practical disk drives. Figure 12 presents
the encoding speed results. As the stripe size increases,
the encoding speed of both STAIR codes and SD codes
first increases and then drops, due to the mixed effects
of SIMD instructions adopted in GF-Complete [31] and
CPU cache. Nevertheless, the encoding speed advantage
of STAIR codes over SD codes remains unchanged.

USENIX Association 12th USENIX Conference on File and Storage Technologies 157

4 8 12 16 20 24 28 32
0

1000
2000
3000
4000
5000
6000
7000 m=1

 n

 E
nc

od
in

g
Sp

ee
d

(M
B

/s
)

4 8 12 16 20 24 28 32

 m=2

 n

SD, s=1
SD, s=2
SD, s=3

4 8 12 16 20 24 28 32

 m=3

 n

STAIR, s=1
STAIR, s=2
STAIR, s=3
STAIR, s=4

(a) Varying n when r = 16

4 8 12 16 20 24 28 32
0

1000
2000
3000
4000
5000
6000
7000 m=1

 r

 E
nc

od
in

g
Sp

ee
d

(M
B

/s
)

4 8 12 16 20 24 28 32

 m=2

 r

SD, s=1
SD, s=2
SD, s=3

4 8 12 16 20 24 28 32

 m=3

 r

STAIR, s=1
STAIR, s=2
STAIR, s=3
STAIR, s=4

(b) Varying r when n = 16

Figure 11: Encoding speed of STAIR codes and SD codes for different combinations of n, r, m, and s.

0
2000
4000
6000
8000

10000
12000

12
8K

B

51
2K

B

2M
B

8M
B

32
M

B

12
8M

B

51
2M

B

 m=1

 Stripe Size

 E
nc

od
in

g
Sp

ee
d

(M
B

/s
)

12
8K

B

51
2K

B

2M
B

8M
B

32
M

B

12
8M

B

51
2M

B

 m=2

 Stripe Size

SD, s=1
SD, s=2
SD, s=3

12
8K

B

51
2K

B

2M
B

8M
B

32
M

B

12
8M

B

51
2M

B

 m=3

 Stripe Size

STAIR, s=1
STAIR, s=2
STAIR, s=3
STAIR, s=4

Figure 12: Encoding speed of STAIR codes and SD codes for different stripe sizes when n = 16 and r = 16.

6.2.2 Decoding

We measure the decoding performance of STAIR codes
and SD codes in recovering lost symbols. Since the de-
coding time increases with the number of lost symbols
to be recovered, we consider a particular worst case in
which the m leftmost chunks and s additional symbols
in the following m′ chunks defined by e are all lost. The
evaluation setup is similar to that in §6.2.1, and in partic-
ular, the stripe size is fixed at 32MB.

Figures 13(a) and 13(b) present the decoding speed re-
sults for different n when r = 16 and for different r when
n = 16, respectively. The results of both figures can
be viewed in comparison to those of Figures 11(a) and
11(b), respectively. Similar to encoding, the decoding
speed of STAIR codes is over 1000MB/s in most cases
and increases with both n and r. Compared to SD codes,
STAIR codes improve the decoding speed by 102.99%
on average (in the range from 1.70% to 537.87%).

In practice, we often have fewer lost symbols than the
worst case (see §4.3). One common case is that there are
only failed chunks due to device failures (i.e., s = 0), so
the decoding of both STAIR and SD codes is identical

to that of Reed-Solomon codes. In this case, the decod-
ing speed of STAIR/SD codes can be significantly higher
than that of s = 1 for STAIR codes in Figure 13. For ex-
ample, when n = 16 and r = 16, the decoding speed
increases by 79.39%, 29.39%, and 11.98% for m = 1, 2,
and 3, respectively.

6.3 Update Penalty

We evaluate the update cost of STAIR codes when data
symbols are updated. For each data symbol in a stripe
being updated, we count the number of parity symbols
being affected (see §5.2). Here, we define the update
penalty as the average number of parity symbols that
need to be updated when a data symbol is updated.

Clearly, the update penalty of STAIR codes increases
with m. We are more interested in how e influences the
update penalty of STAIR codes. Figure 14 presents the
update penalty results for different e’s when n = 16 and
s = 4. For different e’s with the same s, the update
penalty of STAIR codes often increases with em′−1. In-
tuitively, a larger em′−1 implies that more rows of row
parity symbols are encoded from inside global parity

158 12th USENIX Conference on File and Storage Technologies USENIX Association

4 8 12 16 20 24 28 32
0

1000
2000
3000
4000
5000
6000
7000 m=1

 n

 D
ec

od
in

g
Sp

ee
d

(M
B

/s
)

4 8 12 16 20 24 28 32

 m=2

 n

SD, s=1
SD, s=2
SD, s=3

4 8 12 16 20 24 28 32

 m=3

 n

STAIR, s=1
STAIR, s=2
STAIR, s=3
STAIR, s=4

(a) Varying n when r = 16

4 8 12 16 20 24 28 32
0

1000
2000
3000
4000
5000
6000
7000 m=1

 r

 D
ec

od
in

g
Sp

ee
d

(M
B

/s
)

4 8 12 16 20 24 28 32

 m=2

 r

SD, s=1
SD, s=2
SD, s=3

4 8 12 16 20 24 28 32

 m=3

 r

STAIR, s=1
STAIR, s=2
STAIR, s=3
STAIR, s=4

(b) Varying r when n = 16

Figure 13: Decoding speed of STAIR codes and SD codes for different combinations of n, r, m, and s.

0
3
6
9

12
15
18

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=8

 U
pd

at
e

Pe
na

lty

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=16

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=24

(4) (1,
3)

(2,
2)

(1,
1,2

)

(1,
1,1

,1)

 r=32 m=1
 m=2
 m=3

Figure 14: Update penalty of STAIR codes for different e’s when n = 16 and s = 4.

0
2
4
6
8

10
12
14
16

RS

SD, s=
1

STAIR
, s=

1

SD, s=
2

STAIR
, s=

2

SD, s=
3

STAIR
, s=

3

STAIR
, s=

4

 m=1

 U
pd

at
e

Pe
na

lty

RS

SD, s=
1

STAIR
, s=

1

SD, s=
2

STAIR
, s=

2

SD, s=
3

STAIR
, s=

3

STAIR
, s=

4

 m=2

RS

SD, s=
1

STAIR
, s=

1

SD, s=
2

STAIR
, s=

2

SD, s=
3

STAIR
, s=

3

STAIR
, s=

4

 m=3

Figure 15: Update penalty of STAIR codes, SD codes, and Reed-Solomon (RS) codes when n = 16 and r = 16.
For STAIR codes, we plot the error bars for the maximum and minimum update penalty values among all possible
configurations of e.

symbols, which are further encoded from almost all data
symbols (see §5.2).

We compare STAIR codes with SD codes [27,28]. For
STAIR codes with a given s, we test all possible config-
urations of e and find the average, minimum, and max-
imum update penalty. For SD codes, we only consider
s between 1 and 3. We also include the update penalty
results of Reed-Solomon codes for reference. Figure 15
presents the update penalty results when n = 16 and

r = 16 (while similar observations are made for other
n and r). For a given s, the range of update penalty of
STAIR codes covers that of SD codes, although the aver-
age is sometimes higher than that of SD codes (same for
s = 1, by 7.30% to 14.02% for s = 2, and by 10.47% to
23.72% for s = 3). Both STAIR codes and SD codes
have higher update penalty than Reed-Solomon codes
due to more parity symbols in a stripe, and hence are suit-
able for storage systems with rare updates (e.g., backup

USENIX Association 12th USENIX Conference on File and Storage Technologies 159

or write-once-read-many (WORM) systems) or systems
dominated by full-stripe writes [27, 28].

7 Related Work
Erasure codes have been widely adopted to provide fault
tolerance against device failures in storage systems [32].
Classical erasure codes include standard Reed-Solomon
codes [34] and Cauchy Reed-Solomon codes [7], both
of which are MDS codes that provide general construc-
tions for all possible configuration parameters. They are
usually implemented as systematic codes for storage ap-
plications [26,30,33], and thus can be used to implement
the construction of STAIR codes. In addition, Cauchy
Reed-Solomon codes can be further transformed into ar-
ray codes, whose encoding computations purely build on
efficient XOR operations [33].

In the past decades, many kinds of array codes have
been proposed, including MDS array codes (e.g., [2–4,9,
12,13,20,22,29,41,42]) and non-MDS array codes (e.g.,
[16, 17, 23]). Array codes are often designed for specific
configuration parameters. To avoid compromising the
generality of STAIR codes, we do not suggest to adopt
array codes in the construction of STAIR codes. More-
over, recent work [31] has shown that Galois Field arith-
metic can be implemented to be extremely fast (some-
times at cache line speeds) using SIMD instructions in
modern processors.

Sector failures are not explicitly considered in tradi-
tional erasure codes, which focus on tolerating device-
level failures. To cope with sector failures, ad hoc
schemes are often considered. One scheme is scrub-
bing [24, 36, 38], which proactively scans all disks and
recovers any spotted sector failure using the underlying
erasure codes. Another scheme is intra-device redun-
dancy [10, 11, 36], in which contiguous sectors in each
device are grouped together to form a segment and are
then encoded with redundancy within the device. Our
work targets a different objective and focuses on con-
structing an erasure code that explicitly addresses sector
failures.

To simultaneously tolerate device and sector failures
with minimal redundancy, SD codes [27, 28] (includ-
ing the earlier PMDS codes [5], which are a subset of
SD codes) have recently been proposed. As stated in
§1, SD codes are known only for limited configurations
and some of the known constructions rely on extensive
searches. A relaxation of the SD property has also been
recently addressed as a future work in [27], which as-
sumes that each row has no more than a given number
of sector failures. It is important to note that the relax-
ation of [27] is different from ours, in which we limit the
maximum number of devices with sector failures and the
maximum number of sector failures that simultaneously
occur in each such device. It turns out that our relaxation

enables us to derive a general code construction. Another
similar kind of erasure codes is the family of locally re-
pairable codes (LRCs) [18, 19, 35]. Pyramid codes [18]
are designed for improving the recovery performance for
small-scale device failures and have been implemented
in archival storage [40]. Huang et al.’s and Sathiamoor-
thy et al.’s LRCs [19, 35] can be viewed as generaliza-
tions of Pyramid codes and are recently adopted in com-
mercial storage systems. In particular, Huang et al.’s
LRCs [19] achieve the same fault tolerance property as
PMDS codes [5], and thus can also be used as SD codes.
However, the construction of Huang et al.’s LRCs is lim-
ited to m = 1 only. To our knowledge, STAIR codes
are the first general family of erasure codes that can effi-
ciently tolerate both device and sector failures.

8 Conclusions
We present STAIR codes, a general family of erasure
codes that can tolerate simultaneous device and sec-
tor failures in a space-efficient manner. STAIR codes
can be constructed for tolerating any numbers of device
and sector failures subject to a pre-specified sector fail-
ure coverage. The special construction of STAIR codes
also makes efficient encoding/decoding possible through
parity reuse. Compared to the recently proposed SD
codes [5, 27, 28], STAIR codes not only support a much
wider range of configuration parameters, but also achieve
higher encoding/decoding speed based on our experi-
ments.

In future work, we explore how to correctly configure
STAIR codes in practical storage systems based on em-
pirical failure characteristics [1, 25, 36, 37].

The source code of STAIR codes is available at
http://ansrlab.cse.cuhk.edu.hk/software/stair.

Acknowledgments
We would like to thank our shepherd, James S. Plank,
and the anonymous reviewers for their valuable com-
ments. This work was supported in part by grants from
the University Grants Committee of Hong Kong (project
numbers: AoE/E-02/08 and ECS CUHK419212).

References
[1] L. N. Bairavasundaram, G. R. Goodson, S. Pasupa-

thy, and J. Schindler. An analysis of latent sector
errors in disk drives. In Proceedings of the 2007
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS ’07), pages 289–300, San Diego,
CA, June 2007.

[2] M. Blaum. A family of MDS array codes with min-
imal number of encoding operations. In Proceed-
ings of the 2006 IEEE International Symposium on

160 12th USENIX Conference on File and Storage Technologies USENIX Association

Information Theory (ISIT ’06), pages 2784–2788,
Seattle, WA, July 2006.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon.
EVENODD: An efficient scheme for tolerating
double disk failures in RAID architectures. IEEE
Transactions on Computers, 44(2):192–202, 1995.

[4] M. Blaum, J. Bruck, and A. Vardy. MDS ar-
ray codes with independent parity symbols. IEEE
Transactions on Information Theory, 42(2):529–
542, 1996.

[5] M. Blaum, J. L. Hafner, and S. Hetzler. Partial-
MDS codes and their application to RAID type of
architectures. IEEE Transactions on Information
Theory, 59(7):4510–4519, July 2013.

[6] M. Blaum and J. S. Plank. Construction of sector-
disk (SD) codes with two global parity symbols.
IBM Research Report RJ10511 (ALM1308-007),
Almaden Research Center, IBM Research Division,
Aug. 2013.

[7] J. Blomer, M. Kalfane, R. Karp, M. Karpinski,
M. Luby, and D. Zuckerman. An XOR-based
erasure-resilient coding scheme. Technical Report
TR-95-048, International Computer Science Insti-
tute, UC Berkeley, Aug. 1995.

[8] S. Boboila and P. Desnoyers. Write endurance in
flash drives: Measurements and analysis. In Pro-
ceedings of the 8th USENIX Conference on File and
Storage Technologies (FAST ’10), pages 115–128,
San Jose, CA, Feb. 2010.

[9] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row-diagonal
parity for double disk failure correction. In Pro-
ceedings of the 3rd USENIX Conference on File
and Storage Technologies (FAST ’04), pages 1–14,
San Francisco, CA, Mar. 2004.

[10] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis,
J. Menon, and K. Rao. A new intra-disk redun-
dancy scheme for high-reliability RAID storage
systems in the presence of unrecoverable errors.
ACM Transactions on Storage, 4(1):1–42, 2008.

[11] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis,
J. Menon, and K. Rao. Disk scrubbing versus
intradisk redundancy for RAID storage systems.
ACM Transactions on Storage, 7(2):1–42, 2011.

[12] G. Feng, R. Deng, F. Bao, and J. Shen. New
efficient MDS array codes for RAID Part I:
Reed-Solomon-like codes for tolerating three disk
failures. IEEE Transactions on Computers,
54(9):1071–1080, 2005.

[13] G. Feng, R. Deng, F. Bao, and J. Shen. New effi-
cient MDS array codes for RAID Part II: Rabin-like

codes for tolerating multiple (≥ 4) disk failures.
IEEE Transactions on Computers, 54(12):1473–
1483, 2005.

[14] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. In Proceedings of the 42nd Inter-
national Symposium on Microarchitecture (MICRO
’09), pages 24–33, New York, NY, Dec. 2009.

[15] L. M. Grupp, J. D. Davis, and S. Swanson. The
bleak future of NAND flash memory. In Proceed-
ings of the 10th USENIX conference on File and
Storage Technologies (FAST ’12), pages 17–24, San
Jose, CA, Feb. 2012.

[16] J. L. Hafner. WEAVER codes: Highly fault tolerant
erasure codes for storage systems. In Proceedings
of the 4th USENIX Conference on File and Stor-
age Technologies (FAST ’05), pages 211–224, San
Francisco, CA, Dec. 2005.

[17] J. L. Hafner. HoVer erasure codes for disk arrays. In
Proceedings of the 2006 International Conference
on Dependable Systems and Networks (DSN ’06),
pages 1–10, Philadelphia, PA, June 2006.

[18] C. Huang, M. Chen, and J. Li. Pyramid codes:
Flexible schemes to trade space for access effi-
ciency in reliable data storage systems. ACM Trans-
actions on Storage, 9(1):1–28, Mar. 2013.

[19] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure cod-
ing in Windows Azure storage. In Proceedings
of the 2012 USENIX Annual Technical Conference
(USENIX ATC ’12), pages 15–26, Boston, MA,
June 2012.

[20] C. Huang and L. Xu. STAR: An efficient coding
scheme for correcting triple storage node failures.
In Proceedings of the 4th USENIX Conference on
File and Storage Technologies (FAST ’05), pages
889–901, San Francisco, CA, Dec. 2005.

[21] Intel Corporation. Intelligent RAID 6 theory —
overview and implementation. White Paper, 2005.

[22] M. Li and J. Shu. C-Codes: Cyclic lowest-density
MDS array codes constructed using starters for
RAID 6. IBM Research Report RC25218 (C1110-
004), China Research Laboratory, IBM Research
Division, Oct. 2011.

[23] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-
based erasure codes with high fault tolerance for
storage systems. ACM Transactions on Storage,
4(4):1–22, 2009.

[24] A. Oprea and A. Juels. A clean-slate look at disk
scrubbing. In Proceedings of the 8th USENIX Con-

USENIX Association 12th USENIX Conference on File and Storage Technologies 161

ference on File and Storage Technologies (FAST
’10), pages 1–14, San Jose, CA, Feb. 2010.

[25] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Fail-
ure trends in a large disk drive population. In Pro-
ceedings of the 5th USENIX conference on File and
Storage Technologies (FAST ’07), pages 17–28, San
Jose, CA, Feb. 2007.

[26] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software —
Practice & Experience, 27(9):995–1012, 1997.

[27] J. S. Plank and M. Blaum. Sector-disk (SD) era-
sure codes for mixed failure modes in RAID sys-
tems. Technical Report CS-13-708, University of
Tennessee, May 2013.

[28] J. S. Plank, M. Blaum, and J. L. Hafner. SD codes:
Erasure codes designed for how storage systems re-
ally fail. In Proceedings of the 11th USENIX con-
ference on File and Storage Technologies (FAST
’13), pages 95–104, San Jose, CA, Feb. 2013.

[29] J. S. Plank, A. L. Buchsbaum, and B. T. Vander
Zanden. Minimum density RAID-6 codes. ACM
Transactions on Storage, 6(4):1–22, May 2011.

[30] J. S. Plank and Y. Ding. Note: Correction to the
1997 tutorial on Reed-Solomon coding. Software
— Practice & Experience, 35(2):189–194, 2005.

[31] J. S. Plank, K. M. Greenan, and E. L. Miller.
Screaming fast Galois Field arithmetic using In-
tel SIMD instructions. In Proceedings of the 11th
USENIX conference on File and Storage Technolo-
gies (FAST ’13), pages 299–306, San Jose, CA,
Feb. 2013.

[32] J. S. Plank and C. Huang. Tutorial: Erasure coding
for storage applications. Slides presented at FAST-
2013: 11th Usenix Conference on File and Storage
Technologies, Feb. 2013.

[33] J. S. Plank and L. Xu. Optimizing Cauchy Reed-
Solomon codes for fault-tolerant network storage
applications. In Proceedings of the 5th IEEE In-
ternational Symposium on Network Computing and
Applications (NCA ’06), pages 173–180, Cam-
bridge, MA, July 2006.

[34] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300–304,
1960.

[35] M. Sathiamoorthy, M. Asteris, D. Papailiopoulous,
A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur. XORing elephants: Novel erasure
codes for big data. In Proceedings of the 39th In-
ternational Conference on Very Large Data Bases

(VLDB ’13), pages 325–336, Trento, Italy, Aug.
2013.

[36] B. Schroeder, S. Damouras, and P. Gill. Un-
derstanding latent sector errors and how to pro-
tect against them. In Proceedings of the 8th
USENIX Conference on File and Storage Technolo-
gies (FAST ’10), pages 71–84, San Jose, CA, Feb.
2010.

[37] B. Schroeder and G. A. Gibson. Disk failures in the
real world: What does an MTTF of 1,000,000 hours
mean to you? In Proceedings of the 5th USENIX
conference on File and Storage Technologies (FAST
’07), pages 1–16, San Jose, CA, Feb. 2007.

[38] T. J. E. Schwarz, Q. Xin, E. L. Miller, and D. D. E.
Long. Disk scrubbing in large archival storage sys-
tems. In Proceedings of the 12th Annual Meet-
ing of the IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS ’04),
pages 409–418, Volendam, Netherlands, Oct. 2004.

[39] J. White and C. Lueth. RAID-DP: NetApp im-
plementation of double-parity RAID for data pro-
tection. Technical Report TR-3298, NetApp, Inc.,
May 2010.

[40] A. Wildani, T. J. E. Schwarz, E. L. Miller, and
D. D. Long. Protecting against rare event failures
in archival systems. In Proceedings of the 17th An-
nual Meeting of the IEEE/ACM International Sym-
posium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems (MAS-
COTS ’09), pages 1–11, London, UK, Sept. 2009.

[41] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner.
Low-density MDS codes and factors of complete
graphs. IEEE Transactions on Information Theory,
45(6):1817–1826, Sept. 1999.

[42] L. Xu and J. Bruck. X-Code: MDS array codes
with optimal encoding. IEEE Transactions on In-
formation Theory, 45(1):272–276, 1999.

[43] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge. Un-
derstanding the robustness of SSDs under power
fault. In Proceedings of the 11th USENIX confer-
ence on File and Storage Technologies (FAST ’13),
pages 271–284, San Jose, CA, Feb. 2013.

Appendix: Proof of Homomorphic Property
We formally prove the homomorphic property described
in §4.1. We state the following theorem.

Theorem 1 In the construction of the canonical stripe
of STAIR codes, the encoding of each chunk in the col-
umn direction via Ccol is homomorphic, such that each

162 12th USENIX Conference on File and Storage Technologies USENIX Association

augmented row in the canonical stripe is a codeword of
Crow.

Proof: We prove by matrix operations. We define the
matrices D = [di,j]r×(n−m), P = [pi,k]r×m, and P′ =
[p′i,l]r×m′ . Also, we define the generator matrices Grow

and Gcol for the codes Crow and Ccol, respectively, as:

Grow =
(
I(n−m)×(n−m) | A(n−m)×(m+m′)

)
,

Gcol =
(
Ir×r | Br×em′−1

)
,

where I is an identity matrix, and A and B are the sub-
matrices that form the parity symbols. The upper r rows
of the stripe can be expressed as follows:

(D | P | P′) = D ·Grow.

The lower em′−1 augmented rows are expressed as fol-
lows:

(
(D | P | P′)

T ·B
)T

= BT · (D ·Grow)

=
(
BT ·D

)
·Grow

We can see that each of the lower em′−1 rows can be
calculated using the generator matrix Grow, and hence
is a codeword of Crow. �

USENIX Association 12th USENIX Conference on File and Storage Technologies 163

Parity Logging with Reserved Space: Towards Efficient Updates and

Recovery in Erasure-coded Clustered Storage

Jeremy C. W. Chan∗, Qian Ding∗, Patrick P. C. Lee, Helen H. W. Chan

The Chinese University of Hong Kong

{cwchan,qding,pclee,hwchan}@cse.cuhk.edu.hk

Abstract

Many modern storage systems adopt erasure coding to

provide data availability guarantees with low redun-

dancy. Log-based storage is often used to append new

data rather than overwrite existing data so as to achieve

high update efficiency, but introduces significant I/O

overhead during recovery due to reassembling updates

from data and parity chunks. We propose parity logging

with reserved space, which comprises two key design

features: (1) it takes a hybrid of in-place data updates

and log-based parity updates to balance the costs of up-

dates and recovery, and (2) it keeps parity updates in a

reserved space next to the parity chunk to mitigate disk

seeks. We further propose a workload-aware scheme to

dynamically predict and adjust the reserved space size.

We prototype an erasure-coded clustered storage system

called CodFS, and conduct testbed experiments on dif-

ferent update schemes under synthetic and real-world

workloads. We show that our proposed update scheme

achieves high update and recovery performance, which

cannot be simultaneously achieved by pure in-place or

log-based update schemes.

1 Introduction

Clustered storage systems are known to be susceptible to

component failures [17]. High data availability can be

achieved by encoding data with redundancy using either

replication or erasure coding. Erasure coding encodes

original data chunks to generate new parity chunks, such

that a subset of data and parity chunks can sufficiently

recover all original data chunks. It is known that era-

sure coding introduces less overhead in storage and write

bandwidth than replication under the same fault toler-

ance [37, 47]. For example, traditional 3-way replica-

tion used in GFS [17] and Azure [8] introduces 200%

of redundancy overhead, while erasure coding can re-

duce the overhead to 33% and achieve higher availabil-

ity [22]. Today’s enterprise clustered storage systems

[14, 22, 35, 39, 49] adopt erasure coding in production to

reduce hardware footprints and maintenance costs.

For many real-world workloads in enterprise servers

and network file systems [2, 30], data updates are dom-

∗The first two authors contributed equally to this work.

inant. There are two ways of performing updates: (1)

in-place updates, where the stored data is read, modified,

and written with the new data, and (2) log-based updates,

where updates are inserted to the end of an append-only

log [38]. If updates are frequent, in-place updates intro-

duce significant I/O overhead in erasure-coded storage

since parity chunks also need to be updated to be con-

sistent with the data changes. Existing clustered stor-

age systems, such as GFS [17] and Azure [8] adopt log-

based updates to reduce I/Os by sequentially appending

updates. On the other hand, log-based updates introduce

additional disk seeks to the update log during sequen-

tial reads. This in particular hurts recovery performance,

since recovery makes large sequential reads to the data

and parity chunks in the surviving nodes in order to re-

construct the lost data.

This raises an issue of choosing the appropriate up-

date scheme for an erasure-coded clustered storage sys-

tem to achieve efficient updates and recovery simultane-

ously. Our primary goal is to mitigate the network trans-

fer and disk I/O overheads, both of which are potential

bottlenecks in clustered storage systems. In this paper,

we make the following contributions.

First, we provide a taxonomy of existing update

schemes for erasure-coded clustered storage systems. To

this end, we propose a novel update scheme called parity

logging with reserved space, which uses a hybrid of in-

place data updates and log-based parity updates. It miti-

gates the disk seeks of reading parity chunks by putting

deltas of parity chunks in a reserved space that is allo-

cated next to their parity chunks. We further propose

a workload-aware reserved space management scheme

that effectively predicts the size of reserved space and

reclaims the unused reserved space.

Second, we build an erasure-coded clustered stor-

age system CodFS, which targets the common update-

dominant workloads and supports efficient updates and

recovery. CodFS offloads client-side encoding computa-

tions to the storage cluster. Its implementation is extensi-

ble for different erasure coding and update schemes, and

is deployable on commodity hardware.

Finally, we conduct testbed experiments using syn-

thetic and real-world traces. We show that our CodFS

prototype achieves network-bound read/write perfor-

164 12th USENIX Conference on File and Storage Technologies USENIX Association

mance. Under real-world workloads, our proposed par-

ity logging with reserved space gives a 63.1% speedup of

update throughput over pure in-place updates and up to

10× speedup of recovery throughput over pure log-based

updates. Also, our workload-aware reserved space man-

agement effectively shrinks unused reserved space with

limited reclaim overhead.

The rest of the paper proceeds as follows. In §2, we

analyze the update behaviors in real-world traces. In §3,

we introduce the background of erasure coding. In §4,

we present different update schemes and describe our ap-

proach. In §5, we present the design of CodFS. In §6, we

present testbed experimental results. In §7, we discuss

related work. In §8, we conclude the paper.

2 Trace Analysis

We study two sets of real-world storage traces collected

from large-scale storage server environments and char-

acterize their update patterns. Motivated by the fact that

enterprises are considering erasure coding as an alterna-

tive to RAID for fault-tolerant storage [40], we choose

these traces to represent the workloads of enterprise stor-

age clusters and study the applicability of erasure coding

to such workloads. We want to answer three questions:

(1) What is the average size of each update? (2) How

common do data updates happen? (3) Are updates fo-

cused on some particular chunks?

2.1 Trace Description

MSR Cambridge traces. We use the public block-level

I/O traces of a storage cluster released by Microsoft Re-

search Cambridge [30]. The traces are captured on 36

volumes of 179 disks located in 13 servers. They are

composed of I/O requests, each specifying the times-

tamp, the server name, the disk number, the read/write

type, the starting logical block address, the number of

bytes transferred, and the response time. The whole

traces span a one-week period starting from 5PM GMT

on 22nd February 2007, and account for the workloads

in various kinds of deployment including user home di-

rectories, project directories, source control, and media.

Here, we choose 10 of the 36 volumes for our analy-

sis. Each of the chosen volumes contains 800,000 to

4,000,000 write requests.

Harvard NFS traces. We also use a set of NFS traces

(DEAS03) released by Harvard [13]. The traces capture

NFS requests and responses of a NetApp file server that

contains a mix of workloads including email, research,

and development. The whole traces cover a 41-day pe-

riod from 29th January 2003 to 10th March 2003. Each

NFS request in the traces contains the timestamp, source

and destination IP addresses, and the RPC function. De-

pending on the RPC function, the request may contain

optional fields such as file handler, file offset and length.

 0

 20

 40

 60

 80

 100

sr
c2

2
m

ds
0

rs
rc

h0
us

r0
w

eb
0

ts
0

st
g0

hm
0

pr
n1

pr
oj

0A
m

o
u

n
t

o
f

u
p

d
at

es
 (

%
) <4KB

4-16KB

16-128KB

128-512KB

Figure 1: Distribution of update size in MSR Cambridge

traces.

No. of Writes 172702071

WSS (GB) 174.73

Updated WSS (%) 68.39

Update Writes (%) 91.56

No. of Accessed Files 2039724

Updated Files (%) 12.10

Avg. Update Size Per Request (KB) 10.58

Table 1: Properties of Harvard DEAS03 NFS traces.

While the traces describe the workloads of a single NFS

server, they have also been used in trace-driven analysis

for clustered storage systems [1, 20].

2.2 Key Observations

Updates are small. We study the update size, i.e.,

the number of bytes accessed by each update. Figure 1

shows the average update size ranges of the MSR Cam-

bridge traces. We see that the updates are generally small

in size. Although different traces show different update

size compositions, all updates occurring in the traces are

smaller than 512KB. Among the 10 traces, eight of them

have more than 60% of updates smaller than 4KB. Sim-

ilarly, the Harvard NFS traces comprise small updates,

with average size of only 10.58KB, as shown in Table 1.

Updates are common. Unsurprisingly, updates are

common in both storage traces. We analyze the write

requests in the traces and classify them into two types:

first-write, i.e., the address is first accessed, and update,

i.e., the address is re-accessed. Table 1 shows the results

of the Harvard NFS traces. Among nearly 173 million

write requests, more than 91% of them are updates. Ta-

ble 2 shows the results of the MSR Cambridge traces. All

the volumes show more than 90% of updates among all

write requests, except for the print server volume prn1.

We see limited relationship between the working set size

(WSS) and the intensity of writes. For example, the

project volume proj0 has a small WSS, but it has much

more writes than the source control volume src22 that

has a large WSS.

Update coverage varies. Although data updates are

common in all traces, the coverage of updates varies.

We measure the update coverage by studying the frac-

USENIX Association 12th USENIX Conference on File and Storage Technologies 165

Vol-

ume

Workload

Type

No. of

Writes

WSS

(GB)

Updated

WSS(%)

Update

Writes(%)

src22 Source control 805955 20.17 99.57 99.68

mds0 Media server 1067061 3.09 29.27 95.77

rsrch0 Research 1300030 0.36 69.53 97.41

usr0 Home directory 1333406 2.44 42.54 96.08

web0 Web/SQL server 1423458 7.26 37.25 96.23

ts0 Terminal server 1485042 0.91 49.84 95.65

stg0 Web staging 1722478 6.31 21.04 97.82

hm0 HW monitor 2575568 2.31 73.16 93.21

prn1 Print server 2769610 80.9 18.55 73.43

proj0 Project directory 3697143 3.16 56.67 98.89

Table 2: Properties of MSR Cambridge traces: (1) num-

ber of writes shows the total number of write requests;

(2) working set size refers to the size of unique data ac-

cessed in the trace; (3) percentage of updated working set

size refers to the fraction of data in the working set that is

updated at least once; and (4) percentage of update writes

refers to the fraction of writes that update existing data.

tion of WSS that is updated at least once throughout the

trace period. For example, from the MSR Cambridge

traces in Table 2, the src22 trace shows a 99.57% of up-

dated WSS, while updates in the mds0 trace only cover

29.27% of WSS. In other words, updates in the src22

trace span across a large number of locations in the work-

ing set, while updates in the mds0 trace are focused on

a smaller set of locations. The variation in update cover-

age implies the need of a dynamic mechanism to improve

update efficiency.

3 Background: Erasure Coding

We provide the background details of an erasure-coded

storage system considered in this work. We refer read-

ers to the tutorial [33] for the essential details of erasure

coding in the context of storage systems.

We consider an erasure-coded storage cluster with M

nodes (or servers). We divide data into segments and ap-

ply erasure coding independently on a per-segment basis.

We denote an (n, k)-code as an erasure coding scheme

defined by two parameters n and k, where k < n. An

(n, k)-code divides a segment into k equal-size uncoded

chunks called data chunks, and encodes the data chunks

to form n − k coded chunks called parity chunks. We

assume n < M , and have the collection of n data and

parity chunks distributed across n of the M nodes in the

storage cluster. We consider Maximum Distance Separa-

ble erasure coding, i.e., the original segment can be re-

constructed from any k of the n data and parity chunks.

Each parity chunk can be in general encoded by com-

puting a linear combination of the data chunks. Math-

ematically, for an (n, k)-code, let {γij}1≤i≤n−k,1≤j≤k

be a set of encoding coefficients for encoding the k

data chunks {D1, D2, · · · , Dk} into n− k parity chunks

{P1, P2, · · · , Pn−k}. Then, each parity chunk Pi (1 ≤

i ≤ n − k) can be computed by: Pi =
∑k

j=1
γijDj ,

where all arithmetic operations are performed in the Ga-

lois Field over the coding units called words.

The linearity property of erasure coding provides an

alternative to computing new parity chunks when some

data chunks are updated. Suppose that a data chunk Dl

(for some 1 ≤ l ≤ k) is updated to another data chunk

D
′
l. Then each new parity chunk P

′
i (1 ≤ i ≤ n− k) can

be computed by:

P
′
i =

k∑
j=1,j �=l

γijDj + γilD
′
l = Pi + γil(D

′
l −Dl).

Thus, instead of summing over all data chunks, we com-

pute new parity chunks based on the change of data

chunks. The above computation can be further gener-

alized when only part of a data chunk is updated, but a

subtlety is that a data update may affect different parts of

a parity chunk depending on the erasure code construc-

tion (see [33] for details). Suppose now that a word of

Dl at offset o is updated, and the word of Pl at offset

ô needs to be updated accordingly (where o and ô may

differ). Then we can express:

P
′
i (ô) = Pi(ô) + γil(D

′
l(o)−Dl(o)),

where P
′
i (ô) and Pi(ô) denote the words at offset ô of

the new parity chunk P
′
i and old parity chunk Pi, respec-

tively, and D
′
l(o) and Dl(o) denote the words at offset

o of the new data chunk D
′
l and old data chunk Dl, re-

spectively. In the following discussion, we leverage this

linearity property in parity updates.

4 Parity Updates

Data updates in erasure-coded clustered storage systems

introduce performance overhead, since they also need to

update parity chunks for consistency. We consider a de-

ployment environment where network transfer and disk

I/O are performance bottlenecks. Our goal is to design a

parity update scheme that effectively mitigates both net-

work transfer overhead and number of disk seeks.

We re-examine existing parity update schemes that fall

into two classes: the RAID-based approaches and the

delta-based approaches. We then propose a novel parity

update approach that assigns a reserved space for keep-

ing parity updates.

4.1 Existing Approaches

4.1.1 RAID-based Approaches

We describe three classical approaches of parity updates

that are typically found in RAID systems [10, 45].

Full-segment writes. A full-segment write (or full-

stripe write) updates all data and parity chunks in a seg-

ment. It is used in a large sequential write where the

166 12th USENIX Conference on File and Storage Technologies USENIX Association

write size is a multiple of segment size. To make a full-

segment write work for small updates, one way is to pack

several updates into a large piece until a full segment can

be written in a single operation [28]. Full-segment writes

do not need to read the old data or parity chunks, and

hence achieve the best update performance.

Reconstruct writes. A reconstruct write first reads all

the chunks from the segment that are not involved in the

update. Then it computes the new parity chunks using

the read chunks and the new chunks to be written, and

writes all data and parity chunks.

Read-modify writes. A read-modify write leverages the

linearity of erasure coding for parity updates (see §3). It

first reads the old data chunk to be updated and all the

old parity chunks in the segment. It then computes the

change between the old and new data chunks, and applies

the change to each of the parity chunks. Finally, it writes

the new data chunk and all new parity chunks to their

respective locations.

Discussion. Full-segment writes can be implemented

through a log-based design to support small updates, but

logging has two limitations. First, we need an efficient

garbage collection mechanism to reclaim space by re-

moving stale chunks, and this often hinders update per-

formance [41]. Second, logging introduces additional

disk seeks to retrieve the updates, which often degrades

sequential read and recovery performance [27]. On

the other hand, both reconstruct writes and read-modify

writes are traditionally designed for a single host deploy-

ment. Although some recent studies implement read-

modify writes in a distributed setting [15, 51], both ap-

proaches introduce significant network traffic since each

update must transfer data or parity chunks between nodes

for parity updates.

4.1.2 Delta-based Approaches

Another class of parity updates, called the delta-based

approaches, eliminates redundant network traffic by only

transferring a parity delta which is of the same size as

the modified data range [9, 44]. A delta-based approach

leverages the linearity of erasure coding described in §3.

It first reads the range of the data chunk to be modified

and computes the delta, which is the change between old

and new data at the modified range of the data chunk, for

each parity chunk. It then sends the modified data range

and the parity deltas computed to the data node and all

other parity nodes for updates, respectively. Instead of

transferring the entire data and parity chunks as in read-

modify writes, transferring the modified data range and

parity deltas reduces the network traffic and is suitable

for clustered storage. In the following, we describe some

delta-based approaches proposed in the literature.

Full-overwrite (FO). Full-overwrite [4] applies in-place

updates to both data and parity chunks. It merges the old

data and parity chunks directly at specific offsets with the

modified data range and parity deltas, respectively. Note

that merging each parity delta requires an additional disk

read of old parity chunk at the specific offset to compute

the new parity content to be written.

Full-logging (FL). Full-logging saves the disk read

overhead of parity chunks by appending all data and par-

ity updates. That is, after the modified data range and

parity deltas are respectively sent to the corresponding

data and parity nodes, the storage nodes create logs to

store the updates. The logs will be merged with the orig-

inal chunks when the chunks are read subsequently. FL

is used in enterprise clustered storage systems such as

GFS [17] and Azure [8].

Parity-logging (PL). Parity-logging [24, 43] can be re-

garded as a hybrid of FO and FL. It saves the disk read

overhead of parity chunks and additionally avoids merg-

ing overhead on data chunks introduced in FL. Since data

chunks are more likely to be read than parity chunks,

merging logs in data chunks can significantly degrade

read performance. Hence, in PL, the original data chunk

is overwritten in-place with the modified data range,

while the parity deltas are logged at the parity nodes.

Discussion. Although the delta-based approaches re-

duce network traffic, they are not explicitly designed to

reduce disk I/O. Both FL and PL introduce disk frag-

mentation and require efficient garbage collection. The

fragmentations often hamper further accesses of those

chunks with logs. Meanwhile, FO introduces additional

disk reads for the old parity chunks on the update path,

compared with FL and PL. Hence, to take a step further,

we want to address the question: Can we reduce the disk

I/O on both the update path and further accesses?

4.2 Our Approach

We propose a new delta-based approach called parity-

logging with reserved space (PLR), which further mit-

igates fragmentation and reduces the disk seek overhead

of PL in storing parity deltas. The main idea is that the

storage nodes reserve additional storage space next to

each parity chunk for keeping parity deltas. This ensures

that each parity chunk and its parity deltas can be sequen-

tially retrieved. While the idea is simple, the challenging

issues are to determine (1) the appropriate amount of re-

served space to be allocated when a parity chunk is first

stored and (2) the appropriate time when unused reserved

space can be reclaimed to reduce the storage overhead.

4.2.1 An Illustrative Example

Figure 2 illustrates the differences of the delta-based ap-

proaches in §4.1.2 and PLR, using a (3,2)-code as an

example. The incoming data stream describes the se-

quence of operations: (1) write the first segment with

USENIX Association 12th USENIX Conference on File and Storage Technologies 167

Figure 2: Illustration on different parity update schemes.

data chunks a and b, (2) update part of a with a’, (3)

write a new segment with data chunks c and d, and fi-

nally (4) update parts of b and c with b’ and c’, respec-

tively. We see that FO performs overwrites for both data

updates and parity deltas; FL appends both data updates

and parity deltas according to the incoming order; PL

performs overwrites for data updates and appends parity

deltas; and PLR appends parity deltas in reserved space.

Consider now that we read the up-to-date chunk b.

FL incurs a disk seek to the update b’ when rebuild-

ing chunk b, as b and b’ are in discontinuous physical

locations on disk. Similarly, PL also incurs a disk seek to

the parity delta ∆b when reconstructing the parity chunk

a+b. On the other hand, PLR incurs no disk seek when

reading the parity chunk a+b since its parity deltas ∆a
and ∆b are all placed in the contiguous reserved space

following the parity chunk a+b.

4.2.2 Determining the Reserved Space Size

Finding the appropriate reserved space size is challeng-

ing. If the space is too large, then it wastes storage space.

On the other hand, if the space is too small, then it cannot

keep all parity deltas.

A baseline approach is to use a fixed reserved space

size for each parity chunk, where the size is assumed to

be large enough to fit all parity deltas. Note that this

baseline approach can introduce significant storage over-

head, since different segments may have different up-

date patterns. For example, from the Harvard NFS traces

shown in Table 1, although 91.56% of write requests are

updates, only around 12% of files are actually involved.

This uneven distribution implies that fixing a large, con-

stant size of reserved space can imply unnecessary space

wastage.

For some workloads, the baseline approach may re-

serve insufficient space to hold all deltas for a parity

chunk. There are two alternatives to handle extra deltas,

either logging them elsewhere like PL, or merging exist-

ing deltas with the parity chunk to reclaim the reserved

space. We adopt the merge alternative since it preserves

Algorithm 1: Workload-aware Reserved Space Management

1 reserved ←DEFAULT_SIZE

2 while true do

3 sleep(period)
4 foreach chunk in parityChunkSet do

5 utility ← getUtility(chunk)
6 size ← computeShrinkSize(utility)
7 doShrink(size, chunk)
8 doMerge(chunk)

the property of no fragmentation in PLR.

To this end, we propose a workload-aware reserved

space management scheme that dynamically adjusts and

predicts the reserved space size. The scheme has three

main parts: (1) predicting the reserved space size of each

parity chunk using the measured workload pattern for the

next time interval, (2) shrinking the reserved space and

releasing unused reserved space back to the system, and

(3) merging parity deltas in the reserved space to each

parity chunk. To avoid introducing small unusable holes

of reclaimed space after shrinking, we require that both

the reserved space size and the shrinking size be of mul-

tiples of the chunk size. This ensures that an entire data

or parity chunk can be stored in the reclaimed space.

Algorithm 1 describes the basic framework of our

workload-aware reserved space management. Initially,

we set a default reserved space size that is sufficiently

large to hold all parity deltas. Shrinking and prediction

are then executed periodically on each storage node. Let

S be the set of parity chunks in a node. For every time

interval t and each parity chunk p ∈ S , let rt(p) be the

reserved space size and ut(p) be the reserved space util-

ity. Intuitively, ut(p) represents the fraction of reserved

space being used. We measure ut(p) at the end of each

time interval t using exponential weighted moving aver-

age in getUtility:

ut(p) = α
use(p)

rt(p)
+ (1− α)ut−1(p),

168 12th USENIX Conference on File and Storage Technologies USENIX Association

where use(p) returns the reserved space size being used

during the time interval, rt(p) is the current reserved

space size for chunk p, and α is the smoothing factor.

According to the utility, we decide the unnecessary space

size c(p) that can be reclaimed for the parity chunk p in

computeShrinkSize. Here, we aggressively shrink

all unused space c(p) and round it down to be a multiple

of the chunk size:

c(p) =

⌊
(1− ut(p))rt(p)

ChunkSize

⌋
× ChunkSize.

The doShrink function attempts to shrink the size

c(p) from the current reserved space rt(p). Thus, the

reserved space rt+1(p) for p at time interval t+ 1 is:

rt+1(p) = rt(p)− c(p).

If a chunk has no more reserved space after shrinking

(i.e., rt+1(p) = 0), any subsequent update requests to

this chunk are applied in-place as in FO.

Finally, the doMerge function merges the deltas in

the reserved space to the parity chunk p after shrinking

and resets use(p) to zero. Hence we free the parity chunk

from carrying any deltas to the next time interval, which

could further reduce the reserved space size. The merge

operations performed here are off the update path and

have limited impact on the overall system performance.

The above workload-aware design of reserved space

management is simple and can be replaced by a more

advanced design. Nevertheless, we find that this simple

heuristic works well enough under real-world workloads

(see §6.3.2).

5 CodFS Design

We design CodFS, an erasure-coded clustered storage

system that implements the aforementioned delta-based

update schemes to support efficient updates and recovery.

5.1 Architecture

Figure 3 shows the CodFS architecture. The metadata

server (MDS) stores and manages all file metadata, while

multiple object storage devices (OSDs) perform coding

operations and store the data and parity chunks. The

MDS also plays a monitor role, such that it keeps track of

the health status of the OSDs and triggers recovery when

some OSDs fail. A CodFS client can access the storage

cluster through a file system interface.

5.2 Work Flow

CodFS performs erasure coding on the write path as il-

lustrated in Figure 3. To write a file, the client first splits

the file into segments, and requests the MDS to store

the metadata and identify the primary OSD for each seg-

ment. The client then sends each segment to its primary

OSD, which encodes the segment into k data chunks and

Figure 3: CodFS architecture.

n − k parity chunks for some pre-specified parameters

n and k. The primary OSD stores a data chunk locally,

and distributes the remaining n−1 chunks to other OSDs

called the secondary OSDs for the segment. The identi-

ties of the secondary OSDs are assigned by the MDS to

keep the entire cluster load-balanced. Both primary and

secondary OSDs are defined in a logical sense, such that

each physical OSD can act as a primary OSD for some

segments and a secondary OSD for others.

To read a segment, the client first queries MDS for the

primary OSD. It then issues a read request to the primary

OSD, which collects one data chunk locally and k − 1
data chunks from other secondary OSDs and returns the

original segment to the client. In the normal state where

no failure occurs, the primary OSD only needs the k data

chunks of the segment for rebuilding.

CodFS adopts the delta-based approach for data up-

dates. To update a segment, the client sends the modified

data with the corresponding offsets to the segment’s pri-

mary OSD, which first splits the update into sub-updates

according to the offsets, such that each sub-update targets

a single data chunk. The primary OSD then sends each

sub-update to the OSD storing the targeted data chunk.

Upon receiving a sub-update for a data chunk, an OSD

computes the parity deltas and distributes them to the

parity destinations. Finally, both the updates and parity

deltas are saved according to the chosen update scheme.

CodFS switches to degraded mode when some OSDs

fail (assuming the number of failed OSDs is tolerable).

The primary OSD coordinates the degraded operations

for its responsible segments. If the primary OSD of a

segment fails, CodFS promotes another surviving sec-

ondary OSD of the segment to be the primary OSD.

CodFS supports degraded reads and recovery. To issue a

degraded read to a segment, the primary OSD follows the

same read path as the normal case, except that it collects

both data and parity chunks of the segment. It then de-

codes the collected chunks and returns the original seg-

ment. If an OSD failure is deemed permanent, CodFS

can recover the lost chunks on a new OSD. That is, for

each segment with lost chunks, the corresponding pri-

mary OSD first reconstructs the segment as in degraded

reads, and then writes the lost chunk to the new OSD.

Our current implementation of degraded reads and re-

USENIX Association 12th USENIX Conference on File and Storage Technologies 169

covery uses the standard approach that reads k chunks

for reconstruction, and it works for any number of failed

OSDs no more than n − k. Nevertheless, our design is

also compatible with efficient recovery approaches that

read less data under single failures (e.g., [25, 50]).

5.3 Issues

We address several implementation issues in CodFS and

justify our design choices.

Consistency. CodFS provides close-to-open consis-

tency [21], which offers the same level of consistency

as most Network File Systems (NFS) clients. Any open

request to a segment always returns the version following

the previous close request. CodFS directs all reads and

writes of a segment through the corresponding primary

OSD, which uses a lock-based approach to serialize the

requests of all clients. This simplifies consistency imple-

mentation.

Offloading. CodFS offloads the encoding and recon-

struction operations from clients. Client-side encoding

generates more write traffic since the client needs to

transmit parity chunks. Using the primary OSD design

limits the fan-outs of clients and the traffic between the

clients and the storage cluster. In addition, CodFS splits

each file into segments, which are handled by different

primary OSDs in parallel. Hence, the computational

power of a single OSD will not become a bottleneck

on the write path. Also, within each OSD, CodFS uses

multi-threading to pipeline and parallelize the I/O and

encoding operations, so as to mitigate the overhead in

encoding computations.

Metadata Management. The MDS stores all metadata

in a key-value database built on MongoDB [29]. CodFS

can configure a backup MDS to serve the metadata oper-

ations in case the main MDS fails, similar to HDFS [5].

Caching. CodFS adopts simple caching techniques to

boost the entire system performance. Each CodFS client

is equipped with an LRU cache for segments so that fre-

quent updates of a single segment can be batched and

sent to the primary OSD. The LRU cache also favors fre-

quent reads of a single segment, to avoid fetching the

segment from the storage cluster in each read. We do not

consider specific write mitigation techniques (e.g., lazy

write-back and compression) or advanced caches (e.g.,

distributed caching or SSDs), although our system can

be extended with such approaches.

Segment Size. CodFS supports flexible segment size

from 16MB to 64MB and sets the default at 16MB. This

size is chosen to fully utilize both the network bandwidth

and disk throughput, as shown in our experiments (see

§6.1). Smaller segments lead to more disk I/Os and de-

grade the write throughput, while larger segments cannot

fully leverage the I/O parallelism across multiple OSDs.

5.4 Implementation Details

We design CodFS based on commodity configurations.

We implement all the components including the client

and the storage backend in C++ on Linux. CodFS lever-

ages several third-party libraries for high-performance

operations, including: (1) Threadpool [46], which man-

ages a pool of threads that parallelize I/O and encoding

operations, (2) Google Protocol Buffers [18], which se-

rialize message communications between different enti-

ties, (3) Jerasure [32], which provides interfaces for effi-

cient erasure coding implementation, and (4) FUSE [16],

which provides a file system interface for clients.

We design the OSD via a modular approach. The Cod-

ing Module of each OSD provides a standard interface

for implementation of different coding schemes. One can

readily extend CodFS to support new coding schemes.

The Storage Module inside each OSD acts as an abstract

layer between the physical disk and the OSD process.

We store chunk updates and parity deltas according to

the update scheme configured in the Storage Module.

By default, CodFS uses the PLR scheme. Each OSD

is equipped with a Monitor Module to perform garbage

collection in FL and PL and reserved space shrinking and

prediction in PLR.

We adopt Linux Ext4 as the local filesystem of each

OSD to support fast reserved space allocation. We pre-

allocate the reserved space for each parity chunk using

the Linux system call fallocate, which marks the al-

located blocks as uninitialized. Shrinking of the reserved

space is implemented by invoking fallocate with the

FALLOC_FL_PUNCH_HOLE flag. Since we allocate or

shrink the reserved space as a multiple of chunk size, we

avoid creating unusable holes in the file system.

6 Evaluation

We evaluate different parity update schemes through our

CodFS prototype. We deploy CodFS on a testbed with

22 nodes of commodity hardware configurations. Each

node is a Linux machine running Ubuntu Server 12.04.2

with kernel version 3.5. The MDS and OSD nodes are

each equipped with Intel Core i5-3570 3.4GHz CPU,

8GB RAM and two Seagate ST1000DM003 7200RPM

1TB SATA harddisk. For each OSD, the first harddisk is

used as the OS disk while the entire second disk is used

for storing chunks. The client nodes are equipped with

Intel Core 2 Duo 6420 2.13GHz CPU, 2GB RAM and

a Seagate ST3160815AS 7200RPM 160GB SATA hard-

disk. Each node has a Gigabit Ethernet card installed and

all nodes are connected via a Gigabit full-duplex switch.

6.1 Baseline Performance

We derive the achievable aggregate read/write through-

put of CodFS and analyze its best possible performance.

Suppose that the encoding overhead can be entirely

170 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 100

 200

 300

 400

 500

6 7 8 9 10

A
g
g
.
th

ro
u
g
h
p
u
t

(M
B

/s
)

Number of OSDs

8MB
16MB
32MB
64MB

Theoretical

(a) Sequential write

 0

 100

 200

 300

 400

 500

 600

 700

6 7 8 9 10

A
g
g
.
th

ro
u
g
h
p
u
t

(M
B

/s
)

Number of OSDs

8MB
16MB
32MB
64MB

Theoretical

(b) Sequential read

Figure 4: Aggregate read/write throughput of CodFS us-

ing the RDP code with (n, k) = (6, 4).

masked by our parallel design. If our CodFS prototype

can effectively mitigate encoding overhead and evenly

distribute the operations among OSDs, then it should

achieve the theoretical throughput.

We define the notation as follows. Let M be the total

number of OSDs in the system, and let Bin and Bout be

the available inbound and outbound bandwidths (in net-

work or disk) of each OSD, respectively. Each encoding

scheme can be described by the parameters n and k, fol-

lowing the same definitions in §3.

We derive the effective aggregate write throughput

(denoted by Twrite). Each primary OSD, after encod-

ing a segment, stores one chunk locally and distributes

n− 1 chunks to other secondary OSDs. This introduces

an additional (n − 1)/k times of segment traffic among

the OSDs. Similarly, for the effective aggregate read

throughput (denoted by Tread), each primary OSD col-

lects (k− 1) chunks for each read segment from the sec-

ondary OSDs. It introduces an additional (k−1)/k times

of segment traffic. Thus, Twrite and Tread are given by:

Twrite =
M ×Bin

1 + n−1

k

, Tread =
M ×Bout

1 + k−1

k

.

We evaluate the aggregate read/write throughput of

CodFS, and compare the experimental results with our

theoretical results. We first conduct measurements on

our testbed and find that the effective disk and network

bandwidths of each node are 144MB/s and 114.5MB/s,

respectively. Thus, the nodes are network-bound, and we

set Bin =Bout = 114.5MB/s in our model. We config-

ure CodFS with one node as the MDS and M nodes as

OSDs, where 6≤M≤10. We consider the RAID-6 RDP

code [12] with (n, k) = (6, 4). The coded chunks are

distributed over the M OSDs. We have 10 other nodes

in the testbed as clients that transfer streams of segments

simultaneously.

Figure 4 shows the aggregate read/write throughput

of CodFS versus the number of OSDs for different seg-

ment sizes from 8MB to 64MB. We see that the through-

put results match closely with the theoretical results, and

 0

 100

 200

 300

 400

 500

 600

6 7 8 9 10

A
g
g
.
th

ro
u
g
h
p
u
t

(M
B

/s
)

Number of OSDs

FO
FL

PL
PLR

(a) Sequential write

 0

 100

 200

 300

 400

 500

 600

6 7 8 9 10A
g

g
.
I/

O
 p

er
 s

ec
o

n
d

 (
IO

P
S

)

Number of OSDs

FO
FL

PL
PLR

(b) Random write

 0

 100

 200

 300

 400

 500

 600

 700

 800

6 7 8 9 10

A
g
g
.
th

ro
u
g
h
p
u
t

(M
B

/s
)

Number of OSDs

FO
FL

PL
PLR

(c) Sequential read

 0

 100

 200

 300

 400

 500

6 7 8 9 10R
ec

o
v
er

y
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of OSDs

FO
FL
PL

PLR

(d) Recovery

Figure 5: Throughput of CodFS under different update

schemes.

the throughput scales linearly with the number of OSDs.

For example, when M = 10 OSDs are used, CodFS

achieves read and write throughput of at least 580MB/s

and 450MB/s, respectively.

We also evaluate the throughput results of CodFS con-

figured with the Reed-Solomon (RS) codes [34]. We ob-

serve that both RDP and RS codes have almost identi-

cal throughput, although RS codes have higher encod-

ing overhead [32]. The reason is that CodFS masks the

encoding overhead through parallelization. We do not

present the results here in the interest of space.

6.2 Evaluation on Synthetic Workload

We now evaluate the four delta-based parity update

schemes (i.e., FO, FL, PL, and PLR) using our CodFS

prototype under a synthetic workload. Unless otherwise

stated, we use the RDP code [12] with (n, k) = (6, 4),
16MB segment size, and the same cluster configura-

tion as in §6.1. We measure the sequential write, ran-

dom write, sequential read, and recovery performance of

CodFS using IOzone [23]. For PLR, we use the baseline

approach described in §4.2.2 and fix the size of reserved

space to 4MB, which is equal to the chunk size in our

configuration. We trigger a merge operation to reclaim

the reserved space when it becomes full. Before running

each test, we format the chunk partition of each OSD

to restore the OSD to a clean state, and drop the buffer

cache in all OSDs to ensure that any difference in perfor-

mance is attributed to the update schemes.

We note that an update to a data chunk in RDP [12]

involves more updates to parity chunks than in RS codes

(see [33] for illustration), and hence generates larger-size

parity deltas. This triggers more frequent merge opera-

tions as the reserved space becomes full faster.

USENIX Association 12th USENIX Conference on File and Storage Technologies 171

FO FL PL PLR

Synthetic
Data 0 29.41 0 0

Parity 0 117.66 117.66 0

Table 3: Average non-contiguous fragments per chunk

(Favg) after random writes for synthetic workload.

6.2.1 Sequential Write Performance

Figure 5a shows the aggregate sequential write through-

put of CodFS under different update schemes, in which

all clients simultaneously write 2GB of segments to the

storage cluster. As expected, there is only negligible dif-

ference in sequential write throughput among the four

update schemes as the experiment only writes new data.

6.2.2 Random Write Performance

We use IOzone to simulate intensive small updates, in

which we issue uniform random writes with 128KB

record length to all segments uploaded in §6.2.1. In total,

we generate 16MB of updates for each segment, which is

four times of the reserved space size in PLR. Thus, PLR

performs at least four merge operations per parity chunk

(more merges are needed if the coding scheme triggers

the updates of multiple parts of a parity chunk for each

data update). Figure 5b shows the numbers of I/Os per

second (IOPS) of the four update schemes. Results show

that FO performs the worst among the four, with at least

21.0% fewer IOPS than the other three schemes. This

indicates that updating both the data and parity chunks

in-place incurs extra disk seeks and parity read over-

head, thereby significantly degrading update efficiency.

The other three schemes give similar update performance

with less than 4.1% difference in IOPS.

6.2.3 Sequential Read Performance

Sequential read and recovery performance are affected

by disk fragmentation in data and parity chunks. To mea-

sure fragmentation, we define a metric Favg as the aver-

age number of non-contiguous fragments per chunk that

are read from disk to rebuild the up-to-date chunk. Em-

pirically, Favg is found by reading the physical block ad-

dresses of each chunk in the underlying file system of

the OSDs using the filefrag -v command which is

available in the e2fsprogs utility. For each chunk, we

obtain the number of non-contiguous fragments by an-

alyzing its list of physical block addresses and lengths.

We then take the average over the chunks in all OSDs.

Table 3 shows the value of Favg measured after ran-

dom writes in §6.2.2. Both FO and PLR have Favg = 0
as they either store updates and deltas in-place or in a

contiguous space next to their parity chunks. FL is the

only scheme that contains non-contiguous fragments for

data chunks, and it has Favg = 29.41 in the synthetic

benchmark. Logging parity deltas introduces higher

level of disk fragmentation. On average, both FL and

PL produce 117.66 non-contiguous fragments per par-

ity chunk in the synthetic benchmark. We see that Favg

of parity chunks is about 4× that of data chunks. This

conforms to our RDP configuration with (n, k) = (6, 4)
since each segment consists of four data chunks and

modifying each of them once will introduce a total of

four parity deltas to each parity chunk.

Figure 5c shows a scenario which we execute a se-

quential read after intensive random writes. We measure

the aggregate sequential read throughput under different

update schemes. In this experiment, all clients simulta-

neously read the segments after performing the updates

described in §6.2.2.

Since CodFS only reads data chunks when there are

no node failures, no performance difference in sequen-

tial read is observed for FO, PL and PLR. However, the

sequential read performance of FL drops by half when

compared with the other three schemes. This degrada-

tion is due to the combined effect of disk seeking and

merging overhead for data chunk updates. The result

also agrees with the measured level of disk fragmenta-

tion shown in Table 3 where FL is the only scheme that

contains non-contiguous fragments for data chunks.

6.2.4 Recovery Performance

We evaluate the recovery performance of CodFS under a

double failure scenario, and compare the results among

different update schemes. We trigger the recovery proce-

dure by sending SIGKILL to the CodFS process in two

of the OSDs. We measure the time between sending the

kill signal and receiving the acknowledgement from the

MDS reporting all data from the failed OSDs are recon-

structed and redistributed among the available OSDs.

Figure 5d shows the measured recovery throughput for

different update schemes. FO is the fastest in recovery

and achieves substantial difference in recovery through-

put (up to 4.5×) compared with FL due to the latter

suffering from merging and disk seeking overhead for

both data and parity chunks. By keeping data chunks

updates in-place, PL achieves a modest increase in re-

covery throughput compared with FL. We also see the

benefits of PLR for keeping delta updates next to their

parity chunks. PLR gains a 3× improvement on average

in recovery throughput when compared with PL.

6.2.5 Reserved Space versus Update Efficiency

We thus far evaluate the parity update schemes under the

same coding parameters (n, k). Since PLR trades stor-

age space for update efficiency, we also compare PLR

with other schemes that use the reserved space for stor-

age. Here, we set the reserved space size to be equal to

the chunk size in PLR with (n, k) = (6, 4). This implies

that a size of two extra chunks is reserved per segment.

For FO, FL, and PL, we substitute the reserved space

172 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 100

 200

 300

 400

 500
PL

R
(6

,4
)

 F
O

(8
,6

)
 F

L
(8

,6
)

 P
L
(8

,6
)

 F
O

(8
,4

)
 F

L
(8

,4
)

 P
L
(8

,4
)A
v
g
.
I/

O
 p

er
 s

ec
o
n
d
 (

IO
P

S
)

Schemes (n,k)

 0

 100

 200

 300

 400

 500

PL
R

(6
,4

)
 F

O
(8

,6
)

 F
L
(8

,6
)

 P
L
(8

,6
)

 F
O

(8
,4

)
 F

L
(8

,4
)

 P
L
(8

,4
)A

g
g
.
th

ro
u
g
h
p
u
t

(M
B

/s
)

Schemes (n,k)

(a) Random write (b) Recovery

Figure 6: Throughput comparison under the same stor-

age overhead using Cauchy RS codes with various (n, k).

with either two data chunks or two parity chunks. We

realize the substitutions with erasure coding using two

coding parameters: (n, k) = (8, 6) and (n, k) = (8, 4),
which in essence store two additional data chunks, and

two additional parity chunks over (n, k) = (6, 4), re-

spectively. Since RDP requires n−k = 2, we choose the

Cauchy RS code [7] as the coding scheme. We also fix

the chunk size to be 4MB, so we ensure that each coded

segment in all 7 configurations takes 32MB of storage

including data, parity, and reserved space.

Figure 6 shows the performance of random writes and

recovery under the same synthetic workload described

in §6.2.2. Results show that the (8, 4) schemes perform

significantly worse than the (8, 6) schemes in random

writes, since having more parity chunks implies more

parity updates. Also, we see that FO (8, 6) is slower

than PLR (6, 4) by at least 20% in terms of IOPS, in-

dicating that allocating more data chunks does not nec-

essarily boost update performance. Results of recovery

agree with those in §6.2.4, i.e., both FO and PLR give

significantly higher recovery throughput than FL and PL.

6.2.6 Summary of Results

We make the following observations from our synthetic

evaluation. First, although our configuration has twice as

many data chunks as parity chunks, updating data chunks

in-place in PL does not help much in recovery through-

put. This implies that the time spent on reading and

rebuilding parity chunks dominates the recovery perfor-

mance. Second, as shown in Table 3, both FO and PLR

do not produce disk seeks. Thus, we can attribute the

difference in recovery throughput between FO and PLR

solely to the merging overhead for parity updates. We

see that PLR incurs less than 9.2% in recovery through-

put on average compared with FO. We regard this as a

reasonable trade-off since recovery itself is a less com-

mon operation than random writes.

6.3 Evaluation on Real-world Traces

Next, we evaluate CodFS by replaying the MSR Cam-

bridge and Harvard NFS traces analyzed in §2.

6.3.1 MSR Cambridge Traces

To limit the experiment duration, we choose 10 of the

36 volumes for evaluating the update and recovery per-

formance. We choose the traces with the number of

write requests between 800, 000 and 4, 000, 000. Also, to

demonstrate that our design does not confine to a specific

workload, the traces we select for evaluation all come

from different types of servers.

We first pre-process the traces as follows. We adjust

the offset of each request accordingly so that the off-

set maps to the correct location of a chunk. We ensure

that the locality of requests to the chunks is preserved.

If there are consecutive requests made to a sequence of

blocks, they will be combined into one request to pre-

serve the sequential property during replay.

We configure CodFS to use 10 OSDs and split the

trace evenly to distribute replay workload among 10
clients. We first write the segments that cover the whole

working set size of the trace. Each client then replays the

trace by writing to the corresponding offset of the preal-

located segments. We use RDP [12] with (n, k) = (6, 4)
and 16MB segment size.

Update Performance. Figure 7 shows the aggregate

number of writes replayed per second. To perform a

stress test, we ignore the original timestamps in the traces

and replay the operations as fast as possible. First, we

observe that traces with a smaller coverage (as indicated

by the percentage of updated WSS in Table 2) in general

results in higher IOPS no matter which update scheme is

used. For example, the usr0 trace with 13.08% updated

WSS shows more than 3× update performance when

compared with the src22 trace with 99.57% updated

WSS. This is due to a more effective client LRU cache

when the updates are focused on a small set of chunks.

The cache performs write coalescing and reduces the

number of round-trips between clients and OSDs. Sec-

ond, we see that the four schemes exhibit similar be-

haviour across traces. FL, PL and PLR show compa-

rable update performance. This leads us to the same

implication as in §6.2.2 that the dominant factor influ-

encing update performance is the overhead in parity up-

dates. Therefore, the three schemes that use a log-based

design for parity chunks all perform significantly better

than FO. On average, PLR is 63.1% faster than FO.

Recovery Performance. Figure 8 shows the recovery

throughput in a two-node failure scenario. We see that

in all traces, FL and PL are slower than FO and PLR

in recovery. Also, PLR outperforms FL and PL more

significantly in traces where there is a large number of

writes and Favg is high. For example, the measured

Favg for the proj0 trace is 45.66 and 182.6 for data and

parity chunks, respectively, and PLR achieves a remark-

able 10× speedup in recovery throughput over FL. On

USENIX Association 12th USENIX Conference on File and Storage Technologies 173

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

src22 mds0 rsrch0 usr0 web0 ts0 stg0 hm0 prn1 proj0A
g
g
.
I/

O
 p

er
 s

ec
o
n
d
 (

K
IO

P
S

)

FO FL PL PLR

Figure 7: Number of write operations per second replay-

ing the selected MSR Cambridge traces under different

update schemes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

src22 mds0 rsrch0 usr0 web0 ts0 stg0 hm0 prn1 proj0R
ec

o
v
er

y
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

FO FL PL PLR

Figure 8: Recovery throughput in a double failure sce-

nario after replaying the selected MSR Cambridge traces

under different update schemes.

the other hand, PLR performs the worst in the src22

trace, where Favg is only 0.73 and 2.82 for data and par-

ity chunks, respectively. Nevertheless, it still manages to

give an 11.7% speedup over FL.

6.3.2 Evaluation of Reserved Space

We evaluate our workload-aware approach in managing

the reserved space size (see §4.2.2). We use the Harvard

NFS traces, whose 41-day span provides long enough

duration to examine the effectiveness of shrinking, merg-

ing, and prediction. We calculate the reserved space stor-

age overhead using the following equation, which is de-

fined as the additional storage space allocated by the re-

served space compared with the original working set size

without any reserved space:

Γ =

∑
ReservedSpaceSize∑

(DataSize+ ParitySize)
.

A low Γ means that the reserved space is small compared

with the total size of all data and parity chunks.

Using the above metric, we evaluate our workload-

aware framework used in PLR by simulating the Harvard

NFS traces. We set the segment size to 16MB and use

the Cauchy RS code [7] with (n, k) = (10, 8). Here, we

compare our workload-aware approach with three base-

line approaches, in which we fix the reserved space size

to 2MB, 8MB, and 16MB without any adjustment.

We consider two variants of our workload-aware ap-

proach. The shrink+merge approach executes the shrink-

ing operation at 00:00 and 12:00 on each day, followed

by a merge operation on each chunk. The shrink only

approach is identical to the shrink+merge approach in

shrinking, but does not perform any merge operation af-

ter shrinking (i.e., it does not free the space occupied

by the parity deltas). On the first day, we initialize the

reserved space to 16MB. We follow the framework de-

scribed in §4.2.2 and set the smoothing factor α = 0.3.

Simulation Results. Figure 9 shows the value of Γ un-

der the three different approaches by simulating the 41-

day Harvard traces. The 2MB, 8MB, and 16MB base-

line approaches give Γ = 0.2, 0.8, and 1.6, respectively,

throughout the entire trace since they never shrink the re-

served space. The values of Γ for both workload-aware

variants drop quickly in the first week of trace and then

gradually stabilize. At the end of the trace, the shrink

only approach has Γ of about 0.36. With merging, the

shrink+merge approach further reduces Γ to 0.12. Γ is

lower than that of the 2MB baseline, as around 13% of

parity chunks end up with zero reserved space size.

Aggressive shrinking may increase the number of

merge operations. We examine such an impact by show-

ing the average number of merges per 1000 writes in Fig-

ure 10. A lower value implies lower write latency since

fewer writes are stalled by merge operations. We make

a few key observations from this figure. First, the 16MB

baseline gives the best results among all strategies, since

it keeps the largest reserved space than other baselines

and workload-aware approaches throughout the whole

period. On the contrary, using a fixed reserve space

that is too small increases the number of merges signif-

icantly. This effect is shown by the 2MB baseline. Sec-

ond, the performance of the workload-aware approaches

matches closely with the 8MB and 16MB baseline ap-

proaches most of the time. Day 30-40 is an exception

in which the two workload-aware approaches perform

significantly more merges than the 16MB baseline ap-

proach. This reflects the penalty of inaccurate predic-

tion when the reserved space is not large enough to han-

dle the sudden bursts in updates. Third, although the

shrink+merge approach has a lower reserved space stor-

age overhead, it incurs more penalty than the shrink only

approach in case of a misprediction. However, we ob-

serve that on average less than 1% of writes are stalled by

a merge operation regardless of which approach is used

(recall that the merge is performed every 1000 writes).

Thus, we expect that there is very little impact of merg-

ing on the performance in PLR.

6.3.3 Summary of Results

We show that PLR achieves efficient updates and re-

covery. It significantly improves the update through-

174 12th USENIX Conference on File and Storage Technologies USENIX Association

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

 5 10 15 20 25 30 35 40

R
es

er
v
ed

 s
p
ac

e
o
v
er

h
ea

d

Elasped time (day)

baseline 2MB
baseline 8MB
baseline 16MB

shrink only
shrink + merge

Figure 9: Reserved space overhead under different shrink

strategies in the Harvard trace.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40A
v

g
.

m
er

g
es

 p
er

 1
0

0
0

 w
ri

te
s

Elasped time (day)

baseline 2MB
baseline 8MB
baseline 16MB

shrink only
shrink + merge

Figure 10: Average number of merges per 1000 writes

under different shrink strategies in the Harvard trace.

put of FO and the recovery throughput of FL. We also

evaluate our workload-aware approach on reserved space

management. We show that the shrink+merge approach

can reduce the reserved space storage overhead by more

than half compared to the 16MB baseline approach, with

slight merging penalty to reclaim space.

7 Related Work

Quantitative analysis shows that erasure coding con-

sumes less bandwidth and storage than replication with

similar system durability [37, 47]. Several studies

adopt erasure coding in distributed storage systems.

OceanStore [26, 36] combines replication and erasure

coding for wide-area network storage. TotalRecall [6]

applies replication or erasure coding to different files dy-

namically according to the availability level predicted by

the system. Ursa Minor [1] focuses on cluster storage

and encodes files of heterogeneous types based on the

failure models and access patterns. Panasas [49] per-

forms client-side encoding on a per-file basis. Ticker-

TAIP [9], PARAID [48] and Pergamum [44] offload the

parity computation to the storage array. Azure [22] and

Facebook [39] propose efficient erasure coding schemes

to speed up degraded reads. We complement the above

studies by improving update efficiency and recovery per-

formance in erasure-coded clustered storage.

Log-structured File System (LFS) [38] first proposes

to append updates sequentially to disk to improve write

performance. Zebra [19] extends LFS for RAID-like dis-

tributed storage systems by striping logs across servers.

Self-tuning LFS [27] exploits workload characteristics

to improve I/O performance. Clustered storage systems,

such as GFS [17] and Azure [8], also adopt the LFS de-

sign for the write-once read-many workload. The more

recent work Gecko [42] uses a chained-log design to

reduce disk I/O contention of LFS in RAID storage.

CodFS handles updates differently from LFS, in which it

performs in-place updates to data and log-based updates

to parity chunks. It also allocates reserve space for parity

logging to further mitigate disk seeks. The above studies

(including CodFS) focus on disk backends and commod-

ity hardware, while the LFS design is also adopted in

other types of emerging storage media, such as SSDs [3]

and DRAM storage [31].

Parity logging [11, 43] has been proposed to mitigate

the disk seek overhead in parity updates. It accumulates

parity updates for each parity region in a log and flushes

updates to the parity region when the log is full. The

parity and log regions can be distributed across all disks

[43]. On the other hand, CodFS reserves log space next

to each parity chunk so as to reduce disk seeks due to

frequent small writes. It extends the prior parity logging

approaches by allowing future shrinking of the reserved

space based on the workload.

8 Conclusions

Our key contribution is the parity logging with reserved

space (PLR) scheme, which keeps parity updates next

to the parity chunk to mitigate disk seeks. We also pro-

pose a workload-aware scheme to predict and adjust the

reserved space size. To this end, we build CodFS, an

erasure-coded clustered storage system that achieves ef-

ficient updates and recovery. We evaluate our CodFS

prototype using both synthetic and real-world traces and

show that PLR improves update and recovery perfor-

mance over pure in-place and log-based updates. In fu-

ture work, we plan to (1) evaluate other metrics (e.g.,

latency) of different parity update schemes, (2) evalu-

ate the impact of the shrinking and merging operations

on throughput and latency, and (3) explore a more ro-

bust design of reserved space management. The source

code of CodFS is available for public-domain use on

http://ansrlab.cse.cuhk.edu.hk/software/codfs.

Acknowledgments

We would like to thank our shepherd, Ethan L. Miller,

and the anonymous reviewers for their valuable com-

ments. This work was supported in part by grants

AoE/E-02/08 and ECS CUHK419212 from the Univer-

sity Grants Committee of Hong Kong and ITS/250/11

from the ITF of HKSAR.

USENIX Association 12th USENIX Conference on File and Storage Technologies 175

References

[1] M. Abd-El-Malek, W. Courtright II, C. Cranor,

G. Ganger, J. Hendricks, A. Klosterman, M. Mes-

nier, M. Prasad, B. Salmon, R. Sambasivan, et al.

Ursa Minor: Versatile Cluster-based Storage. In

Proc. of USENIX FAST, Dec 2005.

[2] I. F. Adams, M. W. Storer, and E. L. Miller. Anal-

ysis of Workload Behavior in Scientific and Histor-

ical Long-Term Data Repositories. ACM Trans. on

Storage, 8:6:1–6:27, 2012.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.

Davis, M. Manasse, and R. Panigrahy. Design

Tradeoffs for SSD Performance. In Proc. of

USENIX ATC, Jun 2008.

[4] M. K. Aguilera and R. Janakiraman. Using Era-

sure Codes Efficiently for Storage in a Distributed

System. In Proc. of IEEE DSN, Jun 2005.

[5] Apache. HDFS Architecture Guide.

http://hadoop.apache.org/docs/

stable1/hdfs_design.html.

[6] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and

G. Voelker. Total Recall: System Support for

Automated Availability Management. In Proc. of

USENIX NSDI, Oct 2004.

[7] J. Blömer, M. Kalfane, R. Karp, M. Karpinski,

M. Luby, and D. Zuckerman. An XOR-based

Erasure-resilient Coding Scheme. Technical report,

International Computer Science Institute, Berkeley,

USA, 1995.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,

J. Wu, H. Simitci, et al. Windows Azure Stor-

age: A Highly Available Cloud Storage Service

with Strong Consistency. In Proc. of ACM SOSP,

Oct 2011.

[9] P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes.

The TickerTAIP Parallel RAID Architecture. ACM

Trans. Comput. Syst., 12:236–269, 1994.

[10] P. M. Chen and E. K. Lee. Striping in a RAID

Level 5 Disk Array. In Proc. of ACM SIGMET-

RICS, 1995.

[11] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,

and D. A. Patterson. RAID: High-performance,

Reliable Secondary Storage. ACM Comput. Surv.,

26(2):145–185, Jun 1994.

[12] P. Corbett, B. English, A. Goel, T. Grcanac,

S. Kleiman, J. Leong, and S. Sankar. Row-

Diagonal Parity for Double Disk Failure Correc-

tion. In Proc. of USENIX FAST, Mar 2004.

[13] D. J. Ellard. Trace-based Analyses and Optimiza-

tions for Network Storage Servers. PhD thesis,

Cambridge, MA, USA, 2004. AAI3131831.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-

A. Truong, L. Barroso, C. Grimes, and S. Quin-

lan. Availability in Globally Distributed Storage

Systems. In Proc. of USENIX OSDI, Oct 2010.

[15] S. Frølund, A. Merchant, Y. Saito, S. Spence, and

A. Veitch. A Decentralized Algorithm for Erasure-

Coded Virtual Disks. In Proc. of IEEE DSN, Jun

2004.

[16] FUSE. Filesystem in Userspace. http://fuse.

sourceforge.net/.

[17] S. Ghemawat, H. Gobioff, and S. Leung. The

Google File System. In Proc. of ACM SOSP, Dec

2003.

[18] Google. Google Protocol Buffers. https://

code.google.com/p/protobuf/.

[19] J. H. Hartman and J. K. Ousterhout. The Zebra

Striped Network File System. ACM Trans. Com-

put. Syst., 13:274–310, 1995.

[20] J. Hendricks, R. R. Sambasivan, S. Sinnamohideen,

and G. R. Ganger. Improving Small File Perfor-

mance in Object-based Storage. Technical Re-

port CMU-PDL-06-104, Carnegie Mellon Univer-

sity, May 2006.

[21] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.

Nichols, M. Satyanarayanan, R. N. Sidebotham,

and M. J. West. Scale and Performance in a Dis-

tributed File System. ACM Trans. Comput. Syst.,

6:51–81, 1988.

[22] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,

P. Gopalan, J. Li, and S. Yekhanin. Erasure Coding

in Windows Azure Storage. In Proc. of USENIX

ATC, Jun 2012.

[23] IOzone. IOzone Filesystem Benchmark. http:

//www.iozone.org/.

[24] C. Jin, D. Feng, H. Jiang, and L. Tian. RAID6L: A

Log-assisted RAID6 Storage Architecture with Im-

proved Write Performance. In Proc. of IEEE MSST,

2011.

[25] O. Khan, R. Burns, J. Plank, W. Pierce, and

C. Huang. Rethinking Erasure Codes for Cloud

File Systems: Minimizing I/O for Recovery and

Degraded Reads. In Proc. of USENIX FAST, Feb

2012.

[26] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-

ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and

176 12th USENIX Conference on File and Storage Technologies USENIX Association

B. Zhao. OceanStore: An Architecture for Global-

Scale Persistent Storage. In Proc. of ACM ASPLOS-

IX, Nov 2000.

[27] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.

Wang, and T. E. Anderson. Improving the Perfor-

mance of Log-structured File Systems with Adap-

tive Methods. In Proc. of ACM SOSP, Oct 1997.

[28] J. Menon. A Performance Comparison of RAID-5

and Log-structured Arrays. In Proc. of 4th IEEE In-

ternational Symposium on High Performance Dis-

tributed Computing (HDPC), 1995.

[29] MongoDB, Inc. MongoDB. http://www.

mongodb.org/.

[30] D. Narayanan, A. Donnelly, and A. Rowstron.

Write Off-loading: Practical Power Management

for Enterprise Storage. ACM Trans. on Storage,

4:10:1–10:23, 2008.

[31] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-

hout, and M. Rosenblum. Fast Crash Recovery in

RAMCloud. In Proc. of ACM SOSP, Oct 2011.

[32] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-

O’Hearn. A Performance Evaluation and Examina-

tion of Open-Source Erasure Coding Libraries for

Storage. In Proc. of USENIX FAST, Feb 2009.

[33] J. S. Plank and C. Huang. Erasure Codes for Stor-

age Systems: A Brief Primer. ;login: the Usenix

magazine, 38(6):44–50, Dec 2013.

[34] I. Reed and G. Solomon. Polynomial Codes over

Certain Finite Fields. Journal of the Society for In-

dustrial and Applied Mathematics, 8(2):300–304,

Jun 1960.

[35] J. K. Resch and J. S. Plank. AONT-RS: Blend-

ing Security and Performance in Dispersed Storage

Systems. In Proc. of USENIX FAST, Feb 2011.

[36] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon,

B. Zhao, and J. Kubiatowicz. Pond: the OceanStore

Prototype. In Proc. of USENIX FAST, Mar 2003.

[37] R. Rodrigues and B. Liskov. High Availability in

DHTs: Erasure Coding vs. Replication. In Proc. of

IPTPS, Feb 2005.

[38] M. Rosenblum and J. K. Ousterhout. The Design

and Implementation of a Log-structured File Sys-

tem. ACM Trans. Comput. Syst., 10:26–52, 1992.

[39] M. Sathiamoorthy, M. Asteris, D. S. Papailiopou-

los, A. G. Dimakis, R. Vadali, S. Chen, and

D. Borthakur. XORing Elephants: Novel Erasure

Codes for Big Data. In Proc. of the VLDB Endow-

ment, Aug 2013.

[40] SearchStorage. RAID Alternatives:

Will Erasure Codes Rule? http:

//searchstorage.techtarget.com/

tip/RAID-alternatives-Will-

erasure-codes-rule.

[41] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,

S. McMains, and V. Padmanabhan. File System

Logging Versus Clustering: A Performance Com-

parison. In Proc. of USENIX 1995 Technical Con-

ference (TCON), 1995.

[42] J.-Y. Shin, M. Balakrishnan, T. Marian, and

H. Weatherspoon. Gecko: Contention-oblivious

Disk Arrays for Cloud Storage. In Proc. of USENIX

FAST, Feb 2013.

[43] D. Stodolsky, G. Gibson, and M. Holland. Parity

Logging Overcoming the Small Write Problem in

Redundant Disk Arrays. In Proc. of the 20th An-

nual International Symposium on Computer Archi-

tecture (ISCA), May 1993.

[44] M. W. Storer, K. M. Greenan, E. L. Miller, and

K. Voruganti. Pergamum: Replacing Tape with En-

ergy Efficient, Reliable, Disk-based Archival Stor-

age. In Proc. of USENIX FAST, Feb 2008.

[45] A. Thomasian. Reconstruct Versus Read-modify

Writes in RAID. Inf. Process. Lett., 93(4):163–168,

Feb 2005.

[46] Threadpool. http://threadpool.sf.net/.

[47] H. Weatherspoon and J. D. Kubiatowicz. Erasure

Coding Vs. Replication: A Quantitative Compari-

son. In Proc. of IPTPS, Mar 2002.

[48] C. Weddle, M. Oldham, J. Qian, and

A. i Andy Wang. PARAID: A Gear-Shifting

Power-Aware RAID. In Proc. of USENIX FAST,

Feb 2007.

[49] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,

B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scal-

able Performance of the Panasas Parallel File Sys-

tem. In Proc. of USENIX FAST, Feb 2008.

[50] L. Xiang, Y. Xu, J. C. Lui, and Q. Chang. Optimal

Recovery of Single Disk Failure in RDP Code Stor-

age Systems. In Proc. of ACM SIGMETRICS, Jun

2010.

[51] F. Zhang, J. Huang, and C. Xie. Two Efficient

Partial-Updating Schemes for Erasure-Coded Stor-

age Clusters. In Proc. of IEEE Seventh Inter-

national Conference on Networking, Architecture,

and Storage (NAS), Jun 2012.

USENIX Association 12th USENIX Conference on File and Storage Technologies 177

(Big)Data in a Virtualized World:

Volume, Velocity, and Variety in Cloud Datacenters

Robert Birke+, Mathias Björkqvist+, Lydia Y. Chen+, Evgenia Smirni∗, and Ton Engbersen+

+IBM Research Zurich Lab, ∗College of William and Mary
+{bir, mbj,yic,apj}@zurich.ibm.com, ∗esmirni@cs.wm.edu

Abstract

Virtualization is the ubiquitous way to provide computa-

tion and storage services to datacenter end-users. Guar-

anteeing sufficient data storage and efficient data access

is central to all datacenter operations, yet little is known

of the effects of virtualization on storage workloads. In

this study, we collect and analyze field data from pro-

duction datacenters that operate within the private cloud

paradigm, during a period of three years. The datacen-

ters of our study consist of 8,000 physical boxes, host-

ing over 90,000 VMs, which in turn use over 22 PB of

storage. Storage data is analyzed from the perspectives

of volume, velocity, and variety of storage demands on

virtual machines and of their dependency on other re-

sources. In addition to the growth rate and churn rate of

allocated and used storage volume, the trace data illus-

trates the impact of virtualization and consolidation on

the velocity of IO reads and writes, including IO dedupli-

cation ratios and peak load analysis of co-located VMs.

We focus on a variety of applications which are roughly

classified as app, web, database, file, mail, and print, and

correlate their storage and IO demands with CPU, mem-

ory, and network usage. This study provides critical stor-

age workload characterization by showing usage trends

and how application types create storage traffic in large

datacenters.

1 Introduction

Datacenters provide a wide spectrum of data related ser-

vices. They feature powerful computation, reliable data

storage, fast data retrieval, and, more importantly, ex-

cellent scalability of resources. Virtualization is the key

technology to increase the resource sharing in a seamless

and secure way, while reducing operational costs without

compromising performance of data related operations.

To optimize data storage and IO access in virtualized

datacenters, storage and file system caching techniques

have been proposed [13, 18, 28], as well as data dupli-

cation and deduplication techniques [22]. The central

theme is to move the right data to the right storage tier,

especially during periods of peak loads of co-located vir-

tual machines (VMs). Therefore, it is crucial to under-

stand the characteristics of IO workloads of individual

VMs, as well as the workload seen by the hosting boxes.

There are several storage-centric studies that have shed

light on file system volume [14, 20, 31] and IO veloc-

ity, i.e., read/write data access speeds [15, 17, 28]. De-

spite these studies, it is unclear how virtualization im-

pacts storage and IO demands at the scale of datacenters,

and what their relationship to CPU, memory, and net-

work demands are.

The objective of this paper is to provide a better un-

derstanding of storage workloads in datacenters from the

following perspectives: storage volume, read/write ve-

locity, and application variety. Using field data from pro-

duction datacenters that operate within the private cloud

paradigm, we analyze traces that correspond to 90,000

VMs hosted on 8,000 physical boxes, and containing

over 22 PB of actively used storage, covering a wide

range of applications, over a time span of three years,

from January 2011 to December 2013. Due to the scale

of the available data, we adopt a black-box approach in

the statistical characterization of the various performance

metrics. Due to the lack of information about the system

topologies and the employed file system architectures,

this study falls short in analyzing latency, file contents,

and data access patterns at storage devices. Our analy-

sis provides a multifaceted view of representative virtual

storage workloads and sheds light on the storage man-

agement of highly virtualized datacenters.

The collected traces allow us to look at the volume of

allocated, used, and free space in virtual disks per VM,

with special focus on the yearly growth rate and weekly

churn rate. We measure velocity by statistically charac-

terizing the loads of read and write operations in GB/h as

well as IO operations per second (IOPS) in multiple time

178 12th USENIX Conference on File and Storage Technologies USENIX Association

scales, i.e., hourly, daily, and monthly, focusing on char-

acterization of the time variability and peak load analy-

sis. We deduce the efficiency of storage deduplication in

a virtualized environment, by analyzing the IO workload

of co-located VMs within boxes. To see how storage

and IO workloads are driven by different applications,

we perform a per-application analysis that allows us to

focus on a few typical applications, such as web, app,

mail, file, database, and print applications, highlighting

their differences and similarities in IO usage. Finally, we

present a detailed multi-resource dependency study that

centers on data storage/access and provides insights for

the current state-of-the-practice in data management in

datacenters.

Our findings can be quickly summarized as follows:

VM capacity and used space have annual growth rates

of 40% and 95%, respectively. The fullness per VM has

a growth rate of 19%, though the distribution of storage

fullness remain constant across VMs over the three years

of the study. The lower bound of VM storage space churn

rate is 17%, which is slightly lower than the churn rate

of 21% reported from backup systems [31].

Regarding IO velocity, the IO access rates of boxes

scales almost linearly with the number of consolidated

VMs, despite the non-negligible overhead from virtual-

ization. Both VMs and boxes are dominated by write

workloads, with 11% of boxes experiencing higher vir-

tual IO rates than physical ones. Deduplication ratios

grow linearly with the degree of virtualization. Peak

loads occur at off-hours and are contributed to a very

small number of VMs. VMs with high velocity tend to

have higher storage fullness and higher churn rates.

Regarding IO variety, different applications use stor-

age in different ways, with file server applications having

the highest volume, fullness, and churn rates. Databases

have similar characteristics but low fullness. Overall,

we observe that high IO demands strongly and positively

correlate with CPU and network activity.

The outline of this work is as follows. Section 2

presents related work. Section 3 provides an overview

of the dataset. The volume, velocity and variety analysis

are detailed in Sections 4, 5 and 6, respectively. A data-

centric multi-resource dependency study is discussed in

Section 7, followed by conclusions in Section 8.

2 Related Work

Managing storage is an expensive business [19]. Cou-

pled with the fact that the cost of storage hardware is sev-

eral times that of server hardware, efficient use of storage

for datacenters becomes critical [29]. Workload charac-

terization studies of storage/IO are pivotal for the devel-

opment of new techniques to better use systems, but it

is difficult to define what is truly a representative sys-

tem due to the wide variety of workloads. In general,

from the various studies on file system workloads, those

that stand out are the ones based on academic prototypes

and those based on personal computers, in addition to

a plethora of lower level storage studies. Virtualization

adds additional layers of complexity to any storage me-

dia [10, 16]. As virtualization is indeed the standard for

datacenter usage, workload studies of virtualized IO are

important and relevant. Nonetheless, analyzing all rele-

vant features of all relevant virtualized IO workloads is

outside the scope of this work. Here, given the collected

trace data, we conduct a statistical analysis with the aim

of better understanding how IO occurs in a virtualized

environment of a very large scale.

Typically, related work covers aspects of volume [2,

14, 20, 30], velocity [17] and variety, with a focus on file

systems. Regarding file system volume, there are several

studies that focus on desktop computers [2,14,20]. Using

file system metadata during periods of four weeks [20]

and five years [2], performance trends and statistics that

shed light on fullness, counts of files/directories, file

sizes, and file extensions are provided. Recognizing the

need to better understand the behavior of backup work-

loads, Wallace et al. [31] present a broad characterization

analysis and point out that the data churn rate is roughly

21% per week. Their study shows that the capacity of

physical drives approximately doubles annually while

their utilization only drops slightly. The study compares

backup storage systems with primary storage ones and

finds that their fullness is 60− 70% and 30− 40%, re-

spectively. Characterization of backup systems has been

traditionally used to drive the development of deduplica-

tion techniques [20, 24].

Most works on IO characterization analysis focus

on specific file systems within non-virtualized envi-

ronments, e.g., NFS [7], CIFS [17], Sprite/VxFs [9],

NTFS [25], and the EMC Data Domain backup sys-

tem [31]. Common characteristics include large and

sequential read accesses, increasing read/write ratios,

bursty IO, and a small fraction of jobs accounting for a

large fraction of file activities. Self-similar behavior [9]

is identified and proposed to use to synthesize file system

traffic. Backup systems [31] have been observed to have

significantly more writes than reads, whereas file sys-

tems for primary applications have twice as many reads

as writes [17].

Following the advances in virtualization technologies,

several recent works focus on optimizing data storage

and access performance in virtualized environments with

an emphasis on novel shared storage design [11, 13] and

data management [15, 18, 28]. To reduce the load on

shared storage systems, distributed-like VM storage sys-

tems such as Lithium [13] and Capo [28] are proposed.

Gulati et al. design and implement the concept of a stor-

USENIX Association 12th USENIX Conference on File and Storage Technologies 179

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
S

e
rv

e
rs

File Systems [#]

VM
BOX

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 12 16 20 24 32 40 48 64 80

F
ile

 S
y
s
te

m
s
 [
#
]

CPUs [#]

VM
BOX

 1

 10

 100

 1000

0.5-
1

1-
2

2-
4

4-
8

8-
16

16-
32

32-
64

64-
128

128-
256

256-
512

512-
1024

F
ile

 S
y
s
te

m
s
 [
#
]

Memory Size [GB]

VM
BOX

(a) CDF (b) Number of CPUs (c) Memory size [GB]

Figure 1: Number of file systems associated with a VM and a box: (a) cumulative distribution, (b) boxplots of file

systems as a function of the number of CPUs, and (c) boxplots of file systems as a function of memory size. The

boxplots present the 10th, 50th, and 90th percentiles.

age resource pool, shared across a large number of VMs,

by considering IO demands of multiple VMs [11]. Sys-

tems that aim at improving IO load balancing for virtu-

alized datacenters using performance models have been

proposed [10, 23]. Combining intelligent caching, IO

deduplication can be achieved by reducing duplicated

data across different storage tiers, such as VMs, hosting

boxes [18], and disks [15]. Everest [21] addresses the

challenges of peak IO loads in datacenters by allowing

data written to an overloaded volume to be temporarily

off-loaded into a short-term virtual store. Nectar [12]

proposes to interchangeably manage computation and

data storage in datacenters by automating the process of

generating data, thus freeing space of infrequently used

data. Workload characterization that focuses on specific

server workloads (i.e., application variety) such as web,

database, mail, and file server, has been done for the pur-

pose of evaluating energy usage [27]. Till now, only

a rather small scale virtual storage workload character-

ization has been presented [28], pointing out that virtual

desktop workloads are defined by their peaks.

The workload study presented here presents a broad

overview of virtual machine storage demands at produc-

tion datacenters, covering IO volume, velocity, and vari-

ety, and how these relate to the degree of virtualization

as well as usage of other resources. The analysis pre-

sented here compliments many existing IO and file sys-

tem studies by using a very large dataset from production

datacenters in highly virtualized environments.

3 Statistics Collection

We surveyed 90,000 VMs, hosted on 8,000 physical

servers in different data centers dispersed around the

globe, serving over 300 corporate customers from a wide

variety of industries, over a three year period and ac-

counting for 22 PB of storage capacity. The servers use

several operating systems, including Windows and dif-

ferent UNIX versions. VMware is the prevalent virtual-

ization technology used. For a workload study on current

virtualization practices, we direct the interested readers

to [5].

The collected trace data is retrieved via vmstat,

iostat and supervisor specific monitoring tools, and is

collected for VMs as well as for physical servers, termed

hosting boxes. Each physical box may host multiple (vir-

tual) file systems, which are the smallest units of stor-

age media considered in this study. To characterize data

workloads in virtualized datacenters, we focus on three

types of IO-related statistics for VMs.

Volume refers to the allocated space, free space, and

degree of fullness, defined as the ratio between the total

used space and the total allocated space, of a VM after

aggregating all of its file systems. Here, we focus on

long-term trends, i.e., growth rates, and short-term vari-

ations, i.e., churn rates.

Velocity refers to read and write speeds measured in

number of operations and transfered bytes per time unit,

as IOPS and GB/h, respectively. We compare virtual IO

velocity, measured at the VMs, with physical IO velocity,

measured at the underlying boxes.

Variety refers to volume and velocity of specific appli-

cations, i.e., app, web, database, file, mail, and print, on

specific VMs. To conduct storage-centric multi-resource

analysis, we also collect CPU utilization, memory usage,

and network traffic for VMs as well as boxes.

The trace data is available in two granularities: (1)

in 15-minute/hourly averages from April 2013 and (2)

coarse-grain monthly averages from January 2011 to

December 2013. When exploring the differences be-

tween VMs in a day, we use the detailed traces with

15-minute/hourly granularity from 04/17 and 04/21.

Monthly averages are used to derive long-term trends.

We note that the statistics of interest have long tails,

therefore we focus on presenting CDFs as well as cer-

tain percentiles, i.e., 10th, 50th and 90th percentiles. As

the degree of virtualization (i.e., consolidation) on boxes

is quite dynamic, we report on daily averages per phys-

180 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
V

M
s

Capacity [TB]

2011
2012
2013

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
V

M
s

Used Space [TB]

2011
2012
2013

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
V

M
s

Free Space [%]

2011
2012
2013

(a) Storage Capacity (b) Used Volume (c) % of fullness

Figure 2: CDF of storage volume per VM over three years.

ical box. To facilitate the analysis connecting the per

VM storage demands with the per file system storage de-

mands, we present the CDF of the number of file sys-

tems across VMs and boxes (see Figure 1 (a)) and also

how file system distributions vary across different sys-

tems, which we distinguish by the number of CPUs per

box and memory (see boxplots in Figure 1 (b) and (c),

respectively). Figure 1 (a) shows that boxes typically

have a much higher (more than 21) number of virtual file

systems than VMs, which have on the average 2 virtual

file systems. Such values are very different from desktop

studies [2] and underline the uniqueness of our dataset,

especially in light of virtualized datacenters. Moreover,

looking at the trends of medians in Figure 1 (b) and 1 (c),

the number of file systems grows with servers equipped

with more CPUs and, particularly, with larger memory.

As our data is obtained by standard utilities at the op-

erating system level, we lack specific information about

file systems, such as type, file counts, depth, and exten-

sions. In addition, since the finest-grained granularity of

the trace data is for 15-minute/hourly periods, IO peaks

within such intervals cannot be observed. For example,

the maximum GB/h within a day identified in this study

is based on hourly averages, and is much lower than the

instantaneous maximum GB/h. The coarseness of the in-

formation gathered is contrasted by the huge dataset of

this study: 8,000 boxes with high average consolidation

levels, i.e., 10 VMs per box, observed over a time-span

of three years.

4 Volume

One of the central operations for datacenter management

is to dimension storage capacity to handle short term as

well as long term fluctuations in storage demand. These

fluctuations are further accentuated by data deduplica-

tion and backup activities [6, 20]. Surging data demands

and data retention periods drive storage decisions; how-

ever, existing forecasting studies either adopt a user or

a per file system perspective, not necessarily targeting

entire datacenters. Here, the aim is to adopt a differ-

ent perspective and provide an overview on the yearly

growth rates and weekly churn rates of storage demand

at the VM level. In the following subsections, we fo-

cus on the storage demands placed by 90,000 VMs, their

used/allocated storage and fullness, followed by statisti-

cal analysis of their yearly growth rates and weekly churn

rates.

4.1 Data Storage Demands across VMs

Taking yearly averages of the monitored VMs over 2011,

2012, and 2013, we present how storage demands evolve

over time and how they are distributed across VMs. Fig-

ure 2 (a) and 2 (b) present the CDF of the total sum of

allocated and used storage volume per VM over all file

systems belonging to each VM. Figure 2 (c) summarizes

the resulting fullness. Visual inspection shows that the

overall capacity and the used space per VM grow simul-

taneously, and result in fullness being constant over time.

This observation illustrates a similar behavior as the one

observed at the file system level [20], and provides in-

formation on how to dimension storage systems for dat-

acenters where VMs are the basic compute units.

Via simple statistical fitting, we find that exponential

distributions can capture well the VM storage demands

in terms of allocated storage capacity and used storage

volume. Table 1 summarizes the measured and fitted

values, means and 95th percentiles of capacity and used

volume are reported. Since there are on average 10 VMs

sharing the same physical box [5], a system needs to be

equipped with 450 GB of storage space for very aggres-

sive storage multiplexing schemes, i.e., only the used

space is taken into account (45× 10), or 1120 GB for

a more conservative consolidation scheme based on the

allocated capacity (112× 10). The uniform distribution

can approximately model fullness. Since the relative ra-

tio of two independently exponential random variables

is uniform [26], this further confirms that the exponen-

tial distribution is a good fit. Overall, the above analysis

gives trends for the entire VM population, which in turn

increases over the years, but does not provide any infor-

USENIX Association 12th USENIX Conference on File and Storage Technologies 181

Table 1: Three year storage volume: measured and fitted

data from exponential distribution.
mean 95th

Year 2011 2012 2013 2011 2012 2013

Capacity [GB] 122 148 186 365 436 569

Exponential 122 148 186 365 442 556

Used [GB] 47 60 76 128 165 207

Exponential 47 60 76 140 180 228

Fullness [%] 42 44 42 83 83 81

mation on how the storage volume of individual VMs

changes. In the following subsections, we focus on com-

puting the yearly growth rate and weekly upper bound of

the churn rate for each VM by presenting CDFs for the

entire VM population.

On average, a VM has 2.55 file systems with a total

capacity of 185 GB, of which roughly 42% is utilized,

implying that each VM on average stores 77 GB of data.

In general, the allocated capacity and free storage space

increases over the years, while storage fullness remains

constant.

4.2 Yearly Growth Rate

The data growth rate is predicted to double every two

years [1]. Yet, it is still not clear how this value trans-

lates into growth at the per VM data volume level, or

more importantly, whether the existing storage resources

can sustain future data demands. Here, we analyze the

long-term volume growth rates from two perspectives:

supply, i.e., from the perspective of storage capacity, and

demand, i.e., from the perspective of used storage vol-

ume.

In Figure 3, we show the CDF of the yearly relative

growth rate of allocated capacity, used space, and full-

ness, across all VMs. We compute the relative yearly

growth rate as the difference in used capacity between

June 2012 and May 2013, and divide it by the start value.

A positive (negative) growth indicates an increasing (de-

creasing) trend. Overall, the CDF of used space is very

close to fullness, meaning that the storage space utiliza-

tion is highly affected by the data demand, rather than by

the supply of the capacity.

One can see that most VMs (roughly 86%) do not up-

grade their storage, whereas the remaining 14% VMs in-

crease their storage capacity quite significantly, i.e., up to

200%. Due to this long tail, the mean increase is 40.8%.

As for the demand of space, almost all VMs increase

their used storage. Only a small amount (below 25%) of

VMs decrease their used space and have negative growth

rates. On the other hand some VMs have a three-fold in-

crease in used space. As a net result, the mean growth

of used space is 95.1%. The smallest growth belongs to

fullness: the mean rate is 19.1%. Such a value is higher

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100 150 200 250 300 350 400

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
V

M
s

Yearly Growth [%]

Capacity
Used Space

Fullness

Figure 3: CDF of yearly growth rate of VM storage vol-

ume: capacity, used space, and fullness.

than the fullness trend evaluated across the entire VM

population in Figure 2(c). Both storage capacity and

used space increase over time for each individual VM

with a mean yearly growth rate of 40% and 95%, respec-

tively. The resulting fullness also increases by 19% every

year.

4.3 Weekly Churn Rate: Lower Bound

Here, we study short-term fluctuations of storage volume

utilization, defined by the percentage of bytes that have

been deleted during a time period of a week with respect

to the used space. Note that this value represents a lower

bound on the churn rate, since what is available in the

trace is total volume in 15-minute intervals, i.e., if a VM

writes and deletes the same amount of data within the

15-minute interval, there is no way to know how much

is truly deleted during that period. We therefore report

here a lower bound on the churn rate; the true value may

be larger than the one reported here. The inverse of the

lower bound of the churn rate reveals the upper bound

of the data retention period. For example, a 20% weekly

churn rate here means that the data is kept up to 5 weeks

before being deleted. We base our computation of the

weekly churn rate of VMs on the 15-minute data col-

lected between 04/22/2013 to 04/28/2013. The churn

rate is computed as the sum of all relative drops in used

space, i.e., all negative differences between two adjacent

15-minute samples. We note that as data is also added

over this one week time frame and we consider the sum

of all deleted data, this value can go over 100%.

We present CDFs of two types of weekly churn rates

in Figure 4 (a): by VMs and by file systems (FSs). The

former gives the data volume deleted by VMs and the

latter focuses on data volume deleted from an individual

file system. Seen from the starting point and long tail of

file system’s CDF, a high fraction of file systems have a

churn rate of zero, while a small fraction of file systems

have very high churn rates. Thus a higher variability of

churn rates is observed at file systems than at VMs. To

182 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
u
m

u
l.
 F

ra
c
ti
o
n

Weekly Churn [%]

VMs
FSs

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
F

S
s

Weekly Churn [%]

C
D
E
F
G
H

(a) VM and file system (b) Specific file systems

Figure 4: CDF of the weekly churn rate computed based on single VM and a single file system: the x-axis is the

percentage of storage space deleted in a week; the y-axis are the cumulative fraction of VMs, file systems, and specific

file systems.

further validate this observation, we compute the churn

CDF of the most commonly seen volume labels of file

systems, i.e., C, D, E, F, G, and H, from Windows sys-

tems, that account for roughly 87% of the entire VM pop-

ulation. Shown in Figure 4 (b), one can clearly see that

volume label C has very low churn rate, compared to the

other labels. Such an observation matches with the com-

mon practice that C drives on Windows systems store

program files that are rarely updated and other drives are

used to store user data.

Overall, the churn rates of VMs have a mean around

17.9%, whereas churn rates of file systems have a mean

around 20.8%. This value, being a lower bound, is on

par with previous results in the literature, where a true

churn rate, computed from detailed file system traces, is

21% [31]. Most VMs have rather low churn rate lower

bounds; from Figure 4 (a) one can see that 75% of VMs

have churn rates below 15%. However, 10% of VMs

have a churn rate higher than 50%. VMs with high churn

rates pose challenges for the storage system, because a

large amount of space needs to be reclaimed and written.

5 Velocity

The most straight-forward performance measure for stor-

age systems is the IO speed, which we term velocity

within the context of VMs accessing big data in data cen-

ters. The performance at peak loads [21] has long been

a target focus for optimization. To expedite IO opera-

tions, caching [28] and IO deduplication [15] algorithms

are critical. This is especially true within the context

of virtualized data centers where the system stack, e.g.,

the additional hypervisor layer, for IO activities becomes

deeper and more complex. The evaluation of caching

and IO deduplication schemes in virtualized datacen-

ters is usually done at small scale or lab-like environ-

ments [15, 28]. We quantify VM velocity via the speed

by which data is placed in and retrieved from datacenter

storage, and further pinpoint “hot” or “cold” VMs from

the IO perspective. The statistics presented in the fol-

lowing subsections are based on hourly averages from

04/17/2013, which is shown representative for IO veloc-

ity in Section 5.1. The focus is on understanding their

variability over time and their dependency on the virtu-

alization level (i.e., on the number of simultaneous exe-

cuting VMs), as well as on peak IO load analysis.

5.1 Overview

We start this section by presenting an overview of the

daily velocity of VMs (and their corresponding boxes)

in terms of (1) transferred data per hour (GB/h) includ-

ing both read and write operations; and (2) the per-

centage of transferred data associated with read opera-

tions. Figure 5 depicts the aforementioned information

in three types of statistics: the hourly average based on

04/17/2013 (weekday), 04/21/2013 (weekend), and daily

average computed over the entire month of April 2013.

The aim is to see if the IO velocity of a randomly selected

date is sufficiently representative. Overall, the statistics

of the daily velocity on 04/17/2013 are very close to

those of a weekend day and to the statistics aggregated

from the daily average over the entire April, see the al-

most overlapping lines in all three subfigures of Figure 5.

Hence, in the rest of this paper we focus on a specific day

04/17/2013, which we consider as representative.

Shown by a lower CDF in Figure 5 (a), boxes have

higher IO velocity than VMs. The average IO velocity

for boxes and VMs are 26.7 GB/h and 2.9 GB/h, respec-
tively, i.e., the velocity for boxes is larger roughly by a

factor of 9. This factor is in line with the average con-

solidation level [5], i.e., 10 VMs per box and hints to a

linear scaling of IO activity. Regarding the percentage

of read operations, boxes have heavier read workloads

than VMs do, as shown by the CDF curve in Figure 5 (b)

USENIX Association 12th USENIX Conference on File and Storage Technologies 183

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 1 10 100 1000

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
S

e
rv

e
rs

IO Activity [GB/h]

VM-4/17
4/21
April

BOX-4/17
4/21
April

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
S

e
rv

e
rs

Read/Total IO Ratio [%]

VM-4/17
4/21
April

BOX-4/17
4/21
April

 0

 20

 40

 60

 80

 100

 120

0 1 2-4 5-7 8-10 11-13 14-16 17-19 20+
 0

 25

 50

 75

 100

 125

IO
 A

c
ti
v
it
y
 [
G

B
/h

]

Virtualisation Level [#]

April
4/17
4/21

(a) IO in GB/h (b) Percentage of reads (c) IO by virtualization level

Figure 5: Daily velocity: IO read and write activities per VM and box on 4/17, 4/21, and the entire April.

that corresponds to boxes. There is roughly 12% of VMs

having only write workloads, as indicated by the leftmost

point of the VM CDF. Meanwhile, less than 1% of VMs

have read workloads only. Indeed, the mean read ratio of

boxes and VMs are 38% and 21%, respectively. Over-

all, the velocity of VMs and boxes is dominated by write

workloads.

To verify how the virtualization level affects the box

IO activity, we group the box IO activity by virtualiza-

tion level and present the 10th, 50th, and 90th percentiles,

see the boxplots in Figure 5 (c). The box IO activity in-

creases almost linearly with the virtualization level, this

can be seen by the 50th percentile. When further normal-

izing the IO velocity of a box by the number of consoli-

dated VMs, the average values per box drop slightly with

the virtualization level. This implies that there is a non-

negligible fixed overhead associated with virtualization.

We omit this graphical presentation due to lack of space.

5.2 Deduplication of Virtual IO

IO deduplication techniques [15] are widely employed to

reduce the amount of IO. The discussion in this section

is limited to virtual IO since, from the traces, there is no

way to distinguish how and where the data is dedupli-

cated and/or cached. We compare the sum of all virtual

IO activity aggregated over all consolidated VMs within

a box, termed virtual IO, divided by the IO activity mea-

sured at the underlying physical box, termed box IO, and

call this ratio the virtual deduplication ratio. In contrast

to the rest of the paper, we here use IOPS as the measure-

ment of velocity, instead of GB/h. When the deduplica-

tion ratio is greater (or smaller) than one, the virtual IO is

higher (or lower) than the physical box IO, respectively.

A deduplication ratio of one is used as the threshold be-

tween deduplication and amplification.

We summarize the CDF of the deduplication ratio in

Figure 6 (a). Roughly 50% of boxes have a deduplication

ratio ranging from 0.8 to 1.2, i.e., close to one, indicat-

ing similar IO activities at the physical and virtual lev-

els. Another observation is that most boxes experience

amplification, as indicated by deduplication ratios less

than one (including close to one), i.e., virtual IO loads

are lower than physical IOs. This can be explained by

the fact that hypervisors induce IO activities due to VM

management, e.g., VM migration.

There is a very small number of boxes (roughly 11%)

experiencing IO deduplication, as indicated by the boxes

having deduplication ratios greater than one. To under-

stand the cause of such deduplication, we compute the

separate deduplication ratio for read and write activities.

We see that the observed deduplication stems more from

read than write operations, as indicated by a higher frac-

tion of boxes (roughly 18%) having deduplication read

ratios greater than one. One can relate this observation

to the fact that read caching techniques are more straight-

forward and effective than write caching techniques.

To see how virtualization affects deduplication ratios,

we group the deduplication ratios by their virtualization

level and present them using boxplots, see Figure 6 (b).

Looking at the lower and middle bars of each boxplot,

i.e., the 10th and 50th percentiles, we see that the dedupli-

cation ratios increase with the virtualization level. Such

an observation can be explained by the fact that IO activ-

ities of co-located VMs have certain dependencies that

further present opportunities for reducing IO operations

for hypervisors. Higher virtualization levels can lead to

better IO deduplication. We note that similar observa-

tions and conclusions can be deduced by using IO in

GB/h, with the deduplication ratios roughly ranging be-

tween 0 to 3.

In addition to virtualization, the effectiveness of IO

deduplication can be highly dependent on the cache size.

Unfortunately, our data set does not contain information

about cache sizes, only memory sizes, which in turn are

often positively correlated to the cache sizes. There-

fore, to infer the dependency between cache size and IO

deduplication ratio, we resort to memory size and cat-

egorize deduplication ratios by box memory sizes, see

Figure 6 (c). The trend is that the IO deduplication ra-

tio increases with increasing memory size, though with a

drop for systems having memory greater than 512 GB.

184 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
S

e
rv

e
rs

IO Activity Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2-4 5-7 8-10 11-13 14-16 17-19 20+
 0

 25

IO
 A

c
ti
v
it
y
 R

a
ti
o

Virtualisation Level [#]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.5-
1

1-
2

2-
4

4-
8

8-
16

16-
32

32-
64

64-
128

128-
256

256-
512

512-
1024

IO
 A

c
ti
v
it
y
 R

a
ti
o

Memory Size [GB]

(a) CDF (b) By virtualization level (c) By memory size

Figure 6: Virtual IO deduplication/amplification per box: Virtual IOPS
Physical IOPS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

00 02 04 06 08 10 12 14 16 18 20 22 00

F
a
rc

ti
o
n
 o

f
IO

 A
c
ti
v
it
y
 P

e
a
k
s
 [
%

]

Time [h]

4/17
4/21

Figure 7: PDF of virtual loads peak times in a day over

all consolidated VMs.

5.3 Peak Velocity of Virtual IO

Virtualization increases the randomness of access pat-

terns due to the general lack of synchronized activity

between the VMs and the larger data volume accessed,

which in turn imposes several challenges to IO man-

agement [8]. The first question is how IO workloads

fluctuate over time. To such an end, for each VM and

box, we compute their coefficient of variation (CV) of

the IO activity in GB/h during a day using the hourly

data. The higher the CV value, the higher the variabil-

ity of the IO workload during the day. Our results show

that boxes have rather stable IO velocity with an average

CV of around 0.8, while VMs have an average CV of

around 1.3.

The confirmation of higher time variability of VMs

lead us to focus on the characteristics of virtual IO ag-

gregated over all VMs hosted on the same box, in partic-

ular their peak loads. We try to capture when the peaks

of aggregated velocity happen, and how each VM con-

tributes to the peak. We do this both for a Wednesday

(04/17/2013) and a Sunday (04/21/2013) based on the

hourly IO activity data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
u
m

u
l.
 F

ra
c
ti
o
n
 o

f
P

M
s

VMs [#]

4/17
4/21

Figure 8: Number of VMs to reach 80% of peak load

over all consolidated VMs.

5.3.1 Peak Timings

Figure 7 presents the empirical frequencies showing

which hour of the day the aggregated virtual peak IO

loads happen. Clearly, most VMs have peaks during

after-hours, i.e., between 6pm to 6am, for both days.

This observation matches very well with timings for peak

CPU [4] and peak network [3] activities but does not

match the belief that IO workloads are driven by the

working hours schedule [18]. Indeed, in prior work [5]

we have observed that most VM migrations occur during

midnight/early morning hours, which is consistent with

the activity seen in Figure 7. Clearly, the intensity of

virtual IO workloads is affected by background activities

such as backup and update operations that are typically

run during after-hours.

5.3.2 Top VM Contributors

Another interesting question is how consolidated VMs

contribute to peak loads. Information on top VM con-

tributors to peak loads is critical for improving peak load

performance via caching [21, 28]. We define as top con-

tributors the co-located VMs having the highest contribu-

tions to the peak load in order to reach a certain thresh-

old, i.e., 80% of the peak load in this study. We sum-

marize the distribution of the number of top VM contrib-

USENIX Association 12th USENIX Conference on File and Storage Technologies 185

 0

 20

 40

 60

 80

 100

0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
1

1-
2

2-
3

3-
4

4-
9

9+

F
u
lln

e
s
s
 [
%

]

IO Activity Range [GB/h]

 0

 0.5

 1

 1.5

 2

 2.5

 3

0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
1

1-
2

2-
3

3-
4

4-
9

9+

IO
 A

c
ti
v
it
y
 C

V

IO Activity Range [GB/h]

 0

 20

 40

 60

 80

 100

0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
1

1-
2

2-
3

3-
4

4-
9

9+

W
e
e
k
ly

 C
h
u
rn

 [
%

]

IO Activity Range [GB/h]

(a) Fullness (b) Time variability (c) Weekly churn rate

Figure 9: Cold vs Hot VMs: volume, time variability in a day, and weekly storage space churn. The x-axis is IO in

GB/h and y-axes are fullness [%], coefficient of variation (CV), and weekly churn rate.

utors for both days in Figure 8. Interestingly, one can

see a clear trend indicating that it is very common that

a small number of VMs dominates peak loads for both

days. Such a finding is similar to the one reported in [28],

where only independent (i.e., not co-located) VMs are

considered. These results further show that making a pri-

ority the optimization of the IO of a few top VMs may

have a large impact on overall performance.

5.4 Characteristics of Cold/Hot VMs

Motivated by the fact that a few number of VMs con-

tribute to peak loads, we try to capture the character-

istics of VMs based on their IO activity in GB/h, aim-

ing to classify the VMs as cold/hot. The hotness of the

data is very useful to dimension and tier storage systems;

e.g., cold data in slow storage media and hot data in flash

drives. To this end, we compare the used volume, time

variability, and churn rate of VMs grouped by different

levels of IO activity, see Figure 9 (a), (b), and (c), respec-

tively. Each box represents a group of VMs having an

average activity falling into the IO activity range shown

on the x-axis.

The 50th percentile, i.e., the middle bar in each box-

plot, increases with the IO activity level for both the full-

ness and churn rate. Overall, VMs with high IO activ-

ities are also fuller and have higher churn rates, com-

pared to VMs with low IO activities. For fullness, not

only the 50th percentile, but also the entire boxes shift

with the IO activity level. To see if the reverse is also

true, we classify the IO activity level by different lev-

els of used space both in GB and percentage. The data

shows that high space usage indeed results in high IO ac-

tivity, especially when measured in GB. However, VMs

with very full storage systems, i.e., 90-100% occupancy,

have slightly lower IO activity than VMs with 80-90%.

This stems from the fact that most storage systems have

optimal performance when they are not completely full.

A common rule of thumb is that the best performance

is achieved when the used space is up to 80%. Hence,

only cold data is placed on disks with a higher percent-

age of used space. Due to space constraints, we omit the

presentation of this set of results.

The time variability shows a different trend, i.e., the

CV first increases as IO velocity increases but later de-

creases, see Figure 9 (b). The hottest VMs, i.e., the ones

with IO greater than 9 GB/h, have the second lowest

CV, as can be seen from the 50th percentile. We thus

conclude that hot VMs have relatively constant, high IO

loads across time.

Regarding churn rates, both the 50th and 90th per-

centiles clearly grow with IO activity levels, indicating

strong correlation between IO activity and churn. Such

an observation matches very well with common under-

standing that hot VMs have frequent reads/writes, re-

sulting in frequent data deletion and short data retention

periods. This is confirmed by our data showing quan-

titatively that 50% of hot VMs, i.e., VMs having an IO

activity level of 9 GB/h or more, have data retention pe-

riods ranging between 11.11 (1/0.09) and 1.02 (1/0.98)
weeks. In summary, hot VMs have higher volume con-

sumption (55%) and churn rates (9%).

6 Variety

The trace data allows to distinguish application types for

a subset of VMs. Here, we select the following applica-

tions: app, web, database (DB), file, mail, and print, and

characterize their volume and velocity. Our aim here is

to provide quantitative as well as qualitative analysis that

could be used in application-driven optimization studies

for storage systems. The app servers host key applica-

tions for clients, such as business analytics. DB servers

run different database technologies, such as DB2, Ora-

cle, and MySQL. File servers are used to remotely store

files. Due to business confidentiality, it is not possible

to provide detailed information about these applications.

We summarize the storage capacity, used space, weekly

churn rate, IO velocity, percentage of read operations,

and time variability using boxplots for each application

186 12th USENIX Conference on File and Storage Technologies USENIX Association

10
1

10
2

10
3

10
4

App DB File Mail Print Web

C
a
p
a
c
it
y
 [
G

B
]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

App DB File Mail Print Web

F
u
lln

e
s
s
 [
%

]

 0

 20

 40

 60

 80

 100

 120

App DB File Mail Print Web

W
e
e
k
ly

 C
h
u
rn

 [
%

]

(a) Capacity (b) Used volume (c) Weekly churn rate

10
-2

10
-1

10
0

10
1

10
2

App DB File Mail Print Web

IO
 A

c
ti
v
it
y
 [
G

B
/h

]

 0

 0.2

 0.4

 0.6

 0.8

 1

App DB File Mail Print Web

IO
 R

e
a
d
 R

a
ti
o
 [
%

]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

App DB File Mail Print Web

IO
 A

c
ti
v
it
y
 C

V

(d) IO in GB/h (e) Read ratio (f) Time variability (CV)

Figure 10: Application’s storage volume and IO velocity.

type, see Figure 10. We mark the 10th, 50th, and 90th

percentile of VMs belonging to each application. Most

statistics are based on the data collected on 04/17/2013,

except for the weekly churn rate that is based on data

between 04/22/2013 to 04/28/2013.

Storage Capacity: File VMs have the highest ca-

pacities, followed by DB VMs – see the relative values

of their respective 50th percentiles. Mail, print, web, and

app have similar storage capacities, but print VMs have

the highest variance – see the height of the boxplot.

Volume: Fullness shows a slightly different trend

from the allocated storage capacity. File VMs are also

the fullest, hence they store the largest data volume.

Database VMs that have the second highest allocated ca-

pacities are now the least full, hinting to large amounts

of free space. In terms of variability of fullness across

VMs in the same application type, print VMs still have

very different storage fullness.

Weekly Churn Rate: DB VMs have the highest

weekly churn rate, with some VMs having churn rates

greater than 120%, hinting to frequent updates where a

lot of storage volume is deleted and reclaimed. Unfor-

tunately, due to the coarseness of the trace data, we can-

not confirm whether this is due to the tmp space used

for large queries, although this is a possible explanation.

Such an observation goes hand-in-hand with low fullness

of DB. Based on the value of 50th percentile, print VMs

have the second highest churn rate, as print VMs store

many temporary files, which are deleted after the print

jobs are completed. Due to dynamic contents, app and

web VMs have high churn rates as well, i.e., similar to

the mean churn rate of 17.9% shown in Section 4.3.

IO Velocity: Applying characteristics of hot/cold

VMs summarized in Section 5, it is no surprise that file

VMs have the highest IO velocity, measured in GB/h.

According to the 50th percentile, mail and DB VMs have

the second and third highest IO velocity. Print, web, and

app VMs experience similar access speeds.

Read/Write Ratio: All application VMs have

their 50th percentile of read ratio less than 50%, i.e., all

application types have more write intensive operations

than read operations. Indeed, as discussed in Section 5,

VMs are more write intensive. Among all, app VMs

have the lowest read ratio, i.e., lower than 20%. In con-

trast, print VMs have the highest read ratio close to 50%,

which is reasonable as print VMs have rather symmetric

read/write operations, i.e., write files to storage and read

them for sending to the printers.

Time Variability: To see the IO time variability

per application, we use their CV across a day, computed

from 24 hourly averages. DB and file show high time

variability by their 50th percentile being around 1.8. As

web VMs frequently interact with users who have strong

time of day patterns, web VMs exhibit time variability

as high as file and DB VMs. Mail, print, and app VMs

have their CV slightly higher than 1, i.e., IO activities are

spread out across the day.

In summary, file VMs have the highest volume, veloc-

ity and IO load variability, but with a rather low weekly

churn rate around 10%. DB VMs have high volume, ve-

locity, IO load variability and churn rate, but with very

low fullness. Mail VMs have moderate volume, and high

velocity evenly across the day. All application VMs are

write intensive.

USENIX Association 12th USENIX Conference on File and Storage Technologies 187

0
20

40

0
200

400
0

200

400

600

800

1000

CPU [%]IO [GB/h]

N
e
t
[M

b
/s

]

0 10 20 30 40
0

200

400

CPU [%]

IO
 [

G
B

/h
]

0 200 400 600 800 1000
0

200

400

Net [Mb/s]

IO
 [

G
B

/h
]

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

IO-CPU IO-Net Net-CPU

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

BOX VM

(a) VM workload centroids (b) IO-CPU and IO-Net projections (c) Correlation coefficients

Figure 11: Dependency among IO [GB/h], CPU[%], Network [Mb/s].

7 Interdependency of CPU and Network

Since the statistical analysis presented here is based on

the perspective of VMs and boxes, it is possible to corre-

late the storage workloads with those of other resources,

in particular CPU and network. Using hourly averages

from 04/17/2013, we capture the dependency of VM IO

activities on CPU utilization and network traffic mea-

sured in megabits per second (Mb/s). We focus on the

following two questions: (1) what are the most repre-

sentative patterns of IO, CPU, and network usage; and

(2) what is the degree of dependency among these three

resources. For the first question, we use K-means clus-

tering to find the representative VM workloads. For the

second question, we use the correlation coefficients for

each VM for any pair of IO, CPU, and network, and sum-

marize their distributions.

7.1 Representative VM Workloads

When presenting the VMs’ daily average IO, CPU, and

network by means of a three dimensional scatter plot,

there are roughly 90,000 VM points. Due to the unavoid-

able over-plotting, there is no obvious pattern that can

be identified via visual inspection. To identify represen-

tative VM workloads, we resort to K-means clustering.

Due to the lack of a priori knowledge on the number of

VM clusters, we first vary the target number of clusters

from 3 to 20 to observe clustering trends over an increas-

ing number of clusters. Our results show that the overall

trajectories of cluster centroids are consistent across dif-

ferent number of clusters. In Figure 11 (a), we present

the centroids of 5 clusters. When the cluster number fur-

ther increases beyond 5, more centroids appear on the

line between the first two lowest centroids.

To take an IO-centric perspective, we analyze the rep-

resentative VM workloads by looking at projections of

VM centroids on the IO-CPU and IO-network planes,

see Figure 11 (b). When looking at the IO-CPU plane,

we see that IO workloads increase with CPU utilization

in an exponential manner. The VM centroid with the

highest IO (around 342GB/h), i.e., the rightmost point,

has the highest CPU utilization (around 36%). In the IO-

network plane the trend is less clear. One can observe

that the first four VM centroids roughly lie on a line hav-

ing their network traffic increasing at the same rate as

their IO velocity. However, the last VM centroid with

the highest network traffic (around 917Mb/s) has a rel-

atively low IO activity (around 97GB/h). Overall, the

majority of representative VMs have IO workloads that

increase commensurately with CPU loads and network

traffic, while very IO intensive VMs tend to heavily uti-

lize the CPU but not the network.

7.1.1 Correlation Coefficients

In Figure 11 (c), we present the 10th, 50th, and 90th per-

centiles of the correlation coefficients of IO-CPU, IO-

network, and CPU-network. To compute correlation

coefficients of the aforementioned three pairs, for each

VM/box, we use three time series of 24 hourly averages:

IO GB/h, CPU Utilization, and network traffic.

Among all three pairs, IO-CPU shows the highest cor-

relation coefficients, especially for VMs. The 50th per-

centile of the IO-CPU correlation coefficient for VMs

and boxes is around 0.65 and 0.45, respectively. This

indicates that IO activities closely follow CPU activities.

Such an observation is consistent with the clustering re-

sults. The correlation coefficients for boxes are slightly

lower than for those of VMs. Indeed, there is a certain

fraction of boxes and VMs that exhibit negative depen-

dency, and this is observed more prominently between

IO and network. As for the network-CPU pair, VMs and

boxes demand both resources roughly in a similar man-

ner, supported by that fact that the correlation coefficient

values are mostly above zero.

8 Conclusions

We conducted a very large scale study in virtualized, pro-

duction datacenters that operate under the private cloud

188 12th USENIX Conference on File and Storage Technologies USENIX Association

paradigm. We analyze traces that correspond to the ac-

tivity across three years of 90,000 VMs, hosted on 8,000

physical boxes, and containing more than 22 PB of ac-

tively used storage. IO and storage activity is reported

from three viewpoints: volume, velocity, and variety, i.e.,

we take a holistic view of the entire system but also look

at individual applications. This workload characteriza-

tion study differs from others from its sheer size both

from observation length and number of traced systems.

Yet while some of our findings confirm those reported

on smaller studies, some others provide a different per-

spective. Overall, the degree of virtualization is iden-

tified as an important factor in perceived performance,

ditto for the per application storage requirements and de-

mand, pointing to directions to focus on for better re-

source management of virtualized datacenters.

Acknowledgements

We thank the anonymous referees and our shepherd,

Garth Gibson, for their feedback that has greatly im-

proved the content of this paper. This work has been

partly funded by the EU Commission under the FP7

GENiC project (Grant Agreement No 608826). Evge-

nia Smirni has been partially supported by NSF grants

CCF-0937925 and CCF-1218758, and by a William and

Mary Plumeri Award.

References

[1] Big Data Drives Big Demand for Storage

http: // www. idc. com/ getdoc. jsp?

containerId= prUS24069113 . 2013.

[2] AGRAWAL, N., BOLOSKY, W., DOUCEUR, J.,

AND LORCH, J. A five-year study of file-system

metadata. In FAST (2007), pp. 3–3.

[3] BIRKE, R., CHEN, L. Y., AND MINKENBERG, C.

A datacenter network tale from a server’s perspec-

tive. In IEEE IWQoS (2012), pp. 1–10.

[4] BIRKE, R., CHEN, L. Y., AND SMIRNI, E. Data

centers in the cloud: A large scale performance

study. In IEEE CLOUD (2012), pp. 336–343.

[5] BIRKE, R., PODZIMEK, A., CHEN, L. Y., AND

SMIRNI, E. State-of-the-practice in data center vir-

tualization: Toward a better understanding of vm

usage. In IEEE/IFIP DSN (2013), pp. 1–12.

[6] DUBNICKI, C., GRYZ, L., HELDT, L., KACZ-

MARCZYK, M., KILIAN, W., STRZELCZAK, P.,

SZCZEPKOWSKI, J., UNGUREANU, C., AND

WELNICKI, M. Hydrastor: A scalable secondary

storage. In FAST (2009), pp. 197–210.

[7] ELLARD, D., LEDLIE, J., MALKANI, P., AND

SELTZER, M. Passive NFS tracing of email and

research workloads. In FAST (2003).

[8] EVANS, C. Dedicated VM storage emerges

to meet virtualisation demands. http:

// www. computerweekly. com/ feature/

Dedicated-VM-storage-emerges-to-meet-

virtualisation-demands. 2013.

[9] GRIBBLE, S. D., MANKU, G. S., ROSELLI, D. S.,

BREWER, E. A., GIBSON, T. J., AND MILLER,

E. L. Self-similarity in file systems. In SIGMET-

RICS (1998), pp. 141–150.

[10] GULATI, A., SHANMUGANATHAN, G., AHMAD,

I., WALDSPURGER, C. A., AND UYSAL, M.

Pesto: online storage performance management in

virtualized datacenters. In SoCC (2011), p. 19.

[11] GULATIAND, A., SHANMUGANATHAN, G.,

ZHANG, X., AND VARMAN, P. Demand based

hierarchical qos using storage resource pools. In

USENIX ATC (2012), pp. 1–14.

[12] GUNDA, P. K., RAVINDRANATH, L., THEKKATH,

C. A., YU, Y., AND ZHUANG, L. Nectar: Auto-

matic management of data and computation in dat-

acenters. In OSDI (2010), pp. 75–88.

USENIX Association 12th USENIX Conference on File and Storage Technologies 189

[13] HANSEN, J. G., AND JUL, E. Lithium: virtual

machine storage for the cloud. In SoCC (2010),

pp. 15–26.

[14] J.DOUCEUR, AND BOLOSKY, W. A large-scale

study of file-system contents. In SIGMETRICS

(1999), pp. 59–70.

[15] KOLLER, R., AND RANGASWAMI, R. I/O dedupli-

cation: utilizing content similarity to improve I/O

performance. In FAST 2010, pp. 16–16.

[16] LE, D., HUANG, H., AND WANG, H. Character-

izing datasets for data deduplication in backup ap-

plications. In FAST (2012), pp. 1–10.

[17] LEUNG, A. W., PASUPATHY, S., GOODSON,

G. R., AND MILLER, E. L. Measurement and anal-

ysis of large-scale network file system workloads.

In USENIX ATC (2008), pp. 213–226.

[18] LI, M., GAONKAR, S., BUTT, A. R., KENCHAM-

MANA, D., AND VORUGANTI, K. Cooperative

storage-level de-duplication for I/O reduction in

virtualized data centers. In MASCOTS (2012),

pp. 209–218.

[19] MERRILL, D. R. Storage economics: Four

principles for reducing total cost of ownership.

http: // www. hds. com/ assets/ pdf/ four_

principles_ for_ reducing_ total_ cost_

of_ ownership. pdf . 2009.

[20] MEYER, D., AND BOLOSKY, W. A study of prac-

tical deduplication. In FAST (2011), pp. 1–1.

[21] NARAYANAN, D., DONNELLY, A., THERESKA,

E., ELNIKETY, S., AND ROWSTRON, A. I. T.

Everest: Scaling down peak loads through i/o off-

loading. In OSDI (2008), pp. 15–28.

[22] NG, C.-H., MA, M., WONG, T.-Y., LEE, P. P. C.,

AND LUI, J. C. S. Live deduplication storage of

virtual machine images in an open-source cloud. In

Middleware (2011), pp. 81–100.

[23] PARK, N., AHMAD, I., AND LILJA, D. J. Ro-

mano: autonomous storage management using per-

formance prediction in multi-tenant datacenters. In

SoCC (2012), p. 21.

[24] PARK, N., AND LILJA, D. J. Characterizing

datasets for data deduplication in backup applica-

tions. In IISWC (2010), pp. 1–10.

[25] ROSELLI, D., LORCH, J., AND ANDERSON, T. A

comparison of file system workloads. In USENIX

ATC (2000), pp. 41–54.

[26] ROSS, S. A First Course in Probability. 2004.

[27] SEHGAL, P., TARASOV, V., AND ZADOK, E. Eval-

uating performance and energy in file system server

workloads. In FAST (2010), pp. 253–266.

[28] SHAMMA, M., MEYER, D., WIRES, J., IVANOVA,

M., HUTCHINSON, N., AND WARFIELD, A.

Capo: Recapitulating storage for virtual desktops.

In FAST (2011), pp. 31–45.

[29] SIMPSON, N. Building a data center cost model.

http: // www. burtongroup. com/ Research/

DocumentList. aspx? cid= 49 . 2009.

[30] VOGELS, W. File system usage in windows nt 4.0.

SIGOPS Oper. Syst. Rev. 33, 5 (Dec. 1999), 93–

109.

[31] WALLACE, G., DOUGLIS, F., QIAN, H., SHI-

LANE, P., SMALDONE, S., MARK, M. C., AND

HSU, W. Characteristics of backup workloads in

production systems. In FAST (2012), pp. 4–4.

USENIX Association 12th USENIX Conference on File and Storage Technologies 191

From research to practice: experiences engineering a production metadata
database for a scale out file system

Charles Johnson1, Kimberly Keeton1, Charles B. Morrey III1, Craig A. N. Soules2, Alistair
Veitch3, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton Coutinho, Patrick J.

Doyle, Rafael Eichelberger, Hugo Kiehl, Guilherme Magalhaes, James McEvoy, Padmanabhan
Nagarajan, Patrick Osborne, Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien

Tandel, Lincoln Thomas, and Sebastian Zangaro

HP Labs1 Natero2 Google3 HP Storage

Abstract

HP’s StoreAll with Express Query is a scalable commer-
cial file archiving product that offers sophisticated file
metadata management and search capabilities [3]. A new
REST API enables fast, efficient searching to find all files
that meet a given set of metadata criteria and the ability to
tag files with custom metadata fields. The product brings
together two significant systems: a scale out file system
and a metadata database based on LazyBase [10]. In de-
signing and building the combined product, we identified
several real-world issues in using a pipelined database
system in a distributed environment, and overcame sev-
eral interesting design challenges that were not contem-
plated by the original research prototype. This paper
highlights our experiences.

1 Introduction

Unstructured data, which accounts for more than 90% of
the information in the world today [11], creates a number
of challenges, including economically storing the data
(even as it ages), effectively protecting and managing
it, and extracting value from the stored data. To help
customers tame their information explosion, HP wanted
to provide an archival storage solution that would scale
to billions of files and objects and create structure for
unstructured data by allowing customers to exploit rich
metadata services.

To help with the problem of extracting value, the solution
would need to provide fast metadata search to support a
variety of usage scenarios. For example, system adminis-
trators need to quickly and efficiently find files that match
a given criteria to monitor storage operation (e.g., iden-
tify files created, modified, or deleted within a given time
frame) and enforce compliance (e.g., determine which
files are approaching retention expiration, or are on legal

hold). Users want to “tag” files with custom metadata
attributes and later search using those attributes. Such
metadata services would also benefit external applica-
tions like backup and enterprise content management, by
allowing them to avoid costly file system scans when de-
termining which files have changed and must be backed
up or indexed.

Ad hoc solutions in this space couple together an exter-
nal relational DBMS and a scale out file store. This ap-
proach is unable to support the necessary scaling and per-
formance requirements. Additionally, such solutions do
not provide integrated search capabilities across system
and custom metadata, and are likely to be expensive to
maintain. Instead, our goal was to embed the metadata
service within the file system to solve these challenges.

StoreAll with Express Query is a file archiving solution
that couples a scale-out file system with an embedded
database to accelerate metadata queries [3]. Initial re-
leases target archival workloads, where files must be kept
for an extended period of time, may be actively searched
and may subject to business or regulatory requirements.
In these systems, the number of files and aggregate data
size can be extremely large, due to the need to retain files
for many years.

This paper describes our experiences transforming a
research metadata database (LazyBase [10]) into a
production-quality metadata database, Express Query. In
our work, we discovered several issues prompted by the
scalable file archiving use case that we had not consid-
ered in the research prototype, and re-evaluated several
of our original design decisions.

We begin by providing background on LazyBase and the
scale out file system (§2). We highlight some of the chal-
lenges we encountered and overcame (§3), as well as the
new capabilities we added to improve usability and flex-
ibility (§4). Finally, we overview the related work (§5)
and summarize the lessons we learned (§6).

192 12th USENIX Conference on File and Storage Technologies USENIX Association

2 Background

This section provides an overview of the original Lazy-
Base [10] design and of the StoreAll file system architec-
ture.

2.1 LazyBase

Express Query is based on LazyBase, a distributed
database that provides scalable, high-throughput ingest
of updates, while allowing a per-query tradeoff between
latency and result freshness [10]. LazyBase provides this
tradeoff using an architecture designed around batching
and pipelining of updates. Read queries observe a stale,
but consistent, version of the data, which is sufficient for
many applications; more up-to-date results can be ob-
tained when needed by scanning updates still being pro-
cessed by later stages of the pipeline.

LazyBase provides a service model that decouples up-
date processing from read-only queries. Updates (e.g.,
adds, modifies, deletes) are observational, meaning that
data additions and modifications must provide new or
updated values, which will overwrite (or delete) exist-
ing data. Because data is batched, uploaded (potentially)
out-of-order and processed asynchronously, it may not
be possible to read the “current” value of a field to de-
termine the new/updated value; the most recent update
may not have been uploaded yet or may still be being
processed by the pipeline.

To improve database ingest performance, update clients
(also known as sources) batch updates together and up-
load them to LazyBase as a single self-consistent update
(SCU), which is the granularity of transactional (e.g.,
ACID) properties throughout the update pipeline. For
read-only queries, LazyBase provides snapshot isolation,
where all reads in a query will see a consistent snapshot
of the database, as of the time that the query started; in
practice, this is the last SCU that was applied at query
start time.

LazyBase tables contain an arbitrary number of named
and typed columns. Each table has a primary sort order
and one or more optional secondary sort orders (analo-
gous to materialized views), which contain a subset of
the columns and rows of the primary sort order. Each
sort order is a collection of fixed-size pages, called ex-
tents, which are stored in compressed form. Addition-
ally, each sort order has an extent index, which stores the
minimum and maximum value of the key in each extent
of the underlying sort order. Because extents are typi-
cally large (64KB), and the index only stores min and
max values, the index is small enough to fit into mem-

Figure 1: LazyBase prototype architecture [10].

ory, even if the table is very large. As a result, LazyBase
requires fewer disk I/Os to locate a data extent through
the extent index than would be required for a traditional
B-tree index. Primary and secondary sort orders, as well
as extent indexes, are stored as DataSeries files [9].

Figure 1 illustrates LazyBase’s update processing
pipeline. The ingest stage accepts client uploads and
makes them durable. The ID-remapping stage converts
SCUs from using their internal temporary IDs to using
global IDs common across the system. The sort stage
sorts each of the SCU’s tables for each of its sort or-
ders. The merge stage combines multiple SCUs into a
single sorted SCU. In addition to these stages, a coordi-
nator tracks and schedules work in the system, maintain-
ing availability and managing recovery.

2.2 StoreAll architecture

StoreAll’s shared nothing clustered file system is subdi-
vided into segments (volumes). Each segment contains a
portion of the inodes (directories and files) in the file sys-
tem. A segment is owned by one server, and the file sys-
tem supports failover to other servers if the owning server
fails. Each server handles reads and writes and manages
locking for inodes in the segments it owns. A server can
access an inode owned by another server in the cluster
via internal network handshaking. The system supports
NFS, CIFS, HTTP, FTP, and local file system access and
scales to more than 16 PB of data in a single name space.

As the file system is updated, the system records meta-
data state changes (e.g., file creations, deletions, reten-
tion operations) into a per-segment archive journal. This
journal is a transactionally reliable change log of file
system metadata updates that each server maintains for
the segments that it manages. Every few seconds the
archive journal writer (ajwriter) flushes the archive
journal files (ajfiles) for the segments owned by that

USENIX Association 12th USENIX Conference on File and Storage Technologies 193

server; for each segment, the ajwriter closes the ex-
isting ajfile and starts a new one. Once the ajfiles
are closed, they appear in the StoreAll namespace in a
hidden directory and an update notification is sent to the
subscribers of the ajwriter. This distributed publish/-
subscribe event-driven architecture scales out well be-
cause changes are recorded locally and immediately. It
avoids expensive file system scans for metadata changes
and provides a difficult-to-bypass auditing mechanism.

3 Lessons Learned

Incorporating LazyBase into the StoreAll product pushed
our initial LazyBase design in interesting new direc-
tions. In this section, we highlight several of the lessons
learned, including the demands of the file system use
case, the limits of our initial design, and how we ad-
dressed the challenges. We believe that these lessons and
our solutions generalize to using a system like LazyBase
in other distributed environments.

3.1 Transaction model complications

The combination of observational updates, out-of-order
events and asynchronous processing complicates the
transactional model. Here, we describe three aspects
of the problem and our solutions: out-of-order event
processing, expressing freshness, and enforcing data in-
tegrity.

3.1.1 Out-of-order event processing

Depending on the order in which batches are uploaded,
events may be processed by the database in a differ-
ent order than they were generated in the file system.
LazyBase’s pipeline has built-in support for processing
out-of-order updates. It uses both per-field and per-row
timestamps, and makes no assumptions about where the
timestamps come from, only that the timestamps gener-
ated for updates to a particular field must be totally or-
dered. When merging multiple versions of a given row,
LazyBase compares the timestamps of all versions of a
field and takes the newest.

In the research prototype for LazyBase, we used the
event timestamps in the input data as the field times-
tamps. We assumed that all updates for a given field
could be globally ordered based on their timestamps. In
the product, we had to cope with the fact that event times-
tamps associated with the same file system object could
be generated by different servers with skewed clocks.

The clock skew issue prompted changes in the way we
track event timestamps for StoreAll.

In StoreAll, servers that host client connections are
called entry servers (ESs). ESs initiate file system op-
erations on one or more file system objects on behalf of
their clients. However, durable modifications caused by
these operations are made only at the server that owns
the file system object; such servers are called destina-
tion servers (DSs). Any ES in the system can initiate
an operation that results in durable modifications to a
file system object. Operations that do not generate any
durable modifications (e.g., read and getattr) can be
supported via caching on the ES, without requiring com-
munication with the DS that owns the object. As in all
distributed systems, the clocks on the individual ES and
DS nodes will have skew.

Ultimately, we eliminated the clock skew issue by using
the DS timestamp for all events that make durable mod-
ifications to file system objects. We use the ES times-
tamp to support read auditing, with the proviso that these
timestamps are not comparable to those in non-audit ta-
bles and using the knowledge that audit events are never
updated after insertion.

3.1.2 Freshness

The LazyBase research prototype expressed freshness as
a single number. In contrast, in a distributed system such
as StoreAll, where multiple servers upload new data to
Express Query, freshness can’t be expressed as a single
number. As described in § 3.2, updates are batched in-
dependently for different segments, meaning that it is
not possible to provide a single point-in-time view of
the entire file system’s metadata. Instead, the freshness
provided by Express Query is a range, delimited by the
oldest and newest of the freshness levels from individ-
ual segments. Segment freshness levels are affected by
a number of issues, including events being cached be-
fore being flushed to an ajfile (as described in §2.2),
or a segment going offline for a time and only uploading
events once it comes back online.

To simplify the early Express Query design, we disabled
freshness queries. Even though database clients cannot
request a particular freshness, they still need to know
about the achieved freshness of their query results. For
example, a periodic backup application that queries for
recently updated files and wants to start its next backup
where the previous one left off needs to know the fresh-
ness for the previous query results to avoid missing mod-
ified files. To address this need, Express Query explic-
itly tracks each segment’s freshness, and query results
include the minimum (FreshnessComplete) and maxi-

194 12th USENIX Conference on File and Storage Technologies USENIX Association

mum (FreshnessPartial) freshness values across the seg-
ments. FreshnessComplete indicates the timestamp be-
fore which all events have been observed from all seg-
ments. FreshnessPartial indicates the timestamp for the
latest event processed for any segment. Thus, in the win-
dow between FreshnessComplete and FreshnessPartial,
query results include some, but not all, of the events gen-
erated in the file system. Database clients can use this
information to determine how to use the query results.

3.1.3 Enforcing data integrity

As described in § 2.1, the combination of observational
updates, out-of-order event arrival and asynchronous
processing means that LazyBase does not support read-
modify-write transactions. This property has interesting
implications for file system event processing. For exam-
ple, custom attributes for an old version of a file should
no longer be visible once the file has been deleted. How-
ever, since StoreAll users need to be able to add an ar-
bitrary number of custom attributes for a file, so we or-
ganized the schema to store custom attributes in a dif-
ferent table (with one row per attribute) from the rest of
the system attributes (with one row per file system ob-
ject). This meant that file deletions couldn’t automati-
cally delete custom attributes, because there was no way
to reliably read and delete the up-to-date set of custom
attributes when processing the deletion event.

Instead, we needed to explicitly enforce integrity con-
straints between the tables. Express Query tracks file
creation and deletion times, as well as timestamps for
custom metadata operations, and queries must include
timestamp comparison logic to check for attribute valid-
ity. A lazy cleaning pass periodically gets rid of custom
attributes for deleted files as well as file lifetime infor-
mation for files that were created or deleted sufficiently
long ago.

3.2 Batching

As Cipar et al. observed, the choice of batch size causes
a tradeoff between ingest throughput and latency [10].
Larger batches lead to greater pipeline processing effi-
ciency (and hence better throughput), but also increase
the delay before data can be queried – essentially, this de-
creases the freshness of the query results. We considered
increasing batch size by including updates from multiple
sources in the same batch, but quickly realized that this
complicates the transactional model: it is more difficult
for individual sources to abort, when the other sources in
the same batch want to commit. As a result, we elected
to create independent batches for different sources.

Express Query treats each file system segment as a
source. A user-space tool called the archive journal
scanner, or ajscanner, subscribes to the ajwriter

notifications (§2.2). For each ajfile, the ajscanner

parses the event data to create a batch of updates to
upload to Express Query. The ajscanner processes
ajfiles for each segment in order (determined using
the ajfiles’ mtimes), and uploads data from different
segments in parallel. From Express Query’s perspective,
each segment appears as a separate source, uploading a
stream of SCUs, one per ajfile. We use the fact that
ajfiles are created regularly every few seconds to strike
a balance between pipeline throughput and pipeline la-
tency (freshness).

3.3 Auto-increment IDs

The LazyBase research prototype supported the con-
cept of a 64-bit integer auto-increment ID column, also
known as a database surrogate key [7]. IDs can more
space-efficiently represent long values (e.g., file path-
names), by substituting the ID wherever the value would
have been used in a table. The exact savings depends on a
variety of factors, including the length of the strings, the
strings’ compressibility, and how many string fields are
present in a table. The expectation was that by convert-
ing long values into integers, the ID-remapping mecha-
nism would improve ingestion performance. Indeed, we
found that using IDs sped up merge performance for a
simulated file creation benchmark by an average of 54%.
However, ID-remapping has both query and ingestion
costs that must be considered.

The LazyBase prototype included IDs for a variety of
string fields, including pathnames, and used these IDs as
the primary key for most tables. Because LazyBase uses
in-memory extent indexes to support point and range
queries, sorting a table by the ID effectively randomized
the data order, requiring a full table scan for what oth-
erwise should be point or range queries. Furthermore,
every query that selected or filtered on an ID-remapped
attribute (in combination with other attributes) required
a join with the ID table. In the file system context, this
meant that all pathname-based queries (e.g., “find all files
in a directory” or “show pathnames for all files modified
in the last day”) required a join between the path ID ta-
ble and the table(s) containing the other metadata; often,
these other tables required full table scans. In contrast,
if IDs were not used and pathnames were included in
the tables containing the other metadata attributes, with
a sort order by pathname, path-based lookups could have
been satisfied by an indexed lookup to the table(s) con-

USENIX Association 12th USENIX Conference on File and Storage Technologies 195

Experiment IDs (sec) No IDs (sec)
File lookup 55.16 +/- 4.23 0.12 +/- 0.14
Directory lookup (small) 509.83 +/- 12.51 0.44 +/- 0.03
Directory lookup (med) 819.42 +/- 105.11 8.28 +/- 0.10

Table 1: ID vs. no-ID execution time (in seconds) for file and directory
lookup queries, for 100M file dataset. Values shown are average +/-
standard deviation for ten trials. The small directory lookup examines
about 148k files; the medium directory lookup examines about 3.84M
files. Directory lookups compute the max file size to eliminate output
processing costs.

taining the other attributes. As shown in Table 11, the
combination of full table scans and joins proved to be
unacceptably inefficient.

The ingestion costs proved to be non-trivial, as well. The
ID-remap stage must look up each incoming value to
determine what global ID to assign, which requires all
prior SCUs to be queryable and thus violates the goal
of delayed processing for efficiency. Because the pre-
ceding individual SCUs may not have been merged into
larger SCUs, remapping may require reading input data
from many files, with the number of I/Os depending on
the distribution of values in the input data. Additionally,
the ID-remap stage proved to be a scalability bottleneck:
since processing is serialized due to the need to look at all
prior SCUs, the stage can only be scaled by partitioning
the namespace. Although parallelizing ID-remap would
help ingest-time scalability, it still would not address the
query-time concerns described above.

Our solution was to eliminate the use of auto-
incrementing IDs and the ID-remap stage entirely. This
approach improved query performance dramatically and
simplified many stages of the pipeline, including the co-
ordinator job scheduling and recovery processing.

3.4 Primary key

Our initial Express Query design used pathname as the
primary key for most tables, to transparently support
backup/restore and remote replication, which preserve
pathnames. This choice worked well for the archival
use cases we initially targeted, where files were almost
never modified after being created, and were not re-
named. However, to support a more general file system
use case, the system needed to provide support for re-
names and hard links. Unfortunately, with pathname as
the primary key, this more general use case required re-
assigning the primary key, a costly operation. As a result,

1The equipment used for all experiments is an HP DL380p Gen8
server (2 x Intel Xeon E5-2697v2 CPUs, 2.70 GHz, 12 cores, 24 hy-
perthreads) with 384GB of DRAM. LazyBase/Express Query data is
stored on an HP D2700 disk array with a P822 RAID controller and 25
146GB 15k RPM SAS drives.

Primary Secondary
sort order (sec) sort order (sec)

Point key 129.08 +/- 4.17 0.05 +/- 0.01
Range (10%) 131.48 +/- 2.94 16.97 +/- 0.17
Range (25%) 136.44 +/- 2.60 39.68 +/- 0.34
Range (50%) 138.52 +/- 4.91 77.60 +/- 0.37
Range (75%) 142.02 +/- 3.67 115.80 +/- 1.00

Table 2: Execution time (in seconds) for point and range queries for
primary sort order (table scan) vs. secondary sort order (index lookup),
for 100M file dataset. Values shown are average +/- standard deviation
for ten trials. The table shows range query results for four different
selectivities (fraction of rows used to calculate result). Range queries
compute a count to eliminate output processing costs.

the next version of our design chose as its primary key a
globally unique file system-internal identifier for all file
system objects. Tables continue to store the file system
object’s pathname and to define a secondary sort order
based on the pathname, to avoid the auto-increment ID
issues described in §3.3.

3.5 Secondary sort orders

As with any data management system, a universal chal-
lenge is how to organize the data to balance between
query cost efficiency and data maintenance efficiency.
In Express Query, this challenge amounts to which sec-
ondary sort orders to maintain, and how many columns
each secondary sort order should contain.

For queries that filter on a secondary sort order’s search
key, the sort order provides efficient indexed lookups.
Table 2 compares query execution time for indexed
lookups vs. full table scans. If the secondary sort order is
populated with a sufficiently large subset of the columns
of the primary sort order, then a single secondary sort
order can satisfy queries that access multiple attributes.
For example, a query to select all pathnames, file sizes
and file owners for files that have been recently modified
could be efficiently satisfied by a secondary sort order
that is sorted according to mtime and also contains the
pathname, size and owner.

Creating and maintaining secondary sort orders during
the update pipeline requires resources, however. The
more secondary sort orders and the more columns per
secondary sort order, the longer ingesting takes, and
hence the freshness of the queryable data suffers. Ta-
ble 3 quantifies the cost of update pipeline processing
for additional fully-populated secondary sort orders.

To reap the potential query-time performance benefits
from secondary sort orders, our initial Express Query
schema maintained a fully-populated secondary sort or-
der for each of the system attributes in the file objects
table. We continue to experiment with reducing the num-

196 12th USENIX Conference on File and Storage Technologies USENIX Association

Primary Primary +
only 15 secondary Slowdown

Durable 1965 sec 6939 sec 3.53X
Queryable 2379 sec 11157 sec 4.69X

Table 3: Update pipeline processing time (in seconds) for ingesting
100M simulated file creations. “Durable” is time until the data is made
durable (i.e., through the ingest pipeline stage). “Queryable” is time
until the data is queryable (i.e., through the complete pipeline, includ-
ing ingest). “Primary only” is a schema with no secondary sort orders
for the file object data. “Primary + 15 secondary” is a schema with 15
fully-populated secondary sort orders, one per system attribute.

ber of secondary sort orders and the fraction of columns
in various secondary sort orders, to improve ingest re-
source utilization and query freshness.

4 New Features

The goals for StoreAll’s metadata database were to sup-
port user-initiated operations, such as assigning custom
metadata tags to files, efficiently performing ad hoc file
searches (e.g., a fast Unix find) and generating file sys-
tem utilization reports. Additionally, the database needed
to support external applications, such as a backup service
tracking recently changed files. Finally, it needed to sup-
port internal file system operations, such as content vali-
dation scans and storage tiering policies. The query API
needed to be flexible in the face of schema changes, and
to facilitate rapid prototyping and experimentation by de-
velopers of the file system services using the database.
The end user-visible interface needed to be intuitive and
simple.

This section describes two APIs – SQL and REST – that
we implemented to improve usability and flexibility for
internal and external users of the database, respectively.
The system continues to support programmatic queries
where flexibility is not required, or performance over-
rides other considerations.

4.1 SQL API

We added a full SQL front end to Express Query, us-
ing the foreign data wrapper (FDW) API from Post-
greSQL [5]. We define FDWs on top of the Express
Query native tables, using the DataSeries (DS) storage
layer and translation logic to access the tables. SQL
queries are parsed, optimized, and partially executed by
PostgreSQL, using foreign table accesses (table scans
and index lookups) at the leaf nodes of the query exe-
cution tree, instead of native PostgreSQL table or index
scans. Our approach uses multiple components: a Trans-
action Manager, a DS FDW, a DS row iterator, and a

shim layer to translate between the FDW and row itera-
tor. These components cooperate to request data from the
Express Query pipeline workers, perform data transla-
tion operations, and implement transactional properties.

The Transaction Manager keeps track of active trans-
actions and which versions of the Express Query ta-
bles they access, to ensure that all table accesses in the
same transaction see a consistent view of the underlying
database (i.e., per-transaction snapshot isolation). This
mapping also informs garbage collection: the Transac-
tion Manager prevents the garbage collector from re-
claiming any versions that are still in use by an active
transaction.

FDW. The FDW interfaces with the rest of PostgreSQL’s
query execution engine. It allows query qualifications
(e.g., conditions in a SQL SELECT WHERE statement)
to be passed to Express Query, to permit filtering of the
rows examined to satisfy the query, rather than requiring
a full table scan. Only qualifications with =, <, <=,
>, >=, or LIKE operators on search keys are passed
through, because they can be used by Express Query’s
index interface.

Translation shim. For each foreign table involved in
a query, this layer communicates with the rest of Ex-
press Query to register the foreign table’s transaction id
with the Transaction Manager and learn which ingest
pipeline worker(s) to contact to retrieve the data. The
shim layer translates PostgreSQL’s generic data types
into Express Query data type-specific values, and pre-
pares the DS search keys from the PostgreSQL qualifica-
tions. It uses these search key(s) to request data from the
Express Query ingest worker(s) for the table.

DS row iterator. This layer applies the appropriate equal-
ity or range search key filters, and returns data from the
Express Query pipeline worker one row at a time.

With this breakdown, the FDW needs no knowledge of
Express Query, and Express Query needs no knowledge
of PostgreSQL.

4.2 REST API

Although Express Query’s SQL read query front end met
the goal of enabling ad hoc queries, it did not isolate end
users from the specifics of the database schema. To pro-
vide a simpler and more flexible interface, we defined
a REST API [6], to permit users to request file and di-
rectory attributes, search for all paths matching a set of
attribute criteria, and define custom attributes.

File-mode REST requests (“queries” in REST parlance)
have three components: the path to be queried, the at-

USENIX Association 12th USENIX Conference on File and Storage Technologies 197

tributes to be returned, and the query expression itself.
In addition, several options specify recursive search, lim-
itations on the number of results returned, and result or-
der. The API supports both system and custom attributes.
System attributes include the attributes stored in the file’s
inode (e.g., size and mode), as well as attributes particu-
lar to StoreAll’s retention-enabled file system (e.g., stor-
age tier, retention state). The API also provides attributes
that summarize the last activity for a file (e.g., content
modifications, custom metadata changes, file creations
and deletions); we added these attributes to help database
clients like backup providers efficiently discover what
files had recent changes, to facilitate their own opera-
tions (e.g., choosing which files to back up). Users can
also specify their own custom attributes, which are asso-
ciated with paths as string key-value pairs.

We automatically translate each REST API query into a
SQL query to retrieve the relevant metadata; results are
presented in JSON.

5 Related work

Spyglass [12] provides an engine customized for file
metadata indexing and querying. It leverages the prop-
erty that files have many common attributes (e.g., owner
and path prefix) to optimize index structures. Exploiting
these properties achieves very high query performance,
but sacrifices flexibility, in that the system does not sup-
port arbitrary user-specified attributes. Instead of con-
stantly updating as the file system changes, Spyglass re-
lies on efficient scans of periodic snapshots, which can
result in highly variable freshness, depending on how of-
ten snapshots are taken. It also prevents the system from
offering auditing capabilities, but enables a valuable fea-
ture in historical metadata search.

A number of systems (e.g., [4, 8, 1, 2, 13]) offer full file
system search capabilities that can include metadata at-
tributes. They typically rely on either some form of in-
verted index (fast for queries, but expensive to update
and rebuild) or rely on a conventional RDBMS, which
severely limits their scalability and performance prop-
erties. (Our early experiments with using both open-
source and commercial RDBMSs for this purpose mo-
tivated the original LazyBase research.) By focusing on
keyword search, these systems are somewhat orthogonal
to our purposes, as they are not customized for metadata-
intensive applications; many do not even index file meta-
data. Many of these systems also do not allow for custom
metadata, rely on inefficient file system scans, or are not
integrated into the kernel, and thus cannot offer auditing.

6 Conclusions

This paper highlights some of our experiences transform-
ing a research prototype of a pipelined database into a
production metadata database in a scale out file system.
We summarize these experiences as follows:

Fallacies in our initial design. Despite our initial intu-
ition, auto-incrementing IDs and ID-remapping provided
unacceptable query and ingest performance slowdowns;
therefore we removed them. We also realized that in
a distributed environment, freshness is a window, not a
single number; this complexity compelled us to disable
freshness queries and report the achieved freshness range
as part of query results.

Usability and flexibility sometimes override perfor-
mance. Although our initial focus was on performance of
the update pipeline and a fast programmatic query API,
we learned that the flexibility to do ad hoc queries and
rapid prototyping merited the inclusion of a SQL query
API. Similarly, the desire to provide a simple interface
that isolated users from schema changes prompted the
development of a REST API.

Issues that we hadn’t considered, motivated by our use
case. LazyBase’s lack of read-modify-write transactions
meant that some data integrity constraints (e.g., custom
attribute suppression for deleted files) needed to be ex-
plicitly enforced. Similarly, our initial choice of path-
name as a primary key, while convenient for our initial
archive use case, proved to be the wrong choice for a
more general file system use case.

Modifications to the environment to ensure LazyBase as-
sumptions hold. For example, we forced batches to con-
tain only updates from a single source to ensure isolation
between sources. Additionally, we forced timestamps on
a particular field to have a total ordering, to ensure that
LazyBase’s out-of-order processing worked correctly.

Need to balance ingest-time and query-time processing.
We observed tensions between ingest processing effi-
ciency and query performance when selecting batch sizes
and choosing which secondary sort orders to include in
the schema. As in most data management systems, such
design decisions must balance these competing demands.

7 Acknowledgments

We thank Jiri Schindler, our shepherd; Steven Hand; and
the anonymous reviewers for constructive comments that
have significantly improved the paper.

198 12th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Apache Solr. http://lucene.apache.org/solr/, Jan. 2014.

[2] Autonomy. http://www.autonomy.com/, Jan. 2014.

[3] HP StoreAll with Express Query. http://www.hp.com/go/

storeall/, Jan. 2014.

[4] Introduction to Spotlight. https://developer.apple.

com/library/mac/documentation/Carbon/Conceptual/

MetadataIntro/MetadataIntro.html, Jan. 2014.

[5] PostgreSQL. http://www.postgresql.org/, Jan. 2014.

[6] Representational state transfer. http://en.wikipedia.org/

wiki/Representational_state_transfer, Jan. 2014.

[7] Surrogate key. http://en.wikipedia.org/wiki/

Surrogate_key, Jan. 2014.

[8] Windows search. http://windows.microsoft.com/en-us/
windows7/products/features/windows-search, Jan.
2014.

[9] ANDERSON, E., ARLITT, M., MORREY III, C. B., AND
VEITCH, A. DataSeries: An efficient, flexible data format for
structured serial data. ACM SIGOPS Operating Systems Review
43, 1 (January 2009), 70–75.

[10] CIPAR, J., GANGER, G., KEETON, K., MORREY III, C. B.,
SOULES, C. A. N., AND VEITCH, A. LazyBase: Trading fresh-
ness for performance in a scalable database. In Proc. of European
Systems Conference (EuroSys) (April 2012), pp. 169–182.

[11] GANTZ, J., AND REINSEL, D. Extracting value from chaos. IDC
report (June 2011).

[12] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: Fast, scalable metatdata search for
large-cale storage systems. In Proc. 7th USENIX Conf. on File
and Storage Technologies FAST (2009), pp. 153–166.

[13] MANBER, U., AND WU, S. Glimpse: A tool to search through
entire file systems. In Proc. of the Winter 1994 USENIX Confer-
ence (San Francisco, CA, 1994), pp. 23–32.

USENIX Association 12th USENIX Conference on File and Storage Technologies 199

Analysis of HDFS Under HBase: A Facebook Messages Case Study

Tyler Harter, Dhruba Borthakur†, Siying Dong†, Amitanand Aiyer†,
Liyin Tang†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison † Facebook Inc.

Abstract

We present a multilayer study of the Facebook Mes-

sages stack, which is based on HBase and HDFS. We

collect and analyze HDFS traces to identify potential im-

provements, which we then evaluate via simulation. Mes-

sages represents a new HDFS workload: whereas HDFS

was built to store very large files and receive mostly-

sequential I/O, 90% of files are smaller than 15MB and

I/O is highly random. We find hot data is too large to

easily fit in RAM and cold data is too large to easily fit

in flash; however, cost simulations show that adding a

small flash tier improves performance more than equiv-

alent spending on RAM or disks. HBase’s layered de-

sign offers simplicity, but at the cost of performance; our

simulations show that network I/O can be halved if com-

paction bypasses the replication layer. Finally, although

Messages is read-dominated, several features of the stack

(i.e., logging, compaction, replication, and caching) am-

plify write I/O, causing writes to dominate disk I/O.

1 Introduction

Large-scale distributed storage systems are exceedingly

complex and time consuming to design, implement, and

operate. As a result, rather than cutting new systems

from whole cloth, engineers often opt for layered ar-

chitectures, building new systems upon already-existing

ones to ease the burden of development and deployment.

Layering, as is well known, has many advantages [23].

For example, construction of the Frangipani distributed

file system [27] was greatly simplified by implementing

it atop Petal [19], a distributed and replicated block-level

storage system. Because Petal provides scalable, fault-

tolerant virtual disks, Frangipani could focus solely on

file-system level issues (e.g., locking); the result of this

two-layer structure, according to the authors, was that

Frangipani was “relatively easy to build” [27].

Unfortunately, layering can also lead to problems, usu-

ally in the form of decreased performance, lowered reli-

ability, or other related issues. For example, Denehy et

al. show how naı̈ve layering of journaling file systems

atop software RAIDs can lead to data loss or corrup-

tion [5]. Similarly, others have argued about the general

inefficiency of the file system atop block devices [10].

In this paper, we focus on one specific, and increas-

ingly common, layered storage architecture: a distributed

database (HBase, derived from BigTable [3]) atop a dis-

tributed file system (HDFS [24], derived from the Google

File System [11]). Our goal is to study the interaction of

these important systems, with a particular focus on the

lower layer; thus, our highest-level question: is HDFS

an effective storage backend for HBase?

To derive insight into this hierarchical system, and

thus answer this question, we trace and analyze it under a

popular workload: Facebook Messages (FM) [20]. FM is

a messaging system that enables Facebook users to send

chat and email-like messages to one another; it is quite

popular, handling millions of messages each day. FM

stores its information within HBase (and thus, HDFS),

and hence serves as an excellent case study.

To perform our analysis, we first collect detailed

HDFS-level traces over an eight-day period on a subset

of machines within a specially-configured shadow clus-

ter. FM traffic is mirrored to this shadow cluster for the

purpose of testing system changes; here, we utilize the

shadow to collect detailed HDFS traces. We then ana-

lyze said traces, comparing results to previous studies of

HDFS under more traditional workloads [14, 16].

To complement to our analysis, we also perform nu-

merous simulations of various caching, logging, and

other architectural enhancements and modifications.

Through simulation, we can explore a range of “what if?”

scenarios, and thus gain deeper insight into the efficacy

of the layered storage system.

Overall, we derive numerous insights, some expected

and some surprising, from our combined analysis and

simulation study. From our analysis, we find writes rep-

resent 21% of I/O to HDFS files; however, further in-

vestigation reveals the vast majority of writes are HBase

overheads from logging and compaction. Aside from

these overheads, FM writes are scarce, representing only

1% of the “true” HDFS I/O. Diving deeper in the stack,

simulations show writes become amplified. Beneath

HDFS replication (which triples writes) and OS caching

(which absorbs reads), 64% of the final disk load is write

I/O. This write blowup (from 1% to 64%) emphasizes the

importance of optimizing writes in layered systems, even

for especially read-heavy workloads like FM.

From our simulations, we further extract the follow-

ing conclusions. We find that caching at the DataNodes

1

200 12th USENIX Conference on File and Storage Technologies USENIX Association

is still (surprisingly) of great utility; even at the last layer

of the storage stack, a reasonable amount of memory per

node (e.g., 30GB) significantly reduces read load. We

also find that a “no-write allocate” policy generally per-

forms best, and that higher-level hints regarding writes

only provide modest gains. Further analysis shows the

utility of server-side flash caches (in addition to RAM),

e.g., adding a 60GB SSD can reduce latency by 3.5x.

Finally, we evaluate the effectiveness of more sub-

stantial HDFS architectural changes, aimed at improv-

ing write handling: local compaction and combined

logging. Local compaction performs compaction work

within each replicated server instead of reading and writ-

ing data across the network; the result is a 2.7x reduc-

tion in network I/O. Combined logging consolidates logs

from multiple HBase RegionServers into a single stream,

thus reducing log-write latencies by 6x.

The rest of this paper is organized as follows. First,

a background section describes HBase and the Messages

storage architecture (§2). Then we describe our method-

ology for tracing, analysis, and simulation (§3). We

present our analysis results (§4), make a case for adding

a flash tier (§5), and measure layering costs (§6). Finally,

we discuss related work (§7) and conclude (§8).

2 Background

We now describe the HBase sparse-table abstraction

(§2.1) and the overall FM storage architecture (§2.2).

2.1 Versioned Sparse Tables

HBase, like BigTable [3], provides a versioned sparse-

table interface, which is much like an associative array,

but with two major differences: (1) keys are ordered,

so lexicographically adjacent keys will be stored in the

same area of physical storage, and (2) keys have seman-

tic meaning which influences how HBase treats the data.

Keys are of the form row:column:version. A row may

be any byte string, while a column is of the form fam-

ily:name. While both column families and names may be

arbitrary strings, families are typically defined statically

by a schema while new column names are often created

during runtime. Together, a row and column specify a

cell, for which there may be many versions.

A sparse table is sharded along both row and col-

umn dimensions. Rows are grouped into regions, which

are responsible for all the rows within a given row-key

range. Data is sharded across different machines with re-

gion granularity. Regions may be split and re-assigned

to machines with a utility or automatically upon reboots.

Columns are grouped into families so that the applica-

tion may specify different policies for each group (e.g.,

what compression to use). Families also provide a local-

ity hint: HBase clusters together data of the same family.

2.2 Messages Architecture

Users of FM interact with a web layer, which is backed

by an application cluster, which in turn stores data in a

separate HBase cluster. The application cluster executes

FM-specific logic and caches HBase rows while HBase

itself is responsible for persisting most data. Large ob-

jects (e.g., message attachments) are an exception; these

are stored in Haystack [25] because HBase is inefficient

for large data (§4.1). This design applies Lampson’s ad-

vice to “handle normal and worst case separately” [18].

HBase stores its data in HDFS [24], a distributed file

system which resembles GFS [11]. HDFS triply repli-

cates data in order to provide availability and tolerate

failures. These properties free HBase to focus on higher-

level database logic. Because HBase stores all its data in

HDFS, the same machines are typically used to run both

HBase and HDFS servers, thus improving locality. These

clusters have three main types of machines: an HBase

master, an HDFS NameNode, and many worker ma-

chines. Each worker runs two servers: an HBase Region-

Server and an HDFS DataNode. HBase clients use the

HBase master to map row keys to the one RegionServer

responsible for that key. Similarly, an HDFS NameNode

helps HDFS clients map a pathname and block number

to the three DataNodes with replicas of that block.

3 Methodology

We now discuss trace collection and analysis (§3.1), sim-

ulation (§3.2), validity (§3.3), and confidentiality (§3.4).

3.1 Trace Collection and Analysis

Prior Hadoop trace studies [4, 16] typically analyze de-

fault MapReduce or HDFS logs, which record coarse-

grained file events (e.g., creates and opens), but lack de-

tails about individual requests (e.g., offsets and sizes).

For our study, we build a new trace framework, HTFS

(Hadoop Trace File System) to collect these details.

Some data, though (e.g., the contents of a write), is not

recorded; this makes traces smaller and (more impor-

tantly) protects user privacy.

HTFS extends the HDFS client library, which supports

the arbitrary composition of layers to obtain a desired

feature set (e.g., a checksumming layer may be used).

FM deployments typically have two layers: one for nor-

mal NameNode and DataNode interactions, and one for

fast failover [6]. HDFS clients (e.g., RegionServers) can

record I/O by composing HTFS with other layers. HTFS

can trace over 40 HDFS calls and is publicly available

with the Facebook branch of Hadoop.1

1https://github.com/facebook/hadoop-20/

blob/master/src/hdfs/org/apache/hadoop/hdfs/

APITraceFileSystem.java

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 201

what-ifs

HDFS
traces

HBase

HDFS

Local store

HBase+HDFS

Actual stack

local traces
(inferred)

what-ifs

Model

Model
Local storeMR Analysis Pipeline

analysis results simulation results

Figure 1: Tracing, analysis, and simulation.

We collect our traces on a specially configured shadow

cluster that receives the same requests as a production

FM cluster. Facebook often uses shadow clusters to test

new code before broad deployment. By tracing in an

HBase/HDFS shadow cluster, we were able to study the

real workload without imposing overheads on real users.

For our study, we randomly selected nine worker ma-

chines, configuring each to use HTFS.

We collected traces for 8.3 days, starting June 7, 2013.

We collected 116GB of gzip-compressed traces, repre-

senting 5.2 billion recorded events and 71TB of HDFS

I/O. The machines each had 32 Xeon(R) CPU cores and

48GB of RAM, 16.4GB of which was allocated for the

HBase cache (most memory is left to the file-system

cache, as attempts to use larger caches in HBase cause

JVM garbage-collection stalls). The HDFS workload is

the product of a 60/34/6 get/put/delete ratio for HBase.

As Figure 1 shows, the traces enable both analysis and

simulation. We analyzed our traces with a pipeline of 10

MapReduce jobs, each of which transforms the traces,

builds an index, shards events, or outputs statistics. Com-

plex dependencies between events require careful shard-

ing for correctness. For instance, a stream-open event

and a stream-write event must be in the same compute

shard in order to correlate I/O with file type. Further-

more, sharding must address the fact that different paths

may refer to the same data (due to renames).

3.2 Modeling and Simulation

We evaluate changes to the storage stack via simulation.

Our simulations are based on two models (illustrated in

Figure 1): a model which determines how the HDFS I/O

translates to local I/O and a model of local storage.

How HDFS I/O translates to local I/O depends on sev-

eral factors, such as prior state, replication policy, and

configurations. Making all these factors match the actual

deployment would be difficult, and modeling what hap-

pens to be the current configuration is not particularly

interesting. Thus, we opt for a model which is easy to

understand and plausible (i.e., it reflects a hypothetical

policy and state which could reasonably occur).

Our model assumes the HDFS files in our traces are

replicated by nine DataNodes which co-reside with the

nine RegionServers we traced. The data for each Re-

gionServer is replicated to one co-resident and two re-

mote DataNodes. HDFS file blocks are 256MB in size;

thus, when a RegionServer writes a 1GB HDFS file, our

model translates that to the creation of twelve 256MB lo-

cal files (four per replica). Furthermore, 2GB of network

reads are counted for the remote replicas. This simplified

model of replication could lead to errors for load bal-

ancing studies, but we believe little generality is lost for

caching simulations and our other experiments. In pro-

duction, all the replicas of a RegionServer’s data may be

remote (due to region re-assignment), causing additional

network I/O; however, long-running FM-HBase clusters

tend to converge over time to the pattern we simulate.

The HDFS+HBase model’s output is the input for our

local-store simulator. Each local store is assumed to have

an HDFS DataNode, a set of disks (each with its own

file system and disk scheduler), a RAM cache, and pos-

sibly an SSD. When the simulator processes a request, a

balancer module representing the DataNode logic directs

the request to the appropriate disk. The file system for

that disk checks the RAM and flash caches; upon a miss,

the request is passed to a disk scheduler for re-ordering.

The scheduler switches between files using a round-

robin policy (1MB slice). The C-SCAN policy [1] is

then used to choose between multiple requests to the

same file. The scheduler dispatches requests to a disk

module which determines latency. Requests to differ-

ent files are assumed to be distant, and so require a

10ms seek. Requests to adjacent offsets of the same

file, however, are assumed to be adjacent on disk, so

blocks are transferred at 100MB/s. Finally, we as-

sume some locality between requests to non-adjacent

offsets in the same file; for these, the seek time is

min{10ms, distance/(100MB/s)}.

3.3 Simulation Validity

We now address three validity questions: does ignoring

network latency skew our results? Did we run our simu-

lations long enough? Are simulation results from a single

representative machine meaningful?

First, we explore our assumption about constant net-

work latency by adding random jitter to the timing of

requests and observing how important statistics change.

Table 1 shows how much error results by changing re-

quest issue times by a uniform-random amount. Errors

are very small for 1ms jitter (at most 1.3% error). Even

with a 10ms jitter, the worst error is 6.6%. Second, in

order to verify that we ran the simulations long enough,

we measure how the statistics would have been different

if we had finished our simulations 2 or 4 days earlier (in-

3

202 12th USENIX Conference on File and Storage Technologies USENIX Association

statistic baseline 1 5 10 -2 -4 median
FS reads MB/min
FS writes MB/min
RAM reads MB/min
RAM writes MB/min
Disk reads MB/min
Disk writes MB/min
Net reads MB/min
Disk reqs/min
 (user-read)
 (log)
 (flush)
 (compact)
Disk queue ms
 (user-read)
 (log)
 (flush)
 (compact)
Disk exec ms
 (user-read)
 (log)
 (flush)
 (compact)

576
447
287
345
345
616
305

275.1K
65.8K

104.1K
4.5K

100.6K
6.17
12.3
2.47
5.33
6.0

0.39
0.84
0.26
0.15
0.24

0.0
0.0
-0.0
0.0
-0.0
-0.0
0.0
0.0
0.0
0.0
0.0
-0.0
-0.4
0.1
-1.3
0.3
-0.6
0.1
-0.1
0.4
-0.3
-0.0

0.0
0.0
0.0
-0.0
0.0
1.3
0.0
0.0
-0.0
0.0
0.0
-0.0
-0.5
-0.8
-1.1
0.0
0.0
1.0
-0.5
3.3
0.7
2.1

0.0
0.0
0.0
-0.0
0.0
1.9
0.0
0.0
-0.0
0.0
0.0
-0.0
-0.0
-1.8
0.6
-0.3
2.0
2.5
-0.7
6.6
3.2
5.2

-3.4
-7.7
-2.6
-3.9
-3.9
-5.3
-8.7
-4.6
-2.9
1.6
1.2

-12.2
-3.2
-0.2
-4.9
-2.8
-3.5
1.0
-0.0
-2.1
-1.1
4.0

-0.6
-11.5
-2.4
1.1
1.1
-8.3
-18.4
-4.7
-0.8
1.3
0.4

-13.6
0.6
2.7
-6.4
-2.6
2.5
2.0
-0.1
-1.7
-0.9
4.8

-4.2
-0.1
-6.2
-2.4
-2.4
-0.1
-2.8
-0.1
-4.3
-1.0
-1.3
-0.1
-1.8
1.7
-6.0
-1.0
-6.4
-1.4
-1.2
0.0
-0.8
-0.3

jitter ms finish day sample

Table 1: Statistic Sensitivity. The first column group

shows important statistics and their values for a representative

machine. Other columns show how these values would change

(as percentages) if measurements were done differently. Low

percentages indicate a statistic is robust.

stead of using the full 8.3 days of traces). The differences

are worse than for jitter, but are still usually small, and

are at worst 18.4% for network I/O.

Finally, we evaluate whether it is reasonable to pick a

single representative instead of running our experiments

for all nine machines in our sample. Running all our ex-

periments for a single machine alone takes about 3 days

on a 24-core machine with 72GB of RAM, so basing our

results on a representative is desirable. The final column

of Table 1 compares the difference between statistics for

our representative machine and the median of statistics

for all nine machines. Differences are quite small and

are never greater than 6.4%, so we use the representa-

tive for the remainder of our simulations (trace-analysis

results, however, will be based on all nine machines).

3.4 Confidentiality

In order to protect user privacy, our traces only contain

the sizes of data (e.g., request and file sizes), but never

actual data contents. Our tracing code was carefully re-

viewed by Facebook employees to ensure compliance

with Facebook privacy commitments. We also avoid pre-

senting commercially-sensitive statistics, such as would

allow estimation of the number of users of the service.

While we do an in-depth analysis of the I/O patterns on

a sample of machines, we do not disclose how large the

sample is as a fraction of all the FM clusters. Much of

the architecture we describe is open source.

HDFS (-overheads)
47TB, R/W: 99/1

HDFS
71TB, R/W: 79/21compact LO

G

Local FS
101TB, R/W: 55/45R1 (replica 1) R1 R2 R3

Disk
97TB, R/W: 36/64

cache
misses

Reads Writes

M
ea

su
re

d
Si

m
ul

at
ed

Figure 2: I/O across layers. Black sections represent

reads and gray sections represent writes. The top two bars in-

dicate HDFS I/O as measured directly in the traces. The bottom

two bars indicate local I/O at the file-system and disk layers as

inferred via simulation.

4 Workload Behavior

We now characterize the FM workload with four ques-

tions: what are the major causes of I/O at each layer of

the stack (§4.1)? How much I/O and space is required by

different types of data (§4.2)? How large are files, and

does file size predict file lifetime (§4.3)? And do requests

exhibit patterns such as locality or sequentiality (§4.4)?

4.1 Multilayer Overview

We begin by considering the number of reads and writes

at each layer of the stack in Figure 2. At a high level,

FM issues put() and get() requests to HBase. The

put data accumulates in buffers, which are occasion-

ally flushed to HFiles (HDFS files containing sorted key-

value pairs and indexing metadata). Thus, get requests

consult the write buffers as well as the appropriate HFiles

in order to retrieve the most up-to-date value for a given

key. This core I/O (put-flushes and get-reads) is shown

in the first bar of Figure 2; the 47TB of I/O is 99% reads.

In addition to the core I/O, HBase also does log-

ging (for durability) and compaction (to maintain a read-

efficient layout) as shown in the second bar. Writes

account for most of these overheads, so the R/W

(read/write) ratio decreases to 79/21. Flush data is com-

pressed but log data is not, so logging causes 10x more

writes even though the same data is both logged and

flushed. Preliminary experiments with log compression

[26] have reduced this ratio to 4x. Flushes, which can

be compressed in large chunks, have an advantage over

logs, which must be written as puts arrive. Compaction

causes about 17x more writes than flushing does, indi-

cating that a typical piece of data is relocated 17 times.

FM stores very large objects (e.g., image attachments)

in Haystack [17] for this reason. FM is a very read-

heavy HBase workload within Facebook, so it is tuned to

compact aggressively. Compaction makes reads faster by

merge-sorting many small HFiles into fewer big HFiles,

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 203

Read only
Read+written
Written only
Untouched

HDFS (-overheads)
3.9TB footprint

Read only
Read+written
Written only
UntouchedHDFS

16.3TB footprintLO
G

C
O

M
P

Read only
Read+written
Written only
Untouched

Local FS/Disk
120TB footprintR1 R2 R3 cold data

M
ea

su
re

d
Si

m
+d

f

Figure 3: Data across layers. This is the same as Figure 2

but for data instead of I/O. COMP is compaction.

thus reducing the number of files a get must check.

FM tolerates failures by replicating data with HDFS.

Thus, writing an HDFS block involves writing three local

files and two network transfers. The third bar of Figure 2

shows how this tripling further reduces the R/W ratio to

55/45. Furthermore, OS caching prevents some of these

file-system reads from hitting disk. With a 30GB cache,

the 56TB of reads at the file-system level cause only

35TB of reads at the disk level, as shown in the fourth

bar. Also, very small file-system writes cause 4KB-block

disk writes, so writes are increased at the disk level. Be-

cause of these factors, writes represent 64% of disk I/O.

Figure 3 gives a similar layered overview, but for data

rather than I/O. The first bar shows 3.9TB of HDFS data

received some core I/O during tracing (data deleted dur-

ing tracing is not counted). Nearly all this data was read

and a small portion written. The second bar also includes

data which was accessed only by non-core I/O; non-core

data is several times bigger than core data. The third

bar shows how much data is touched at the local level

during tracing. This bar also shows untouched data; we

estimate2 this by subtracting the amount of data we infer

was touched due to HDFS I/O from the disk utilization

(measured with df). Most of the 120TB of data is very

cold; only a third is accessed over the 8-day period.

Conclusion: FM is very read-heavy, but logging,

compaction, replication, and caching amplify write I/O,

causing writes to dominate disk I/O. We also observe that

while the HDFS dataset accessed by core I/O is relatively

small, on disk the dataset is very large (120TB) and very

cold (two thirds is never touched). Thus, architectures to

support this workload should consider its hot/cold nature.

4.2 Data Types

We now study the types of data FM stores. Each user’s

data is stored in a single HBase row; this prevents the

data from being split across different RegionServers.

New data for a user is added in new columns within the

row. Related columns are grouped into families, which

are defined by the FM schema (summarized in Table 2).

2the RegionServers in our sample store some data on DataNodes

outside our sample (and vice versa), so this is a sample-based estimate

rather than a direct correlation of HDFS data to disk data

Family Description

Actions Log of user actions and message contents
MessageMeta Metadata per message (e.g., isRead and subject)

ThreadMeta Metadata per thread (e.g.list of participants)

PrefetchMeta Privacy settings, contacts, mailbox summary, etc.

Keywords Word-to-message map for search and typeahead

ThreaderThread Thread-to-message mapping

ThreadingIdIdx Map between different types of message IDs

ActionLogIdIdx Also a message-ID map (like ThreadingIdIdx)

Table 2: Schema. HBase column families are described.

The Actions family is a log built on top of HBase,

with different log records stored in different columns;

addMsg records contain actual message data while other

records (e.g., markAsRead) record changes to metadata

state. Getting the latest state requires reading a number

of recent records in the log. To cap this number, a meta-

data snapshot (a few hundred bytes) is sometimes writ-

ten to the MessageMeta family. Because Facebook chat

is built over messages, metadata objects are large relative

to many messages (e.g., “hey, whasup?”). Thus, writing a

change to Actions is generally much cheaper than writing

a full metadata object to MessageMeta. Other metadata

is stored in ThreadMeta and PrefetchMeta while Key-

words is a keyword-search index and ThreaderThread,

ThreadingIdIdx, and ActionLogIdIdx are other indexes.

Figure 4a shows how much data of each type is

accessed at least once during tracing (including later-

deleted data); a total (sum of bars) of 26.5TB is ac-

cessed. While actual messages (i.e., Actions) take sig-

nificant space, helper data (e.g., metadata, indexes, and

logs) takes much more. We also see that little data is

both read and written, suggesting that writes should be

cached selectively (if at all). Figure 4b reports the I/O

done for each type. We observe that some families re-

ceive much more I/O per data, e.g., an average data byte

of PrefetchMeta receives 15 bytes of I/O whereas a byte

of Keywords receives only 1.1.

Conclusion: FM uses significant space to store mes-

sages and does a significant amount of I/O on these mes-

sages; however, both space and I/O are dominated by

helper data (i.e., metadata, indexes, and logs). Relatively

little data is both written and read during tracing; this

suggests caching writes is of little value.

4.3 File Size

GFS (the inspiration for HDFS) assumed that “multi-GB

files are the common case, and should be handled effi-

ciently” [11]. Other workload studies confirm this, e.g.,

MapReduce inputs were found to be about 23GB at the

90th percentile (Facebook in 2010) [4]. We now revisit

the assumption that HDFS files are large.

Figure 5 shows, for each file type, a distribution of

file sizes (about 862 thousand files appear in our traces).

Most files are small; for each family, 90% are smaller

5

204 12th USENIX Conference on File and Storage Technologies USENIX Association

0 1 2 3 4 5 6

Actions
MessageMeta

ThreadMeta
PrefetchMeta

Keywords
ThreaderThread
ThreadingIdIdx
ActionLogIdIdx

logs
other

(a) File dataset footprint (TB)

read written

0 5 10 15 20

Actions
MessageMeta

ThreadMeta
PrefetchMeta

Keywords
ThreaderThread
ThreadingIdIdx
ActionLogIdIdx

logs
other

(b) File I/O (TB)

2.2x
3.6x

7.7x
15x

1.1x
4.9x
6.5x

1.2x
1x

1.8x reads writes

Figure 4: File types. Left: all accessed HDFS file data is broken down by type. Bars further show whether data was read,

written, or both. Right: I/O is broken down by file type and read/write. Bar labels indicate the I/O-to-data ratio.

0 3 6 9 12 15

MessageMeta 293
Actions 314

ThreaderThread 62
ThreadingIdIdx 70

PrefetchMeta 5
Keywords 219

ThreadMeta 10
ActionLogIdIdx 49

Type Avg

Size (MB)

Figure 5: File-size distribution. This shows a box-and-

whiskers plot of file sizes. The whiskers indicate the 10th and

90th percentiles. On the left, the type of file and average size is

indicated. Log files are not shown, but have an average size of

218MB with extremely little variance.

than 15MB. However, a handful are so large as to skew

averages upwards significantly, e.g., the average Mes-

sageMeta file is 293MB.

Although most files are very small, compaction should

quickly replace these small files with a few large, long-

lived files. We divide files created during tracing into

small (0 to 16MB), medium (16 to 64MB), and large

(64MB+) categories. 94% of files are small, 2% are

medium, and 4% are large; however, large files contain

89% of the data. Figure 6 shows the distribution of file

lifetimes for each category. 17% of small files are deleted

within less than a minute, and very few last more than a

few hours; about half of medium files, however, last more

than 8 hours. Only 14% of the large files created during

tracing were also deleted during tracing.

Conclusion: Traditional HDFS workloads operate on

very large files. While most FM data lives in large, long-

lived files, most files are small and short-lived. This has

metadata-management implications; HDFS manages all

file metadata with a single NameNode because the data-

to-metadata ratio is assumed to be high. For FM, this

assumption does not hold; perhaps distributing HDFS

metadata management should be reconsidered.

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

0

25

50

75

100

Minutes

Pe
rc

en
t

0 to 16MB
16 to 64MB
64MB+

Figure 6: Size/life correlation. Each line is a CDF of

lifetime for created files of a particular size. Not all lines reach

100% as some files are not deleted during tracing.

4.4 I/O Patterns

We explore three relationships between different read re-

quests: temporal locality, spatial locality, and sequential-

ity. We use a new type of plot, a locality map, that de-

scribes all three relationships at once. Figure 7 shows

a locality map for FM reads. The data shows how of-

ten a read was recently preceded by a nearby read, for

various thresholds on “recent” and “nearby”. Each line

is a hit-ratio curve, with the x-axis indicating how long

items are cached. Different lines represent different lev-

els of prefetching, e.g., the 0-line represents no prefetch-

ing, whereas the 1MB-line means data 1MB before and

1MB after a read is prefetched.

Line shape describes temporal locality, e.g., the 0-line

gives a distribution of time intervals between different

reads to the same data. Reads are almost never preceded

by a prior read to the same data in the past four minutes;

however, 26% of reads are preceded within the last 32

minutes. Thus, there is significant temporal locality (i.e.,

reads are near each other with respect to time), and ad-

ditional caching should be beneficial. The locality map

also shows there is little sequentiality. A highly sequen-

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 205

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K

0

25

50

75

100

Minutes

Pe
rc

en
t

1MB 64KB 1KB 0

Figure 7: Reads: locality map. This plot shows how of-

ten a read was recently preceded by a nearby read, with time-

distance represented along the x-axis and offset-distance rep-

resented by the four lines.

tial pattern would show that many reads were recently

preceded by I/O to nearby offsets; here, however, the

1KB-line shows only 25% of reads were preceded by I/O

to very nearby offsets within the last minute. Thus, over

75% of reads are random. The distances between the

lines of the locality map describe spatial locality. The

1KB-line and 64KB-line are very near each other, indi-

cating that (except for sequential I/O) reads are rarely

preceded by other reads to nearby offsets. This indicates

very low spatial locality (i.e., reads are far from each

other with respect to offset), and additional prefetching

is unlikely to be helpful.

To summarize the locality map, the main pattern reads

exhibit is temporal locality (there is little sequentiality or

spatial locality). High temporal locality implies a sig-

nificant portion of reads are “repeats” to the same data.

We explore this repeated-access pattern further in Fig-

ure 8a. The bytes of HDFS file data that are read during

tracing are distributed along the x-axis by the number of

reads. The figure shows that most data (73.7%) is read

only once, but 1.1% of the data is read at least 64 times.

Thus, repeated reads are not spread evenly, but are con-

centrated on a small subset of the data.

Figure 8b shows how many bytes are read for each of

the categories of Figure 8a. While 19% of the reads are

to bytes which are only read once, most I/O is to data

which is accessed many times. Such bias at this level is

surprising considering that all HDFS I/O has missed two

higher-level caches (an application cache and the HBase

cache). Caches are known to lessen I/O to particularly

hot data, e.g., a multilayer photo-caching study found

caches cause “distributions [to] flatten in a significant

way” [15]. The fact that bias remains despite caching

suggests the working set may be too large to fit in a small

cache; a later section (§5.1) shows this to be the case.

Conclusion: At the HDFS level, FM exhibits rel-

atively little sequentiality, suggesting high-bandwidth,

a) Footprint heat b) I/O heat

1 2 4 8 16 32 64 12
8

25
6

51
2 1K

0
2
4
6
8

10
12

Read accesses

da
ta

 (T
Bs

)

1 2 4 8 16 32 64 12
8

25
6

51
2 1K

0
2
4
6
8

10
12

Read accesses

I/O
 (T

Bs
)

Figure 8: Read heat. In both plots, bars show a distri-

bution across different levels of read heat (i.e., the number of

times a byte is read). The left shows a distribution of the dataset

(so the bars sum to the dataset size, included deleted data), and

the right shows a distribution of I/O to different parts of the

dataset (so the bars sum to the total read I/O).

high-latency storage mediums (e.g., disk) are not ideal

for serving reads. The workload also shows very little

spatial locality, suggesting additional prefetching would

not help, possibly because FM already chooses for itself

what data to prefetch. However, despite application-level

and HBase-level caching, some of the HDFS data is par-

ticularly hot; thus, additional caching could help.

5 Tiered Storage: Adding Flash

We now make a case for adding a flash tier to local ma-

chines. FM has a very large, mostly cold dataset (§4.1);

keeping all this data in flash would be wasteful, costing

upwards of $10K/machine3. We evaluate the two alterna-

tives: use some flash or no flash. We consider four ques-

tions: how much can we improve performance without

flash, by spending more on RAM or disks (§5.1)? What

policies utilize a tiered RAM/flash cache best (§5.2)? Is

flash better used as a cache to absorb reads or as a buffer

to absorb writes (§5.3)? And ultimately, is the cost of a

flash tier justifiable (§5.4)?

5.1 Performance without Flash

Can buying faster disks or more disks significantly im-

prove FM performance? Figure 9 presents average disk

latency as a function of various disk factors. The first

plot shows that for more than 15 disks, adding more disks

has quickly diminishing returns. The second shows that

higher-bandwidth disks also have relatively little advan-

tage, as anticipated by the highly-random workload ob-

served earlier (§4.4). However, the third plot shows that

latency is a major performance factor.

The fact that lower latency helps more than having ad-

ditional disks suggests the workload has relatively little

parallelism, i.e., being able to do a few things quickly is

better than being able to do many things at once. Un-

3at $0.80/GB, storing 13.3TB (120TB split over 9 machines) in

flash would cost $10,895/machine.

7

206 12th USENIX Conference on File and Storage Technologies USENIX Association

0

3

6

9

12

10 15 20 25
0

3

6

9

12

60 80 10
0

12
0

15
0

20
0

25
0 0

3

6

9

12

2 4 6 8 10 12 14

D
is

k
la

te
nc

y
(m

s)

Disks Bandwidth (MB/s) Seek (ms)

Figure 9: Disk performance. The figure shows the rela-

tionship between disk characteristics and the average latency

of disk requests. As a default, we use 15 disks with 100MB/s

bandwidth and 10ms seek time. Each of the plots varies one of

the characteristics, keeping the other two fixed.

0 100 200 300 400
0

20

40

60

80

H
it

ra
te

Cache size (GB)

write hints
no-write allocate
write allocate

Figure 10: Cache hit rate. The relationship between

cache size and hit rate is shown for three policies.

fortunately, the 2-6ms disks we simulate are unrealisti-

cally fast, having no commercial equivalent. Thus, al-

though significant disk capacity is needed to store the

large, mostly cold data, reads are better served by a low-

latency medium (e.g., RAM or flash).

Thus, we ask, can the hot data fit comfortably in a

pure-RAM cache? We measure hit rate for cache sizes in

the 10-400GB range. We also try three different LRU

policies: write allocate, no-write allocate, and write

hints. All three are write-through caches, but differ re-

garding whether written data is cached. Write allocate

adds all write data, no-write allocate adds no write data,

and the hint-based policy takes suggestions from HBase

and HDFS. In particular, a written file is only cached if

(a) the local file is a primary replica of the HDFS block,

and (b) the file is either flush output (as opposed to com-

paction output) or is likely to be compacted soon.

Figure 10 shows, for each policy, that the hit rate in-

creases significantly as the cache size increases up until

about 200GB, where it starts to level off (but not flat-

ten); this indicates the working set is very large. Earlier

(§4.2), we found little overlap between writes and reads

and concluded that written data should be cached selec-

tively if at all. Figure 10 confirms: caching all writes

is the worst policy. Up until about 100GB, “no-write

allocate” and “write hints” perform about equally well.

Beyond 100GB, hints help, but only slightly. We use

no-write allocate throughout the remainder of the paper

because it is simple and provides decent performance.

H
it

ra
te

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

10GB of RAM

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

30GB of RAM

0 60 12
0

24
0

0

20

40

60

80

Flash (GB)

100GB of RAM

any (promote)
ram (promote)

any (keep)
ram (keep)

Figure 11: Tiered hit rates. Overall hit rate (any) is

shown by the solid lines for the promote and keep policies. The

results are shown for varying amounts of RAM (different plots)

and varying amounts of flash (x-axis). RAM hit rates are indi-

cated by the dashed lines.

Conclusion: The FM workload exhibits relatively lit-

tle sequentiality or parallelism, so adding more disks or

higher-bandwidth disks is of limited utility. Fortunately,

the same data is often repeatedly read (§4.4), so a very

large cache (i.e., a few hundred GBs in size) can ser-

vice nearly 80% of the reads. The usefulness of a very

large cache suggests that storing at least some of the hot

data in flash may be most cost effective. We evaluate the

cost/performance tradeoff between pure-RAM and hy-

brid caches in a later section (§5.4).

5.2 Flash as Cache

In this section, we use flash as a second caching tier be-

neath RAM. Both tiers independently are LRU. Initial

inserts are to RAM, and RAM evictions are inserted into

flash. We evaluate exclusive cache policies. Thus, upon

a flash hit, we have two options: the promote policy (PP)

repromotes the item to the RAM cache, but the keep pol-

icy (KP) keeps the item at the flash level. PP gives the

combined cache LRU behavior. The idea behind KP is

to limit SSD wear by avoiding repeated promotions and

evictions of items between RAM and flash.

Figure 11 shows the hit rates for twelve flash/RAM

mixes. For example, the middle plot shows what the hit

rate is when there is 30GB of RAM: without any flash,

45% of reads hit the cache, but with 60GB of flash, about

63% of reads hit in either RAM or flash (regardless of

policy). The plots show that across all amounts of RAM

and flash, the number of reads that hit in “any” cache

differs very little between policies. However, PP causes

significantly more of these hits to go to RAM; thus, PP

will be faster because RAM hits are faster than flash hits.

We now test our hypothesis that, in trade for decreas-

ing RAM hits, KP improves flash lifetime. We compute

lifetime by measuring flash writes, assuming the FTL

provides even wear leveling, and assuming the SSD sup-

ports 10K program/erase cycles. Figure 12 reports flash

lifetime as the amount of flash varies along the x-axis.

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 207

10 GB RAM

10 GB RAM

30 GB RAM

30 GB RAM

0 60 120 180 240
0

15

30

45

Li
fe

sp
an

 (y
ea

rs
)

Flash (GB)

KP (keep)
PP (promote)

Figure 12: Flash lifetime. The relationship between flash

size and flash lifetime is shown for both the keep policy (gray

lines) and promote policy (black lines). There are two lines for

each policy (10 or 30GB RAM).

The figure shows that having more RAM slightly im-

proves flash lifetime. This is because flash writes occur

upon RAM evictions, and evictions will be less frequent

with ample RAM. Also, as expected, KP often doubles

or triples flash lifetime, e.g., with 10GB of RAM and

60GB of flash, using KP instead of PP increases life-

time from 2.5 to 5.2 years. The figure also shows that

flash lifetime increases with the amount of flash. For PP,

the relationship is perfectly linear. The number of flash

writes equals the number of RAM evictions, which is in-

dependent of flash size; thus, if there is twice as much

flash, each block of flash will receive exactly half as

much wear. For KP, however, the flash lifetime increases

superlinearly with size; with 10GB of RAM and 20GB

of flash, the years-to-GB ratio is 0.06, but with 240GB

of flash, the ratio is 0.15. The relationship is superlin-

ear because additional flash absorbs more reads, causing

fewer RAM inserts, causing fewer RAM evictions, and

ultimately causing fewer flash writes. Thus, doubling

the flash size decreases total flash writes in addition to

spreading the writes over twice as many blocks.

Flash caches have an additional advantage: crashes do

not cause cache contents to be lost. We quantify this ben-

efit by simulating four crashes at different times and mea-

suring changes to hit rate. Figure 13 shows the results

of two of these crashes for 100GB caches with different

flash-to-RAM ratios (using PP). Even though the hottest

data will be in RAM, keeping some data in flash signif-

icantly improves the hit rate after a crash. The exam-

ples also show that it can take 4-6 hours to fully recover

from a crash. We quantify the total recovery cost in terms

of additional disk reads (not shown). Whereas crashing

with a pure-RAM cache on average causes 26GB of ad-

ditional disk I/O, crashing costs only 10GB for a hybrid

cache which is 75% flash.

Conclusion: Adding flash to RAM can greatly im-

prove the caching hit rate; furthermore (due to persis-

tence) a hybrid flash/RAM cache can eliminate half of

the extra disk reads that usually occur after a crash. How-

9 12 15 18 21
0

20

40

60

80

H
it

ra
te

Hour
21 24 27 30 33

0

20

40

60

80

Hour

100% flash 75% flash 50% flash 25% flash 0% flash

Figure 13: Crash simulations. The plots show two exam-

ples of how crashing at different times affects different 100GB

tiered caches, some of which are pure flash, pure RAM, or a

mix. Hit rates are unaffected when crashing with 100% flash.

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

1.4%

60

2.3%

120

3.6%

240

no
ne 8 16 32 64 12

8
25

6 al
l0

1
2
3
4
5
6
7 10 disks

Threshold (MB)

1.5%

60 flash

2.7%

120 flash

4.8%

240 flash

no
ne 8 16 32 64 12

8
25

6 al
l0

1
2
3
4
5
6
7 15 disks

Threshold (MB)

Figure 14: Flash Buffer. We measure how different file-

buffering policies impact foreground requests with two plots

(for 10 or 15 disks) and three lines (60, 120, or 240GB of flash).

Different points on the x-axis represent different policies. The

optimum point on each line is marked, showing improvement

relative to the latency when no buffering is done.

ever, using flash raises concerns about wear. Shuffling

data between flash and RAM to keep the hottest data

in RAM improves performance but can easily decrease

SSD lifetime by a factor of 2x relative to a wear-aware

policy. Fortunately, larger SSDs tend to have long life-

times for FM, so wear may be a small concern (e.g.,

120GB+ SSDs last over 5 years regardless of policy).

5.3 Flash as Buffer

Another advantage of flash is that (due to persistence) it

has the potential to reduce disk writes as well as reads.

We saw earlier (§4.3) that files tend to be either small and

short-lived or big and long-lived, so one strategy would

be to store small files in flash and big files on disk.

HDFS writes are considered durable once the data is

in memory on every DataNode (but not necessarily on

disk), so buffering in flash would not actually improve

HDFS write performance. However, decreasing disk

writes by buffering the output of background activities

(e.g., flushes and compaction) indirectly improves fore-

ground performance. Foreground activity includes any

local requests which could block an HBase request (e.g.,

9

208 12th USENIX Conference on File and Storage Technologies USENIX Association

HW Cost Failure rate Performance

HDD $100/disk 4% AFR [9] 10ms/seek, 100MB/s
RAM $5.0/GB 4% AFR (8GB) 0 latency

Flash $0.8/GB 10K P/E cycles 0.5ms latency

Table 3: Cost Model. Our assumptions about hardware

costs, failure rates, and performance are presented. For disk

and RAM, we state an AFR (annual failure rate), assuming

uniform-random failure each year. For flash, we base replace-

ment on wear and state program/erase cycles.

a get). Reducing background I/O means foreground

reads will face less competition for disk time. Thus, we

measure how buffering files written by background ac-

tivities affects foreground latencies.

Of course, using flash as a write buffer has a cost,

namely less space for caching hot data. We evaluate this

tradeoff by measuring performance when using flash to

buffer only files which are beneath a certain size. Fig-

ure 14 shows how latency corresponds to the policy. At

the left of the x-axis, writes are never buffered in flash,

and at the right of the x-axis, all writes are buffered.

Other x-values represent thresholds; only files smaller

than the threshold are buffered. The plots show that

buffering all or most of the files results in very poor per-

formance. Below 128MB, though, the choice of how

much to buffer makes little difference. The best gain is

just a 4.8% reduction in average latency relative to per-

formance when no writes are buffered.

Conclusion: Using flash to buffer all writes results

in much worse performance than using flash only as a

cache. If flash is used for both caching and buffering, and

if policies are tuned to only buffer files of the right size,

then performance can be slightly improved. We conclude

that these small gains are probably not worth the added

complexity, so flash should be for caching only.

5.4 Is Flash worth the Money?

Adding flash to a system can, if used properly, only im-

prove performance, so the interesting question is, given

that we want to buy performance with money, should we

buy flash, or something else? We approach this ques-

tion by making assumptions about how fast and expen-

sive different storage mediums are, as summarized in Ta-

ble 3. We also state assumptions about component failure

rates, allowing us to estimate operating expenditure.

We evaluate 36 systems, with three levels of RAM

(10GB, 30GB, or 100GB), four levels of flash (none,

60GB, 120GB, or 240GB), and three levels of disk (10,

15, or 20 disks). Flash and RAM are used as a hybrid

cache with the promote policy (§5.2). For each system,

we compute the capex (capital expenditure) to initially

purchase the hardware and determine via simulation the

foreground latencies (defined in §5.3). Figure 15 shows

the cost/performance of each system. 11 of the systems

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20
A0

A1
A2

A3B3 C3A2
A3B3 C3 C3

Cost ($)

Fo
re

gr
ou

nd
 la

te
nc

y
(m

s)

ram GB
: 10A
: 30B
: 100C

flash GB
: 00
: 601
: 1202
: 2403

disks
: 10
: 15
: 20

Figure 15: Capex/latency tradeoff. We present the cost

and performance of 36 systems, representing every combina-

tion of three RAM levels, four flash levels, and three disk levels.

Combinations which present unique tradeoffs are black and la-

beled; unjustifiable systems are gray and unlabeled.

(31%) are highlighted; these are the only systems that

one could justify buying. Each of the other 25 systems is

both slower and more expensive than one of these 11 jus-

tifiable systems. Over half of the justifiable systems have

maximum flash. It is worth noting that the systems with

less flash are justified by low cost, not good performance.

With one exception (15-disk A2), all systems with less

than the maximum flash have the minimum number of

disks and RAM. We observe that flash can greatly im-

prove performance at very little cost. For example, A1

has a 60GB SSD but is otherwise the same as A0. With

10 disks, A1 costs only 4.5% more but is 3.5x faster. We

conclude that if performance is to be bought, then (within

the space we explore) flash should be purchased first.

We also consider expected opex (operating expendi-

ture) for replacing hardware as it fails, and find that re-

placing hardware is relatively inexpensive compared to

capex (not shown). Of the 36 systems, opex is at most

$90/year/machine (for the 20-disk C3 system). Further-

more, opex is never more than 5% of capex. For each of

the justifiable flash-based systems shown in Figure 15,

we also do simulations using KP for flash hits. KP de-

creased opex by 4-23% for all flash machines while in-

creasing latencies by 2-11%. However, because opex is

low in general, the savings are at most $14/year/machine.

Conclusion: Not only does adding a flash tier to the

FM stack greatly improve performance, but it is the most

cost-effective way of improving performance. In some

cases, adding a small SSD can triple performance while

only increasing monetary costs by 5%.

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 209

replication

local

DB

local local

a) mid-replicated b) top-replicated

replication

local local local

DB DB DB

c) mid-bypass

replication

local

DB

local local

Figure 16: Layered architectures. The HBase archi-

tecture (mid-replicated) is shown, as well as two alternatives.

Top-replication reduces network I/O by co-locating database

computation with database data. The mid-bypass architecture

is similar to mid-replication, but provides a mechanism for by-

passing the replication layer for efficiency.

6 Layering: Pitfalls and Solutions

The FM stack, like most storage, is a composition of

other systems and subsystems. Some composition is hor-

izontal; for example, FM stores small data in HBase and

large data in Haystack (§4.1). In this section, we focus

instead on the vertical composition of layers, a pattern

commonly used to manage and reduce software com-

plexity. We discuss different ways to organize storage

layers (§6.1), how to reduce network I/O by bypassing

the replication layer (§6.2), and how to reduce the ran-

domness of disk I/O by adding special HDFS support for

HBase logging (§6.3).

6.1 Layering Background

Three important layers are the local layer (e.g., disks, lo-

cal file systems, and a DataNode), the replication layer

(e.g., HDFS), and the database layer (e.g., HBase). FM

composes these in a mid-replicated pattern (Figure 16a),

with the database at the top of the stack and the local

stores at the bottom. The merit of this architecture is

simplicity. The database can be built with the assump-

tion that underlying storage, because it is replicated, will

be available and never lose data. The replication layer is

also relatively simple, as it deals with data in its simplest

form (i.e., large blocks of opaque data). Unfortunately,

mid-replicated architectures separate computation from

data. Computation (e.g., database operations such as

compaction) can only be co-resident with at most one

replica, so all writes involve network transfers.

Top-replication (Figure 16b) is an alternative approach

used by the Salus storage system [29]. Salus supports

the standard HBase API, but its top-replicated approach

provides additional robustness and performance advan-

tages. Salus protects against memory corruption and cer-

tain bugs in the database layer by replicating database

computation as well as the data itself. Doing replica-

tion above the database level also reduces network I/O.

no
de

3

compact

no
de

2
no

de
1

compact

compact

compact

Current compaction Local compaction

no
de

3
no

de
2

no
de

1

Figure 17: Local-compaction architecture. The

HBase architecture (left) shows how compaction currently cre-

ates a data flow with significant network I/O, represented by the

two lines crossing machine boundaries. An alternative (right)

shows how local reads could replace network I/O

If the database wants to reorganize data on disk (e.g., via

compaction), each database replica can do so on its lo-

cal copy. Unfortunately, top-replicated storage is com-

plex. The database layer must handle underlying failures

as well as cooperate with other databases; in Salus, this

is accomplished with a pipelined-commit protocol and

Merkle trees for maintaining consistency.

Mid-bypass (Figure 16c) is a third option proposed by

Zaharia et al. [30]. This approach (like mid-replication),

places the replication layer between the database and the

local store, but in order to improve performance, an RDD

(Resilient Distributed Dataset) API lets the database by-

pass the replication layer. Network I/O is avoided by

shipping computation directly to the data. HBase com-

paction could be built upon two RDD transformations,

join and sort, and network I/O could thus be avoided.

6.2 Local Compaction

We simulate the mid-bypass approach, with compaction

operations shipped directly to all the replicas of com-

paction inputs. Figure 17 shows how local compaction

differs from traditional compaction; network I/O is

traded for local I/O, to be served by local caches or disks.

Figure 18 shows the result: a 62% reduction in net-

work reads from 3.5TB to 1.3TB. The figure also shows

disk reads, with and without local compaction, and with

either write allocate (wa) or no-write allocate (nwa)

caching policies (§5.1). We observe disk I/O increases

sightly more than network I/O decreases. For exam-

ple, with a 100GB cache, network I/O is decreased by

2.2GB but disk reads are increased by 2.6GB for no-

write allocate. This is unsurprising: HBase uses sec-

ondary replicas for fault tolerance rather than for reads,

so secondary replicas are written once (by a flush or com-

paction) and read at most once (by compaction). Thus,

local-compaction reads tend to (a) be misses and (b) pol-

lute the cache with data that will not be read again. We

see that write allocate still underperforms no-write allo-

11

210 12th USENIX Conference on File and Storage Technologies USENIX Association

I/O
 (T

B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

network reads
disk reads, wa
disk reads, nwa

network reads (local compact)
disk reads, wa (local compact)
disk reads, nwa (local compact)

Figure 18: Local-compaction results. The thick gray

lines represent HBase with local compaction, and the thin black

lines represent HBase currently. The solid lines represent net-

work reads, and the dashed lines represent disk reads; long-

dash represents the no-write allocate cache policy and short-

dash represents write allocate.

logs

datanode

RS1RS1 RS1RS2 RS1RS3

logs logs

datanode

RS1RS1 RS1RS2 RS1RS3

consolidated logs

Current logging Combined logging

Figure 19: Combined-logging architecture. Currently

(left), the average DataNode will receive logs from three HBase

RegionServers, and these logs will be written to different loca-

tions. An alternative approach (right) would be for HDFS to

provide a special logging API which allows all the logs to be

combined so that disk seeks are reduced.

cate (§5.1). However, write allocate is now somewhat

more competitive for large cache sizes because it is able

to serve some of the data read by local compaction.

Conclusion: Doing local compaction by bypassing

the replication layer turns over half the network I/O into

disk reads. This is a good tradeoff as network I/O is gen-

erally more expensive than sequential disk I/O.

6.3 Combined Logging

We now consider the interaction between replication and

HBase logging. Figure 19 shows how (currently) a typi-

cal DataNode will receive log writes from three Region-

Servers (because each RegionServer replicates its logs

to three DataNodes). These logs are currently written

to three different local files, causing seeks. Such seek-

ing could be reduced if HDFS were to expose a special

logging feature that merges all logical logs into a single

physical log on a dedicated disk as illustrated.

We simulate combined logging and measure perfor-

mance for requests which go to disk; we consider laten-

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Figure 20: Combined logging results. Disk latencies for

various activities are shown, with (gray) and without (black)

combined logging.

cies for foreground reads (defined in §5.1), compaction,

and logging. Figure 20 reports the results for varying

numbers of disks. The latency of log writes decreases

dramatically with combined logging; for example, with

15 disks, the latency is decreased by a factor of six. Com-

paction requests also experience modest gains due to less

competition for disk seeks. Currently, neither logging

nor compaction block the end user, so we also consider

the performance of foreground reads. For this metric,

the gains are small, e.g., latency only decreases by 3.4%

with 15 disks. With just 10 disks, dedicating one disk to

logging slightly hurts user reads.

Conclusion: Merging multiple HBase logs on a ded-

icated disk reduces logging latencies by a factor of 6.

However, put requests do not currently block until data

is flushed to disks, and the performance impact on fore-

ground reads is negligible. Thus, the additional complex-

ity of combined logging is likely not worthwhile given

the current durability guarantees. However, combined

logging could enable HBase, at little performance cost,

to give the additional guarantee that data is on disk be-

fore a put returns. Providing such a guarantee would

make logging a foreground activity.

7 Related Work

In this work, we compare the I/O patterns of FM to

prior GFS and HDFS workloads. Chen et al.[4] provides

broad characterizations of a wide variety of MapRe-

duce workloads, making some of the comparisons pos-

sible. The MapReduce study is broad, analyzing traces

of coarse-grained events (e.g., file opens) from over 5000

machines across seven clusters. By contrast, our study is

deep, analyzing traces of fine-grained events (e.g., reads

to a byte) for just nine machines.

Detailed trace analysis has also been done in many

non-HDFS contexts, such as the work by Baker et al. [2]

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 211

in a BSD environment and by Harter et al. [13] for Ap-

ple desktop applications. Other studies include the work

done by Ousterhout et al. [21] and Vogels et al. [28].

A recent photo-caching study by Huang et al. [15]

focuses, much like our work, on I/O patterns across mul-

tiple layers of the stack. The photo-caching study corre-

lated I/O across levels by tracing at each layer, whereas

our approach was to trace at a single layer and infer

I/O at each underlying layer via simulation. There is a

tradeoff between these two methodologies: tracing mul-

tiple levels avoids potential inaccuracies due to simulator

oversimplifications, but the simulation approach enables

greater experimentation with alternative architectures be-

neath the traced layer.

Our methodology of trace-driven analysis and simula-

tion is inspired by Kaushik et al. [16], a study of Hadoop

traces from Yahoo! Both the Yahoo! study and our work

involved collecting traces, doing analysis to discover po-

tential improvements, and running simulations to evalu-

ate those improvements.

We are not the first to suggest the methods we evalu-

ated for better HDFS integration (§6); our contribution is

to quantify how useful these techniques are for the FM

workload. The observation that doing compaction above

the replication layer wastes network bandwidth has been

made by Wang et al. [29], and the approach of local

compaction is a specific application of the more general

techniques described by Zaharia et al. [30]. Combined

logging is also commonly used by administrators of tra-

ditional databases [8, 22].

8 Conclusions

We have presented a detailed multilayer study of storage

I/O for Facebook Messages. Our combined approach of

analysis and simulation allowed us to identify potentially

useful changes and then evaluate those changes. We have

four major conclusions.

First, the special handling received by writes make

them surprisingly expensive. At the HDFS level, the

read/write ratio is 99/1, excluding HBase compaction

and logging overheads. At the disk level, the ratio is

write-dominated at 36/64. Logging, compaction, repli-

cation, and caching all combine to produce this write

blowup. Thus, optimizing writes is very important even

for especially read-heavy workloads such as FM.

Second, the GFS-style architecture is based on work-

load assumptions such as “high sustained bandwidth

is more important than low latency” [11]. For FM,

many of these assumptions no longer hold. For exam-

ple, we demonstrate (§5.1) just the opposite is true for

FM: because I/O is highly random, bandwidth matters

little, but latency is crucial. Similarly, files were as-

sumed to be very large, in the hundreds or thousands

of megabytes. This traditional workload implies a high

data-to-metadata ratio, justifying the one-NameNode de-

sign of GFS and HDFS. By contrast, FM is dominated by

small files; perhaps the single-NameNode design should

be revisited.

Third, FM storage is built upon layers of independent

subsystems. This architecture has the benefit of simplic-

ity; for example, because HBase stores data in a repli-

cated store, it can focus on high-level database logic in-

stead of dealing with dying disks and other types of fail-

ure. Layering is also known to improve reliability, e.g.,

Dijkstra found layering “proved to be vital for the veri-

fication and logical soundness” of an OS [7]. Unfortu-

nately, we find that the benefits of simple layering are

not free. In particular, we showed (§6) that building a

database over a replication layer causes additional net-

work I/O and increases workload randomness at the disk

layer. Fortunately, simple mechanisms for sometimes

bypassing replication can reduce layering costs.

Fourth, the cost of flash has fallen greatly, prompting

Gray’s proclamation that “tape is dead, disk is tape, flash

is disk” [12]. To the contrary, we find that for FM, flash

is not a suitable replacement for disk. In particular, the

cold data is too large to fit well in flash (§4.1) and the

hot data is too large to fit well in RAM (§5.1). However,

our evaluations show that architectures with a small flash

tier have a positive cost/performance tradeoff compared

to systems built on disk and RAM alone.

In this work, we take a unique view of Facebook Mes-

sages, not as a single system, but as a complex compo-

sition of systems and subsystems, residing side-by-side

and layered one upon another. We believe this perspec-

tive is key to deeply understanding modern storage sys-

tems. Such understanding, we hope, will help us bet-

ter integrate layers, thereby maintaining simplicity while

achieving new levels of performance.

9 Acknowledgements

We thank the anonymous reviewers and Andrew Warfield

(our shepherd) for their tremendous feedback, as well as

members of our research group for their thoughts and

comments on this work at various stages. We also thank

Pritam Damania, Adela Maznikar, and Rishit Shroff for

their help in collecting HDFS traces.

This material was supported by funding from NSF

grants CNS-1319405 and CNS-1218405 as well as

generous donations from EMC, Facebook, Fusion-

io, Google, Huawei, Microsoft, NetApp, Sony, and

VMware. Tyler Harter is supported by the NSF Fellow-

ship and Facebook Fellowship. Any opinions, findings,

and conclusions or recommendations expressed in this

material are those of the authors and may not reflect the

views of NSF or other institutions.

13

212 12th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Oper-

ating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 2014.

[2] Mary Baker, John Hartman, Martin Kupfer, Ken Shirriff, and
John Ousterhout. Measurements of a Distributed File System. In
Proceedings of the 13th ACM Symposium on Operating Systems
Principles (SOSP ’91), pages 198–212, Pacific Grove, California,
October 1991.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew
Fikes, and Robert Gruber. Bigtable: A Distributed Storage Sys-
tem for Structured Data. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI ’06),
pages 205–218, Seattle, Washington, November 2006.

[4] Chen, Yanpei and Alspaugh, Sara and Katz, Randy. Interactive
Analytical Processing in Big Data Systems: A Cross-industry
Study of MapReduce Workloads. Proc. VLDB Endow., August
2012.

[5] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Journal-guided Resynchronization for Software
RAID. In Proceedings of the 4th USENIX Symposium on File and
Storage Technologies (FAST ’05), pages 87–100, San Francisco,
California, December 2005.

[6] Dhruba Borthakur and Kannan Muthukkaruppan and Karthik
Ranganathan and Samuel Rash and Joydeep Sen Sarma and Nico-
las Spiegelberg and Dmytro Molkov and Rodrigo Schmidt and
Jonathan Gray and Hairong Kuang and Aravind Menon and Ami-
tanand Aiyer. Apache Hadoop Goes Realtime at Facebook. In
Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’11), Athens, Greece,
June 2011.

[7] E. W. Dijkstra. The Structure of the THE Multiprogramming Sys-
tem. Communications of the ACM, 11(5):341–346, May 1968.

[8] IBM Product Documentation. Notes/domino best practices:
Transaction logging. http://www-01.ibm.com/support/
docview.wss?uid=swg27009309, 2013.

[9] Ford, Daniel and Labelle, François and Popovici, Florentina I.
and Stokely, Murray and Truong, Van-Anh and Barroso, Luiz and
Grimes, Carrie and Quinlan, Sean. Availability in Globally Dis-
tributed Storage Systems. In Proceedings of the 9th Symposium
on Operating Systems Design and Implementation (OSDI ’10),
Vancouver, Canada, December 2010.

[10] Gregory R. Ganger. Blurring the Line Between Oses and Storage
Devices. Technical Report CMU-CS-01-166, Carnegie Mellon
University, December 2001.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP ’03), pages 29–43,
Bolton Landing, New York, October 2003.

[12] Jim Gray. Tape is Dead. Disk is Tape. Flash is Disk, RAM Lo-
cality is King, 2006.

[13] Tyler Harter, Charlotte Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A File is Not
a File: Understanding the I/O Behavior of Apple Desktop
Applications. In Proceedings of the 23rd ACM Symposium on
Operating Sys-tems Principles (SOSP ’11), Cascais, Portugal,
October 2011.

[14] Joseph L. Hellerstein. Google cluster data. Google research
blog, January 2010. Posted at http://googleresearch.
blogspot.com/2010/01/google-cluster-data.html.

[15] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, San-
jeev Kumar, and Harry C. Li. An Analysis of Facebook Photo
Caching. In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (SOSP ’13), pages 167–181, Farmington,
Pennsylvania, November 2013.

[16] Rini T. Kaushik and Milind A Bhandarkar. GreenHDFS: Towards
an Energy-Conserving, Storage-Efficient, Hybrid Hadoop Com-
pute Cluster. In The 2010 Workshop on Power Aware Computing
and Systems (HotPower ’10), Vancouver, Canada, October 2010.

[17] Niall Kennedy. Facebook’s Photo Storage Rewrite.
http://www.niallkennedy.com/blog/2009/04/facebook-
haystack.html, April 2009.

[18] Butler W. Lampson. Hints for Computer System Design. In Pro-
ceedings of the 9th ACM Symposium on Operating System Princi-
ples (SOSP ’83), pages 33–48, Bretton Woods, New Hampshire,
October 1983.

[19] Edward K. Lee and Chandramohan A. Thekkath. Petal: Dis-
tributed Virtual Disks. In Proceedings of the 7th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VII), Cambridge, Mas-
sachusetts, October 1996.

[20] Kannan Muthukkaruppan. Storage Infrastructure Behind Face-
book Messages. In Proceedings of International Workshop
on High Performance Transaction Systems (HPTS ’11), Pacific
Grove, California, October 2011.

[21] John K. Ousterhout, Herve Da Costa, David Harrison, John A.
Kunze, Mike Kupfer, and James G. Thompson. A Trace-Driven
Analysis of the UNIX 4.2 BSD File System. In Proceedings of
the 10th ACM Symposium on Operating System Principles (SOSP
’85), pages 15–24, Orcas Island, Washington, December 1985.

[22] Matt Perdeck. Speeding up database access. http://www.
codeproject.com/Articles/296523/Speeding-up-
database-access-part-8-Fixing-memory-d, 2011.

[23] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-
end arguments in system design. ACM Transactions on Computer
Systems, 2(4):277–288, November 1984.

[24] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings
of the 26th IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST ’10), Incline Village, Nevada, May 2010.

[25] Jason Sobel. Needle in a haystack: Efficient storage of billions of
photos. http://www.flowgram.com/p/2qi3k8eicrfgkv, June 2008.

[26] Nicolas Spiegelberg. Allow record compression for hlogs.
https://issues.apache.org/jira/browse/HBASE-8155,
2013.

[27] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee.
Frangipani: A Scalable Distributed File System. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles
(SOSP ’97), pages 224–237, Saint-Malo, France, October 1997.

[28] Werner Vogels. File system usage in Windows NT 4.0. In
Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP ’99), pages 93–109, Kiawah Island Resort,
South Carolina, December 1999.

[29] Yang Wang and Manos Kapritsos and Zuocheng Ren and Prince
Mahajan and Jeevitha Kirubanandam and Lorenzo Alvisi and
Mike Dahlin. Robustness in the Salus Scalable Block Store.
In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation, Lombard, Illinois,
April 2013.

[30] Zaharia, Matei and Chowdhury, Mosharaf and Das, Tathagata
and Dave, Ankur and Ma, Justin and McCauley, Murphy and
Franklin, Michael J. and Shenker, Scott and Stoica, Ion. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation,
San Jose, California, April 2010.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 213

Automatic Identification of Application I/O Signatures from Noisy
Server-Side Traces

Yang Liu�, Raghul Gunasekaran†, Xiaosong Ma�∗, and Sudharshan S. Vazhkudai†

�North Carolina State University, yliu43@ncsu.edu
�Qatar Computing Research Institute, xma@qf.org.qa

†Oak Ridge National Laboratory, {gunasekaranr, vazhkudaiss}@ornl.gov

Abstract
Competing workloads on a shared storage system cause
I/O resource contention and application performance va-
garies. This problem is already evident in today’s HPC
storage systems and is likely to become acute at ex-
ascale. We need more interaction between application
I/O requirements and system software tools to help al-
leviate the I/O bottleneck, moving towards I/O-aware
job scheduling. However, this requires rich techniques
to capture application I/O characteristics, which remain
evasive in production systems.

Traditionally, I/O characteristics have been obtained
using client-side tracing tools, with drawbacks such
as non-trivial instrumentation/development costs, large
trace traffic, and inconsistent adoption. We present
a novel approach, I/O Signature Identifier (IOSI), to
characterize the I/O behavior of data-intensive appli-
cations. IOSI extracts signatures from noisy, zero-
overhead server-side I/O throughput logs that are al-
ready collected on today’s supercomputers, without in-
terfering with the compiling/execution of applications.
We evaluated IOSI using the Spider storage system
at Oak Ridge National Laboratory, the S3D turbu-
lence application (running on 18,000 Titan nodes), and
benchmark-based pseudo-applications. Through our ex-
periments we confirmed that IOSI effectively extracts
an application’s I/O signature despite significant server-
side noise. Compared to client-side tracing tools, IOSI is
transparent, interface-agnostic, and incurs no overhead.
Compared to alternative data alignment techniques (e.g.,
dynamic time warping), it offers higher signature accu-
racy and shorter processing time.

1 Introduction
High-performance computing (HPC) systems cater to

a diverse mix of scientific applications that run concur-
rently. While individual compute nodes are usually ded-
icated to a single parallel job at a time, the interconnec-
tion network and the storage subsystem are often shared

∗Part of this work was conducted at North Carolina State Univer-
sity.

among jobs. Network topology-aware job placement at-
tempts to allocate larger groups of contiguous compute
nodes to each application, in order to provide more sta-
ble message-passing performance for inter-process com-
munication. I/O resource contention, however, contin-
ues to cause significant performance vagaries in appli-
cations [16, 59]. For example, the indispensable task
of checkpointing is becoming increasingly cumbersome.
The CHIMERA [13] astrophysics application produces
160TB of data per checkpoint, taking around an hour to
write [36] on Oak Ridge National Laboratory’s Titan [3]
(currently the world’s No. 2 supercomputer [58]).

This already bottleneck-prone I/O operation is further
stymied by resource contention due to concurrent appli-
cations, as there is no I/O-aware scheduling or inter-job
coordination on supercomputers. As hard disks remain
the dominant parallel file system storage media, I/O con-
tention leads to excessive seeks, significantly degrading
the overall I/O throughput.

This problem is expected to exacerbate on future
extreme-scale machines (hundreds of petaflops). Future
systems demand a sophisticated interplay between ap-
plication requirements and system software tools that is
lacking in today’s systems. The aforementioned I/O per-
formance variance problem makes an excellent candi-
date for such synergistic efforts. For example, knowl-
edge of application-specific I/O behavior potentially al-
lows a scheduler to stagger I/O-intensive jobs, improv-
ing both the stability of individual applications’ I/O per-
formance and the overall resource utilization. However,
I/O-aware scheduling requires detailed information on
application I/O characteristics. In this paper, we explore
the techniques needed to capture such information in an
automatic and non-intrusive way.

Cross-layer communication regarding I/O characteris-
tics, requirements or system status has remained a chal-
lenge. Traditionally, these I/O characteristics have been
captured using client-side tracing tools [5, 7], running on
the compute nodes. Unfortunately, the information pro-
vided by client-side tracing is not enough for inter-job
coordination due to the following reasons.

214 12th USENIX Conference on File and Storage Technologies USENIX Association

First, client-side tracing requires the use of I/O tracing
libraries and/or application code instrumentation, often
requiring non-trivial development/porting effort. Sec-
ond, such tracing effort is entirely elective, rendering any
job coordination ineffective when only a small portion
of jobs perform (and release) I/O characteristics. Third,
many users who do enable I/O tracing choose to turn it
on for shorter debug runs and off for production runs,
due to the considerable performance overhead (typically
between 2% and 8% [44]). Fourth, different jobs may
use different tracing tools, generating traces with differ-
ent formats and content, requiring tremendous knowl-
edge and integration. Finally, unique to I/O performance
analysis, detailed tracing often generates large trace files
themselves, creating additional I/O activities that per-
turb the file system and distort the original application
I/O behavior. Even with reduced compute overhead and
minimal information collection, in a system like Titan,
collecting traces for individual applications from over
18,000 compute nodes will significantly stress the in-
terconnect and I/O subsystems. These factors limit the
usage of client-side tracing tools for development pur-
poses [26, 37], as opposed to routine adoption in pro-
duction runs or for daily operations.

Similarly, very limited server-side I/O tracing can be
performed on large-scale systems, where the bookkeep-
ing overhead may bring even more visible performance
degradations. Centers usually deploy only rudimentary
monitoring schemes that collect aggregate workload in-
formation regarding combined I/O traffic from concur-
rently running applications.

In this paper, we present IOSI (I/O Signature Identi-
fier), a novel approach to characterizing per-application
I/O behavior from noisy, zero-overhead server-side I/O
throughput logs, collected without interfering with the
target application’s execution. IOSI leverages the exist-
ing infrastructure in HPC centers for periodically log-
ging high-level, server-side I/O throughput. E.g., the
throughput on the I/O controllers of Titan’s Spider file
system [48] is recorded once every 2 seconds. Collect-
ing this information has no performance impact on the
compute nodes, does not require any user effort, and has
minimal overhead on the storage servers. Further, the
log collection traffic flows through the storage servers’
Ethernet management network, without interfering with
the application I/O. Hence, we refer to our log collection
as zero-overhead.

Figure 1 shows sample server-side log data from a
typical day on Spider. The logs are composite data, re-
flecting multiple applications’ I/O workload. Each in-
stance of an application’s execution will be recorded in
the server-side I/O throughput log (referred to as a sam-
ple in the rest of this paper). Often, an I/O-intensive ap-
plication’s samples show certain repeated I/O patterns,

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 23:590

5

10

15

20

Time

W
rit

e G
B/

s

Figure 1: Average server-side, write throughput on Titan’s
Spider storage (a day in November 2011).

as can be seen from Figure 1. Therefore, the main idea
of this work is to collect and correlate multiple samples,
filter out the “background noise”, and finally identify
the target application’s native I/O traffic common across
them. Here, “background noise” refers to the traffic
generated by other concurrent applications and system
maintenance tasks. Note that IOSI is not intended to
record fine-grained, per-application I/O operations. In-
stead, it derives an estimate of their bandwidth needs
along the execution timeline to support future I/O-aware
smart decision systems.

Contributions: (1) We propose to extract per-
application I/O workload information from existing,
zero-overhead, server-side I/O measurements and job
scheduling history. Further, we obtain such knowl-
edge of a target application without interfering with
its computation/communication, or requiring develop-
ers/users’ intervention. (2) We have implemented a suite
of techniques to identify an application’s I/O signature,
from noisy server-side throughput measurements. These
include i) data preprocessing, ii) per-sample wavelet
transform (WT) for isolating I/O bursts, and iii) cross-
sample I/O burst identification. (3) We evaluated IOSI
with real-world server-side I/O throughput logs from
the Spider storage system at the Oak Ridge Leadership
Computing Facility (OLCF). Our experiments used sev-
eral pseudo-applications, constructed with the expres-
sive IOR benchmarking tool [1], and S3D [56], a large-
scale turbulent combustion code. Our results show that
IOSI effectively extracts an application’s I/O signature
despite significant server-side noise.

2 Background
We first describe the features of typical I/O-intensive

parallel applications and the existing server-side moni-
toring infrastructure on supercomputers – two enabling
trends for IOSI. Next, we define the per-application I/O
signature extraction problem.

2.1 I/O Patterns of Parallel Applications
The majority of applications on today’s supercomput-

ers are parallel numerical simulations that perform iter-
ative, timestep-based computations. These applications
are write-heavy, periodically writing out intermediate re-

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 215

sults and checkpoints for analysis and resilience, respec-
tively. For instance, applications compute for a fixed
number of timesteps and then perform I/O, repeating this
sequence multiple times. This process creates regular,
predictable I/O patterns, as noted by many existing stud-
ies [25, 49, 61]. More specifically, parallel applications’
dominant I/O behavior exhibits several distinct features
that enable I/O signature extraction:

User1 User2 User3 User4 User5 User6 User7
0

50

100

150

200

250

22

72

122

10
19

26 29
118

21

58
45

96

48

13 8

33

6

55

219

12

Users

Nu
m

of
run

s

Configuration 1
Configuration 2
Configuration 3

Figure 2: Example of the repeatability of runs on Titan, showing
the number of runs using identical job configurations for seven users
issuing the largest jobs, between July and September 2013.

Burstiness: Scientific applications have distinct com-
pute and I/O phases. Most applications are designed to
perform I/O in short bursts [61], as seen in Figure 1.
Periodicity: Most I/O-intensive applications write data
periodically, often in a highly regular manner [25, 49]
(both in terms of interval between bursts and the output
volume per burst). Such regularity and burstiness sug-
gests the existence of steady, wavelike I/O signatures.
Note that although a number of studies have been pro-
posed to optimize the checkpoint interval/volume [19,
20, 39], regular, content-oblivious checkpointing is still
the standard practice in large-scale applications [51, 66].
IOSI does not depend on such periodic I/O patterns and
handles irregular patterns, as long as the application I/O
behavior stays consistent across multiple job runs.
Repeatability: Applications on extreme-scale systems
typically run many times. Driven by their science needs,
users run the same application with different input data
sets and model parameters, which results in repeti-
tive compute and I/O behavior. Therefore, applications
tend to have a consistent, identifiable workload signa-
ture [16]. To substantiate our claim, we have studied
three years worth of Spider server-side I/O throughput
logs and Titan job traces for the same time period, and
verified that applications have a recurring I/O pattern in
terms of frequency and I/O volume. Figure 2 plots statis-
tics of per-user jobs using identical job configurations,
which is highly indicative of executions of the same ap-
plication. We see that certain users, especially those is-
suing large-scale runs, tend to reuse the same job con-
figuration for many executions.

Overall, the above supercomputing I/O features moti-
vate IOSI to find commonality between multiple noisy
server-side log samples. Each sample documents the
server-side aggregate I/O traffic during an execution of

the same target application, containing different and un-
known noise signals. The intuition is that with a reason-
able number of samples, the invariant behavior is likely
to belong to the target application.

Figure 3: Spider storage system architecture at OLCF.

2.2 Titan’s Spider Storage Infrastructure
Our prototype development and evaluation use the

storage server statistics collected from the Spider center-
wide storage system [55] at OLCF, a Lustre-based par-
allel file system. Spider currently serves the world’s No.
2 machine, the 27 petaflop Titan, in addition to other
smaller development and visualization clusters. Fig-
ure 3 shows the Spider architecture, which comprises of
96 Data Direct Networks (DDN) S2A9900 RAID con-
trollers, with an aggregate bandwidth of 240 GB/s and
over 10 PBs of storage from 13,440 1-TB SATA drives.
Access is through the object storage servers (OSSs),
connected to the RAID controllers in a fail-over con-
figuration. The compute platforms connect to the stor-
age infrastructure over a multistage InfiniBand network,
SION (Scalable I/O Network). Spider has four parti-
tions, widow[0 − 3], with identical setup and capacity.
Users can choose any partition(s) for their jobs.

Spider has been collecting server-side I/O statistics
from the DDN RAID controllers since 2009. These con-
trollers provide a custom API for querying performance
and status information over the management Ethernet
network. A custom daemon utility [43] polls the con-
trollers for bandwidth and IOPS at 2-second intervals
and stores the results in a MySQL database. Bandwidth
data are automatically reported from individual DDN
RAID controllers and aggregated across all widow par-
titions to obtain the overall file system bandwidth usage.

2.3 Problem Definition: Parallel Applica-
tion I/O Signature Identification

As mentioned earlier, IOSI aims to identify the I/O
signature of a parallel application, from zero-overhead,
aggregate, server-side I/O throughput logs that are al-

3

216 12th USENIX Conference on File and Storage Technologies USENIX Association

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
(G

B/
s)

(a) IORA target signature

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
(G

B/
s)

(b) Sample IORAS1

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
(G

B/
s)

(c) Sample IORAS6

Figure 4: I/O signature of IORA and two samples

ready being collected. IOSI’s input includes (1) the start
and end times of the target application’s multiple execu-
tions in the past, and (2) server-side logs that contain the
I/O throughput generated by those runs (as well as un-
known I/O loads from concurrent activities). The output
is the extracted I/O signature of the target application.

We define an application’s I/O signature as the I/O
throughput it generates at the server-side storage of a
given parallel platform, for the duration of its execu-
tion. In other words, if this application runs alone on
the target platform without any noise from other con-
current jobs or interactive/maintenance workloads, the
server-side throughput log during its execution will be
its signature. It is virtually impossible to find such
“quiet time” once a supercomputer enters the produc-
tion phase. Therefore, IOSI needs to “mine” the true
signature of the application from server-side throughput
logs, collected from its multiple executions. Each ex-
ecution instance, however, will likely contain different
noise signals. We refer to each segment of such a noisy
server-side throughput log, punctuated by the start and
end times of the execution instance, a “sample”. Based
on our experience, generally 5 to 10 samples are required
for getting the expected results. Note that there are long-
running applications (potentially several days for each
execution). It is possible for IOSI to extract a signature
from even partial samples (e.g., from one tenth of an ex-
ecution time period), considering the self-repetitive I/O
behavior of large-scale simulations.

Figure 4 illustrates the signature extraction prob-
lem using a pseudo-application, IORA, generated by
IOR [1], a widely used benchmark for parallel I/O per-
formance evaluation. IOR supports most major HPC I/O
interfaces (e.g., POSIX, MPIIO, HDF5), provides a rich
set of user-specified parameters for I/O operations (e.g.,
file size, file sharing setting, I/O request size), and allows
users to configure iterative I/O cycles. IORA exhibits
a periodic I/O pattern typical in scientific applications,
with 5 distinct I/O bursts. Figure 4(a) shows its I/O sig-
nature, obtained from a quiet Spider storage system par-
tition during Titan’s maintenance window. Figures 4(b)
and 4(c) show its two server-side I/O log samples when
executed alongside other real applications and interac-
tive I/O activities. These samples clearly demonstrate

the existence of varying levels of noise. Thus, IOSI’s
purpose is to find the common features from multiple
samples (e.g., Figures 4(b) and 4(c)), to obtain an I/O
signature that approximates the original (Figure 4(a)).

3 Related Work
I/O Access Patterns and I/O Signatures: Miller and

Katz observed that scientific I/O has highly sequential
and regular accesses, with a period of CPU processing
followed by an intense, bursty I/O phase [25]. Carns
et al. noted that HPC I/O patterns tend to be repetitive
across different runs, suggesting that I/O logs from prior
runs can be a useful resource for predicting future I/O
behavior [16]. Similar claims have been made by other
studies on the I/O access patterns of scientific applica-
tions [28, 47, 53]. Such studies strongly motivate IOSI’s
attempt to identify common and distinct I/O bursts of an
application from multiple noisy, server-side logs.

Prior work has also examined the identification and
use of I/O signatures. For example, the aforemen-
tioned work by Carns et al. proposed a methodology
for continuous and scalable characterization of I/O ac-
tivities [16]. Byna and Chen also proposed an I/O
prefetching method with runtime and post-run analysis
of applications’ I/O signatures [15]. A significant dif-
ference is that IOSI is designed to automatically extract
I/O signatures from existing coarse-grained server-side
logs, while prior approaches for HPC rely on client-
side tracing (such as MPI-IO instrumentation). For
more generic application workload characterization, a
few studies [52, 57, 64] have successfully extracted sig-
natures from various server-side logs.

Client-side I/O Tracing Tools: A number of tools
have been developed for general-purpose client-side in-
strumentation, profiling, and tracing of generic MPI
and CPU activity, such as mpiP [60], LANL-Trace [2],
HPCT-IO [54], and TRACE [42]. The most closely re-
lated to IOSI is probably Darshan [17]. It performs low-
overhead, detailed I/O tracing and provides powerful
post-processing of log files. It outputs a large collection
of aggregate I/O characteristics such as operation counts
and request size histograms. However, existing client-
side tracing approaches suffer from the limitations men-
tioned in Section 1, such as installation/linking require-

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 217

0 200 400 600 800 1000 1200 14000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B/
s)

Sample 1
Sample 2

Figure 5: Drift and scaling of I/O bursts across samples

ments, voluntary participation, and producing additional
client I/O traffic. IOSI’s server-side approach allows it
to handle applications using any I/O interface.

Time-series Data Alignment There have been many
studies in this area [6, 9, 10, 27, 38, 46]. Among
them, dynamic time warping (DTW) [10, 46] is a well-
known approach for comparing and averaging a set of
sequences. Originally, this technique was widely used in
the speech recognition community for automatic speech
pattern matching [23]. Recently, it has been successfully
adopted in other areas, such as data mining and informa-
tion retrieval, for automatically addressing time defor-
mations and aligning time-series data [18, 30, 33, 67].
Due to its maturity and existing adoption, we choose
DTW for comparison against the IOSI algorithms.

4 Approach Overview
Thematic to IOSI is the realization that the noisy,

server-side samples contain common, periodic I/O bursts
of the target application. It exploits this fact to extract
the I/O signature, using a rich set of statistical tech-
niques. Simply correlating the samples is not effective
in extracting per-application I/O signatures, due to a set
of challenges detailed below.

First, the server-side logs do not distinguish between
different workloads. They contain I/O traffic generated
by many parallel jobs that run concurrently, as well as in-
teractive I/O activities (e.g., migrating data to and from
remote sites using tools like FTP). Second, I/O con-
tention not only generates “noise” that is superimposed
on the true I/O throughput generated by the target ap-
plication, but also distorts it by slowing down its I/O
operations. In particular, I/O contention produces drift
and scaling effects on the target application’s I/O bursts.
The degree of drift and scaling varies from one sample to
another. Figure 5 illustrates this effect by showing two
samples (solid and dashed) of a target application per-
forming periodic writes. It shows that I/O contention can
cause shifts in I/O burst timing (particularly with the last
two bursts in this case), as well as changes in burst du-
ration (first burst, marked with oval). Finally, the noise
level and the runtime variance caused by background I/O
further create the following dilemma in processing the
I/O signals: IOSI has to rely on the application’s I/O
bursts to properly align the noisy samples as they are

Figure 6: IOSI overview

the only common features; at the same time, it needs the
samples to be reasonably aligned to identify the common
I/O bursts as belonging to the target application.

Recognizing these challenges, IOSI leverages an ar-
ray of signal processing and data mining tools to dis-
cover the target application’s I/O signature using a
black-box approach, unlike prior work based on white-
box models [17, 59]. Recall that IOSI’s purpose is to
render a reliable estimate of user-applications’ band-
width needs, instead of to optimize individual applica-
tions’ I/O operations. Black-box analysis is better suited
here for generic and non-intrusive pattern collection.

The overall context and architecture of IOSI are illus-
trated in Figure 6. Given a target application, multiple
samples from prior runs are collected from the server-
side logs. Using such a sample set as input, IOSI outputs
the extracted I/O signature by mining the common char-
acteristics hidden in the sample set. Our design com-
prises of three phases:

1. Data preprocessing: This phase consists of four
key steps: outlier elimination, sample granularity
refinement, runtime correction, and noise reduc-
tion. The purpose is to prepare the samples for
alignment and I/O burst identification.

2. Per-sample wavelet transform: To utilize “I/O
bursts” as common features, we employ wavelet
transform to distinguish and isolate individual
bursts from the noisy background.

3. Cross-sample I/O burst identification: This
phase identifies the common bursts from multiple
samples, using a grid-based clustering algorithm.

5 IOSI Design and Algorithms

In this section, we describe IOSI’s workflow, step
by step, using the aforementioned IORA pseudo-
application (Figure 4) as a running example.

5

218 12th USENIX Conference on File and Storage Technologies USENIX Association

1000 1200 1400 1600 1800 2000 2200
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

I/O
 vo

lum
e (

GB
)

Normal sample
Outlier sample

Figure 7: Example of outlier elimination

5.1 Data Preprocessing
Given a target application, we first compare the job

log with the I/O throughput log, to obtain I/O samples
from the application’s multiple executions, particularly
by the same user and with the same job size (in term of
node counts). As described in Section 2, HPC users tend
to run their applications repeatedly.

From this set, we then eliminate outliers – samples
with significantly heavier noise signals or longer/shorter
execution time.1 Our observation from Spider is that de-
spite unpredictable noise, the majority of the samples
(from the same application) bear considerable similarity.
Intuitively, including the samples that are apparently sig-
nificantly skewed by heavy noise is counter-productive.
We perform outlier elimination by examining (1) the ap-
plication execution time and (2) the volume of data writ-
ten within the sample (the “area” under the server-side
throughput curve). Within this 2-D space, we apply the
Local Outlier Factor (LOF) algorithm [12], which iden-
tifies observations beyond certain threshold as outliers.
Here we set the threshold µ as the mean of the sam-
ple set. Figure 7 illustrates the distribution of execution
times and I/O volumes among 10 IORA samples col-
lected on Spider, where two of the samples (dots within
the circle) are identified by LOF as outliers.

Next, we perform sample granularity refinement, by
decreasing the data point interval from 2 seconds to 1
using simple linear interpolation [22]. Thus, we insert
an extra data point between two adjacent ones, which
turns out to be quite helpful in identifying short bursts
that last for only a few seconds. The value of each extra
data point is the average value of its adjacent data points.
It is particularly effective in retaining the amplitude of
narrow bursts during the subsequent WT stage.

In the third step, we perform duration correction on
the remaining sample data set. This is based on the ob-
servation that noise can only prolong application exe-
cution, hence the sample with the shortest duration re-
ceived the least interference, and is consequently closest
in duration to the target signature. We apply a simple
trimming process to correct the drift effect mentioned in
Section 4, preparing the samples for subsequent correla-
tion and alignment. This procedure discards data points

1Note that shorter execution time can happen with restart runs re-
suming from a prior checkpoint.

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te
 (

G
B

/s
)

(a) Before noise reduction

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
ri

te
 (

G
B

/s
)

(b) After noise reduction

Figure 8: IORA samples after noise reduction

at regular intervals to shrink each longer sample to match
the shortest one. For example, if a sample is 4% longer
than the shortest one, then we remove from it the 1st,
26th, 51st, ..., data points. We found that after outlier
elimination, the deviation in sample duration is typically
less than 10%. Therefore such trimming is not expected
to significantly affect the sample data quality.

Finally, we perform preliminary noise reduction to re-
move background noise. While I/O-intensive applica-
tions produce heavy I/O bursts, the server-side log also
reports I/O traffic from interactive user activities and
maintenance tasks (such as disk rebuilds or data scrub-
bing by the RAID controllers). Removing this type of
persistent background noise significantly helps signature
extraction. In addition, although such noise does not
significantly distort the shape of application I/O bursts,
having it embedded (and duplicated) in multiple appli-
cation’s I/O signatures will cause inaccuracies in I/O-
aware job scheduling. To remove background noise,
IOSI (1) aggregates data points from all samples, (2)
collects those with a value lower than the overall aver-
age throughput, (3) calculates the average background
noise level as the mean throughput from these selected
data points, and (4) lowers each sample data point by
this average background noise level, producing zero if
the result is negative. Figure 8(b) shows the result of
such preprocessing, and compared to the original sample
in Figure 8(a), the I/O bursts are more pronounced. The
I/O volume of IORAS1 was trimmed by 26%, while the
background noise level was measured at 0.11 GB/s.

5.2 Per-Sample Wavelet Transform
As stated earlier, scientific applications tend to have a

bursty I/O behavior, justifying the use of I/O burst as the
basic unit of signature identification. An I/O burst indi-
cates a phase of high I/O activity, distinguishable from
the background noise over a certain duration.

With less noisy samples, the burst boundaries can be
easily found using simple methods such as first differ-
ence [50] or moving average [62]. However, with noisy
samples identifying such bursts becomes challenging, as
there are too many ups and downs close to each other.
In particular, it is difficult to do so without knowing the
cutoff threshold for a “bump” to be considered a candi-
date I/O burst. Having too many or too few candidates

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 219

0 200 400 600 8000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(a) Preprocessed IORAS6 segment

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(b) After WT (Decomposition level 1)

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(c) After WT (Decomposition level 2)

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(d) After WT (Decomposition level 3)

Figure 9: dmey WT results on a segment of IORAS6

can severely hurt our sample alignment in the next step.
To this end, we use a WT [21, 41, 63] to smooth sam-

ples. WT has been widely applied to problems such
as filter design [14], noise reduction [35], and pattern
recognition [24]. With WT, a time-domain signal can
be decomposed into low-frequency and high-frequency
components. The approximation information remains in
the low-frequency component, while the detail informa-
tion remains in the high-frequency one. By carefully
selecting the wavelet function and decomposition level
we can observe the major bursts from the low-frequency
component. They contain the most energy of the signal
and are isolated from the background noise.

By retaining the temporal characteristics of the time-
series data, WT brings an important feature not offered
by widely-used alternative techniques such as Fourier
transform [11]. We use WT to clarify individual bursts
from their surrounding data, without losing the temporal
characteristics of the time-series sample.

WT can use quite a few wavelet families [4, 45], such
as Haar, Daubechies, and Coiflets. Each provides a
transform highlighting different frequency and tempo-
ral characteristics. For IOSI, we choose discrete Meyer
(dmey) [40] as the mother wavelet. Due to its smooth
profile, the approximation part of the resulting signal
consists of a series of smooth waves. Its output consists
of a series of waves where the center of the wave troughs
can be easily identified as wave boundaries.

Figures 9(a) and Figures 9(b), 9(c), 9(d) illustrate a
segment of IORAS6 and its dmey WT results, respec-
tively. With a WT, the high-frequency signals in the
input sample are smoothed, producing low-frequency
components that correlate better with the target appli-
cation’s periodic I/O. However, here the waves cannot
be directly identified as I/O bursts, as a single I/O burst
from the application’s point of view may appear to have
many “sub-crests”, separated by minor troughs. This is
due to throughput variance caused by either application
behavior (such as adjacent I/O calls separated by short
computation/communication) or noise, or both. To pre-
vent creating many such “sub-bursts”, we use the mean
height of all wave crests for filtering – only the troughs
lower than this threshold are used for separating bursts.

Another WT parameter to consider is the decompo-

sition level, which determines the level of detailed in-
formation in the results. The higher the decomposition
level, the fewer details are shown in the low-frequency
component, as can be seen from Figures 9(b), 9(c) and
9(d). With a decomposition level of 1 (e.g. Figures 9(b)),
the wavelet smoothing is not sufficient for isolating burst
boundaries. With a higher decomposition level of 3 the
narrow bursts fade out rapidly, potentially missing target
bursts. IOSI uses a decomposition level of 2 to better
retain the bursty nature of the I/O signature.

5.3 Cross-Sample I/O Burst Identification
Next, IOSI correlates all the pre-processed, and

wavelet transformed samples to identify common I/O
bursts. To address the circular dependency chal-
lenge mentioned earlier between alignment and com-
mon feature identification, we adapt a grid-based clus-
tering approach called CLIQUE [8]. It performs multi-
dimensional data clustering by identifying grids (called
units) where there is higher density (number of data
points within the unit). CLIQUE treats each such dense
unit as a “seed cluster” and grows it by including neigh-
boring dense units.

CLIQUE brings several advantages to IOSI. First, its
model fits well with our context: an I/O burst from a
given sample is mapped to a 2-D data point, based on
its time and shape attributes. Therefore, data points
from different samples close to each other in the 2-D
space naturally indicate common I/O bursts. Second,
with controllable grid width and height, IOSI can bet-
ter handle burst drifts (more details given below). Third,
CLIQUE performs well for scenarios with far-apart clus-
ters, where inter-cluster distances significantly exceed
those between points within a cluster. As parallel ap-
plications typically limit their “I/O budget” (fraction of
runtime allowed for periodic I/O) to 5%-10%, individual
I/O bursts normally last seconds to minutes, with dozens
of minutes between adjacent bursts. Therefore, CLIQUE
is not only effective for IOSI, but also efficient, as we do
not need to examine too far around the burst-intensive ar-
eas. Our results (Section 6) show that it outperforms the
widely used DTW time-series alignment algorithm [10],
while incurring significantly lower overhead.

We make two adjustments to the original CLIQUE

7

220 12th USENIX Conference on File and Storage Technologies USENIX Association

Figure 10: Mapping IORA I/O bursts to 2-D points

algorithm. Considering the I/O bursts are sufficiently
spaced from each other in a target application’s execu-
tion, we limit the growth of the cluster to the immediate
neighborhood of a dense unit: the units that are adjacent
to it. Also, we have modified the density calculation to
focus not on the sheer number of data points in a unit,
but on the number of different samples with bursts there.
The intuition is that a common burst from the target ap-
plication should have most (if not all) samples agree on
its existence. Below, we illustrate with IORA the pro-
cess of IOSI’s common burst identification.

Figure 11: CLIQUE 2-D grid containing IORA bursts

To use our adapted CLIQUE, we need to first dis-
cretize every sample si into a group of 2-D points, each
representing one I/O burst identified after a WT. Given
its jth I/O burst bi,j , we map it to point 〈ti,j , ci,j〉. Here
ti,j is the time of the wave crest of bi,j , obtained after a
WT, while ci,j is the correlation coefficient between bi,j
and a reference burst. To retain the details describing
the shape of the I/O burst, we choose to use the pre-WT
burst in calculating ci,j , though the burst itself was iden-
tified using a WT. Note that we rely on the transitive na-
ture of correlation (“bursts with similar correlation coef-
ficient to the common reference burst tend to be similar
to each other”), so the reference burst selection does not
have a significant impact on common burst identifica-
tion. In our implementation, we use the “average burst”
identified by WT across all samples.

Figure 10 shows how we mapped 4 I/O bursts, each
from a different IORA sample. Recall that WT identi-
fies each burst’s start, peak, and end points. The x co-
ordinate for each burst shows “when it peaked,” derived
using the post-WT wave (dotted line). The y coordinate
shows “how similar it is to a reference burst shape,” cal-
culated using the pre-WT sample (solid lines).

Therefore, our CLIQUE 2-D data space has an x
range of [0, t] (where t is the adjusted sample duration
after preprocessing) and a y range of [0, 1]. It is par-
titioned into uniform 2-D grids (units). Defining the
unit width and height is critical for CLIQUE, as overly
small or large grids will obviously render the density in-
dex less useful. Moreover, even with carefully selected
width and height values, there is still a chance that a clus-
ter of nodes are separated into different grids, causing
CLIQUE to miss a dense unit.

To this end, instead of using only one pair of width-
height values, IOSI tries out multiple grid size configura-
tions, each producing an extracted signature. For width,
it sets the lower bound as the average I/O burst duration
across all samples and upper bound as the average time
distance between bursts. For a unit height, it empirically
adopts the range between 0.05 and 0.25. Considering the
low cost of CLIQUE processing with our sample sets,
IOSI uniformly samples this 2-D parameter space (e.g.,
with 3-5 settings per dimension), and takes the result that
identified the most data points as belonging to common
I/O bursts. Due to the strict requirement of identifying
common bursts, we have found in our experiments that
missing target bursts is much more likely to happen than
including fake bursts in the output signature. Figure 11
shows the resulting 2-D grid, containing points mapped
from bursts in four IORA samples.

We have modified the original dense unit definition as
follows. Given s samples, we calculate the density of a
unit as “the number of samples that have points within
this unit”. If a unit meets a certain density threshold
�γ ∗ s�, where γ is a controllable parameter between 0
and 1, the unit is considered dense. Our experiments
used a γ value of 0.5, requiring each dense unit to have
points from at least 2 out of the 4 samples. All dense
units are marked with a dark shade in Figure 11.

Due to the time drift and shape distortion caused by
noise, nodes from different samples representing the
same I/O burst could be partitioned by grid lines. As
mentioned earlier, for each dense unit, we only check
its immediate neighborhood (shown in a lighter shade in
Figure 11) for data points potentially from a common
burst. We identify dense neighborhoods (including the
central dense unit) as those meeting a density threshold
of �κ ∗ s�, where κ is another configurable parameter
with value larger than γ (e.g., 0.9).

Note that it is possible for the neighborhood (or even
a single dense unit) to contain multiple points from the
same sample. IOSI further identifies points from the
common I/O burst using a voting scheme. It allows up
to one point to be included from each sample, based on
the total normalized Euclidean distance from a candi-
date point to peers within the neighborhood. From each
sample, the data point with the lowest total distance is

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 221

selected. In Figure 11, the neighborhood of dense unit
5 contains two bursts from IORAS3 (represented by
dots). The burst in the neighborhood unit (identified by
the circle) is discarded using our voting algorithm. As
the only “redundant point” within the neighborhood, it
is highly likely to be a “fake burst” from other concur-
rently running I/O-intensive applications. This can be
confirmed by viewing the original sample IORAS3 in
Figure12(b), where a tall spike not from IORA shows
up around the 1200th second.

5.4 I/O Signature Generation
Given the common bursts from dense neighborhoods,

we proceed to sample alignment. This is done by align-
ing all the data points in a common burst to the aver-
age of their x coordinate values. Thereafter, we generate
the actual I/O signature by sweeping along the x (time)
dimension of the CLIQUE 2-D grid. For each dense
neighborhood identified, we generate a corresponding
I/O burst at the aligned time interval, by averaging the
bursts mapped to the selected data points in this neigh-
borhood. Here we used the bursts after preprocessing,
but before WT.

6 Experimental Evaluation
We have implemented the proof-of-concept IOSI pro-

totype using Matlab and Python. To validate IOSI, we
used IOR to generate multiple pseudo-applications with
different I/O write patterns, emulating write-intensive
scientific applications. In addition, we used S3D [31,
56], a massively parallel direct numerical simulation
solver developed at Sandia National Laboratory for
studying turbulent reacting flows.

Figure 13(a), 13(e) and 13(i) are the true I/O sig-
natures of the three IOR pseudo-applications, IORA,
IORB , and IORC . These pseudo-applications were
run on the Smoky cluster using 256 processes, writing
to the Spider center-wide parallel file system. Each pro-
cess was configured to write sequentially to a separate
file (stripe size of 1MB, stripe count of 4) using MPI-
IO. We were able to obtain “clean” signatures (with little
noise) for these applications by running our jobs when
Titan was not in production use (under maintenance) and
one of the file system partitions was idle. Among them,
IORA represents simple periodic checkpointing, writ-
ing the same volume of data at regular intervals (128GB
every 300s). IORB also writes periodically, but alter-
nates between two levels of output volume (64GB and
16GB every 120s), which is typical of applications with
different frequencies in checkpointing and results writ-
ing (e.g., writing intermediate results every 10 minutes
but checkpointing every 30 minutes). IORC has more
complex I/O patterns, with three different write cycles
repeated periodically (one output phase every 120s, with

output size cycling through 64GB, 32GB, and 16GB).

6.1 IOR Pseudo-Application Results
To validate IOSI, the IOR pseudo-applications were

were run at different times of the day, over a two-week
period. Each application was run at least 10 times. Dur-
ing this period, the file system was actively used by Titan
and other clusters. The I/O activity captured during this
time is the noisy server-side throughput logs. From the
scheduler’s log, we identified the execution time inter-
vals for the IOR runs, which were then intersected with
the I/O throughput log to obtain per-application samples.

It is worth noting that the I/O throughput range of all
of the IOR test cases is designed to be 2-3GB/s. Af-
ter analyzing several months of Spider log data, we ob-
served that it is this low-bandwidth range that is highly
impacted by background noise. If the bandwidth of the
application is much higher (say 20GB/s), the problem
becomes much easier, since there is less background
noise that can achieve that bandwidth level to interfere.

Due to the space limit, we only show four samples for
each pseudo-app in Figure 12. We observe that most of
them show human-visible repeated patterns that overlap
with the target signatures. There is, however, significant
difference between the target signature and any individ-
ual sample. The samples show a non-trivial amount of
“random” noise, sometimes (e.g., IORAS1) with dis-
tinct “foreign” repetitive pattern, most likely from an-
other application’s periodic I/O. Finally, a small number
of samples are noisy enough to make the target signa-
ture appear overwhelmed (which should be identified as
outliers and discarded from signature extraction).

Figure 13 presents the original signatures and the ex-
tracted signatures using three approaches: IOSI with and
w/o data preprocessing, plus DTW with data preprocess-
ing. As introduced in Section 3, DTW is a widely used
approach for finding the similarity between two data
sequences. In our problem setting, similarity means a
match in I/O bursts from two samples. We used sample
preprocessing to make a fair comparison between DTW
and IOSI. Note that IOSI without data preprocessing uti-
lizes samples after granularity refinement, to obtain ex-
tracted I/O signatures with similar length across all three
methods tested.

Since DTW performs pair-wise alignment, it is un-
able to perform effective global data alignment across
multiple samples. In our evaluation, we apply DTW as
follows. We initially assign a pair of samples as input
to DTW, and feed the result along with another sample
to DTW again. This process is repeated until all sam-
ples are exhausted. We have verified that this approach
performs better (in terms of both alignment accuracy
and processing overhead) than the alternative of averag-
ing all pair-wise DTW results, since it implicitly carries

9

222 12th USENIX Conference on File and Storage Technologies USENIX Association

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
rit

e
(G

B/
s)

(a) IORAS1

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
rit

e
(G

B/
s)

(b) IORAS2

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
rit

e
(G

B/
s)

(c) IORAS3

0 400 800 1200 1600 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

W
rit

e
(G

B/
s)

(d) IORAS4

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
rit

e
(G

B/
s)

(e) IORBS1

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
rit

e
(G

B/
s)

(f) IORBS2

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
rit

e
(G

B/
s)

(g) IORBS3

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Time (s)

W
rit

e
(G

B/
s)

(h) IORBS4

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B/
s)

(i) IORCS1

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B/
s)

(j) IORCS2

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B/
s)

(k) IORCS3

0 400 800 1200 1600 2000
0

1

2

3

4

5

6

Time (s)

W
rit

e
(G

B/
s)

(l) IORCS4

Figure 12: Samples from IOR test cases

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
 (G

B
/s

)

(a) IORA target signature

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(b) IOSI w/o data preprocessing

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(c) IOSI with data preprocessing

0 500 1000 1500 20000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B
/s

)

(d) DTW with data preprocessing

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
 (G

B/
s)

(e) IORB target signature

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B/
s)

(f) IOSI w/o data preprocessing

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B/
s)

(g) IOSI with data preprocessing

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

3

Time (s)

W
rit

e
(G

B/
s)

(h) DTW with data preprocessing

0 500 1000 15000

0.5

1

1.5

2

2.5

3

3.5

Time (s)

W
rit

e
 (G

B/
s)

(i) IORC target signature

0 500 1000 15000

1

2

3

4

Time (s)

W
rit

e
(G

B/
s)

(j) IOSI w/o data preprocessing

0 500 1000 15000

1

2

3

4

Time (s)

W
rit

e
(G

B/
s)

(k) IOSI with data preprocessing

0 500 1000 15000

1

2

3

4

Time (s)

W
rit

e
(G

B/
s)

(l) DTW with data preprocessing

Figure 13: Target and extracted I/O signatures of IOR test cases

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 223

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B/
s)

(a) S3DS1

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B/
s)

(b) S3DS2

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B/
s)

(c) S3DS3

0 800 1600 2400
0

2

4

6

8

10

12

14

Time (s)

W
rit

e
(G

B/
s)

(d) S3DS4

Figure 14: S3D samples

0 1000 2000 30000

2

4

6

8

10

Time (s)

W
rit

e
(G

B/
s)

(a) S3D target I/O signature

0 1000 2000 30000

2

4

6

8

10

Time (s)

W
rit

e
(G

B/
s)

(b) IOSI w/o data preprocessing

0 1000 2000 30000

2

4

6

8

10

Time (s)

W
rit

e
(G

B/
s)

(c) IOSI with data preprocessing

0 1000 2000 30000

2

4

6

8

10

Time (s)

W
rit

e
(G

B/
s)

(d) DTW with data preprocessing

Figure 15: S3D target I/O signature and extracted I/O signature by IOSI and DTW

out global data alignment. Still, DTW generated sig-
nificantly lower-quality signatures, especially with more
complex I/O patterns, due to its inability to reduce noise.
For example, DTW’s IORC (Figure 13(l)) signature ap-
pears to be dominated by noise.

In contrast, IOSI (with or w/o data preprocessing)
generated output signatures with much higher fidelity.
In both cases, IOSI is highly successful in capturing I/O
bursts in the time dimension (with small, yet visible er-
rors in the vertical height of the bursts). Without prepro-
cessing, IOSI missed 3 out of the 25 I/O bursts from all
pseudo-applications. With preprocessing, however, the
symptom is much improved (no burst missed).

6.2 S3D Results
Next, we present results with the aforementioned

large-scale scientific application, S3D. S3D was run on
Titan and the Spider file system. S3D performs periodic
checkpointing I/O, with each process generating 3.4 MB
of data. Figure 14 shows selected samples from mul-
tiple S3D runs, where we see a lot of I/O interference
since both Titan and Spider were being used in produc-
tion mode. Unlike IOR, we were not able to run S3D
on a quiescent Spider file system partition to obtain its
“clean” signature to validate IOSI. Instead, we had to use
client-side I/O tracing, to produce the target I/O signa-
ture (Figure 15(a)). The I/O signature also displays vari-
ance in peak bandwidth, common in real-world, large
job runs. Again, we extracted the I/O signature from the
samples using IOSI (with and without data preprocess-
ing), plus DTW with preprocessing (Figure 15).

As in the case of IOR, IOSI with data preprocessing
performs better than IOSI without data preprocessing
and DTW. This result suggests that IOSI is able to the ex-

tract I/O signatures of real-world scientific applications
from noisy throughput logs, collected from a very busy
supercomputing center. While both versions of IOSI
missed an I/O burst, the data preprocessing helps deliver
better alignment accuracy (discussed in Figures 16(a)
and 16(b)). The presence of heavy noise in the samples
likely caused DTW’s poor performance.

6.3 Accuracy and Efficiency Analysis
We quantitatively compare the accuracy of IOSI and

DTW using two commonly used similarity metrics,
cross correlation (Figure 16(a)) and correlation coeffi-
cient (Figure 16(b)). Correlation coefficient measures
the strength of the linear relationship between two sam-
ples. Cross correlation [65] is a similarity measurement
that factors in the drift in a time series data set. Figure 16
portraits these two metrics, as well as the total I/O vol-
ume comparison, between the extracted and the original
application signature.

Note that correlation coefficient is inadequate to char-
acterize the relationship between the two time series
when they are not properly aligned. For example, with
IORB , the number of bursts in the extracted signa-
tures by IOSI with and without data preprocessing is
very close. However, the one without preprocessing suf-
fers more burst drift compared to the original signature.
Cross correlation appears more tolerant to IOSI without
preprocessing compared to correlation coefficient. Also,
IOSI significantly outperforms DTW (both with prepro-
cessing), by a factor of 2.1-2.6 in cross correlation, and
4.8-66.0 in correlation coefficient.

Note that the DTW correlation coefficient for S3D is
too small to show. Overall, IOSI with preprocessing
achieves a cross correlation between 0.72 and 0.95, and

11

224 12th USENIX Conference on File and Storage Technologies USENIX Association

0

0.2

0.4

0.6

0.8

1 0.940.95

0.35

0.87

0.52

0.38

0.8

0.34
0.38

0.72

0.39
0.28

Test case

Cr
os

s
Co

rr
el

at
io

n

IORA IORB IORC S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing

(a) Cross correlation

0

0.2

0.4

0.6

0.8

1 0.94 0.95

0.15

0.69

0.16
0.15

0.75

0.13
0.1

0.66

0.12

0

Test case

Co
rr

el
at

io
n

co
ef

fic
ie

nt

IORA IORB IORC S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing

(b) Correlation coefficient

0

200

400

600

800

1000

1200

352
396

668

510

157
127

287
196

406
408

770

516
384

370
454

389

Test case

To
ta

l I
/O

 V
ol

um
e

(G
B)

IORA IORB IORC
S3D

IOSI w data preprocessing
IOSI w/o data preprocessing
DTW with data preprocessing
Target signature

(c) Total I/O volume
Figure 16: Result I/O signature accuracy evaluation

0

0.5

1

1.5

0.9
0.94

0.9
0.82 0.85 0.87

0.7 0.77
0.8

0.78
0.63

0.72 0.690.67

Test case

C
ro

s
s
 c

o
e
ff

ic
ie

n
t

IORA IORB IORC S3D

WT decomposition level 1
WT decomposition level 2
WT decomposition level 3
WT decomposition level 4

(a) Cross correlation

0

0.2

0.4

0.6

0.8

1

1.2

0.89
0.94

0.8
0.82

0.68
0.69

0.68
0.57

0.740.750.73
0.620.64

0.66
0.64

0.36

Test case

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

IORA IORB
IORC S3D

WT decomposition level 1
WT decomposition level 2
WT decomposition level 3
WT decomposition level 4

(b) Correlation coefficient
Figure 17: IOSI - WT sensitivity analysis

0

0.2

0.4

0.6

0.8

1

0.76 0.78

0.63
0.55

0.59

0.56

0.61 0.6 0.580.48

Test case

C
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

IORC
S3D

DT 0.3
DT 0.4
DT 0.5
DT 0.6
DT 0.7
DT 0.8
DT 0.9

(a) Density threshold (DT)

0

0.2

0.4

0.6

0.8

1

1.2

0.69 0.71
0.75

0.7

0.53 0.52

0.66 0.61

Test case

C
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

IORC S3D

NDT 0.7
NDT 0.8
NDT 0.9
NDT 1.0

(b) Neighborhood density thresh-
old (NDT)

Figure 18: IOSI - Clustering sensitivity analysis

a correlation coefficient between 0.66 and 0.94.
We also compared the total volume of I/O traffic (i.e.,

the “total area” below the signature curve), shown in Fig-
ure 16(c). IOSI generates I/O signatures with a total
I/O volume closer to the original signature than DTW
does. It is interesting that without exception, IOSI and
DTW err on the lower and higher side, respectively. The
reason is that DTW tends to include foreign I/O bursts,
while IOSI’s WT process may “trim” the I/O bursts in
its threshold-based burst boundary identification.

Next, we performed sensitivity analysis on the tunable
parameters of IOSI, namely the WT decomposition level,
and density threshold/neighborhood density threshold in
CLIQUE clustering. As discussed in Section 5, we used
a WT decomposition level of 2 in IOSI. In Figures 17(a)
and 17(b), we compare the impact of WT decomposition
levels using both cross correlation and correlation coef-
ficient. Figure 17(a) shows that IOSI does better with a
decomposition level of 2, compared to levels 1, 3 and 4.
Similarly, Figure 17(b) shows that the correlation coeffi-
cient is the best at the WT decomposition level of 2.

In Figure 18(a), we tested IOSI with different density
thresholds �γ ∗ s� in CLIQUE clustering, where γ is the

controllable factor and s is the number of samples. In
IOSI, the default γ value is 50%. From Figure 18(a)
we noticed a peak correlation coefficient at γ value of
around 50%. There is significant performance degrada-
tion at over 70%, as adjacent bursts may be grouped to
form a single burst. In Figure 18(b), we tested IOSI with
different neighborhood density thresholds �κ∗s�, where
κ is another configurable factor with value larger than γ.
IOSI used 90% as the default value of κ. Figure 18(b)
suggests that lower thresholds perform poorly, as more
neighboring data points deteriorates the quality of iden-
tified I/O bursts. With a threshold of 100%, we expect
bursts from all samples to be closely aligned, which is
impractical.

3 4 5 6 7 80

1

2

3

4

5

6

7

of samples

Pr
oc

es
sin

g
tim

e
(s

)

DTW
IOSI with 100 parameter combinations
IOSI with 40 parameter combinations
IOSI with 1 parameter combination

(a) Scalability in # of samples

1000 2000 3000 4000 5000 60000

20

40

60

80

100

Length of samples (s)

Pr
oc

es
sin

g
tim

e
(s

)

DTW
IOSI with 100 parameter combinations
IOSI with 40 parameter combinations
IOSI with 1 parameter combination

(b) Scalability in sample duration

Figure 19: Processing time analysis

Finally, we analyze the processing time overhead of
these methods. IOSI involves mainly two computation
tasks: wavelet transform and CLIQUE clustering. The
complexity of WT (discrete) is O(n) [29] and CLIQUE
clustering is O(Ck + nk) [32], where k is the highest
dimensionality, n the number of input points, and C the
number of clusters. In our CLIQUE implementation, k
is set to 2 and C is also a small number. Therefore we as-
sume Ck as a constant, resulting in a complexity of O(n),
leading to the overall linear complexity of IOSI. DTW,
on the other hand, has a complexity of O(mn) [34],
where m and n are the lengths of the two input arrays.

Experimental results confirm the above analysis. In
Figure 19(a), we measure the processing time with dif-
ferent sample set sizes (each sample containing around
2000 data points). For IOSI, the processing time appears
to stay flat as more samples are used. This is because the
CLIQUE clustering time, which is rather independent of
the number of samples and depends more on the number

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 225

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e (
GB

/s)

(a) 160-node job

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e (
GB

/s)

(b) 320-node job

0 1000 2000 3000
0

10

20

30

40

50

Time (s)

W
rit

e (
GB

/s)

(c) 640-node job

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

Time (s)

W
rit

e (
GB

/s)

(d) IOSI Result

Figure 20: Weak scaling sample and IOSI extracted I/O signature

of grids, dominates IOSI’s overhead. Even with 100 2-
D IOSI parameter settings (for the CLIQUE grid size),
DTW’s cost catches up with 5 samples and grows much
faster beyond this point. Figure 19(b) shows results with
8 samples, at varied sample lengths. We see that IOSI
processing time increases linearly while DTW displays
a much faster growth. To give an idea of its feasibil-
ity, IOSI finishes processing three months of Spider logs
(containing 80,815 job entries) in 72 minutes.

6.4 Discussion
I/O signatures and application configurations Scien-
tific users tend to have a pattern of I/O behavior. How-
ever, they do scale applications with respect to the num-
ber of nodes, resulting in similar I/O characteristics. In
Figure 20, we show the I/O pattern of a real Titan user,
running jobs with three different node counts (160, 320,
and 640). From Figures 20(a)-20(c), we observe that the
total I/O volume increases linearly with the node count
(weak scaling), but the peak bandwidth remains almost
constant. As a result, the time spent on I/O also increases
linearly. IOSI can discern such patterns and extract the
I/O signature, as shown in Figure 20(d). As described
earlier, in the data preprocessing step we perform run-
time correction and the samples are normalized to the
sample with the shortest runtime. In this case, IOSI nor-
malizes the data sets to that of the shortest job (i.e., the
job with the smallest node count), and provides the I/O
signature of the application for the smallest job size.
Identifying different user workloads Our tests used
a predominant scientific I/O pattern, where applications
perform periodic I/O. However, as long as an applica-
tion exhibits similar I/O behavior across multiple runs,
the common I/O pattern can be captured by IOSI as its
algorithms make no assumption on periodic behavior.
False-positives and missing bursts False-positives are
highly unlikely as it is very difficult to have highly cor-
related noise behavior across multiple samples. IOSI
could miscalculate small-scale I/O bursts if they happen
to be dominated by noise in most samples. Increasing
the number of samples can help here.
IOSI for resource allocation and scheduling The IOSI
generated signature can be used to influence both re-
source allocation as well as scheduling. Large-scale file

systems are typically made available as multiple parti-
tions, with users choosing one or more for their runs. A
simple partition allocation strategy would be to let the
users choose a set of under-utilized partitions. However,
when all partitions are being actively used by multiple
users, the challenge is in identifying a set of partitions
that will have the least interference on the target appli-
cation. The IOSI extracted signature can be correlated
with the I/O logs of the partitions to identify those that
will have a minimal impact on the application. If we are
unable to find an optimal partition for an application, the
scheduler can even stagger such jobs, preferring others
in the queue. The premise here is that finding a partition
that better suits the job’s I/O needs can help amortize
the I/O costs over the entire run. These benefits could
outweigh the cost of waiting longer in the queue.

7 Conclusion
We have presented IOSI, a zero-overhead scheme

for automatically identifying the I/O signature of data-
intensive parallel applications. IOSI utilizes existing
throughput logs on the storage servers to identify the sig-
nature. It uses a suite of statistical techniques to extract
the I/O signature from noisy throughput measurements.
Our results show that an entirely data-driven approach,
exploring existing monitoring and job scheduling history
can extract substantial application behavior, potentially
useful for resource management optimization. In par-
ticular, such information gathering does not require any
developer effort or internal application knowledge. Such
a black-box method may be even more appealing as sys-
tems/applications grow larger and more complex.

Acknowledgement
We thank the reviewers and our shepherd, Kimberly

Keeton, for constructive comments that have signifi-
cantly improved the paper. This work was supported in
part by the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is man-
aged by UT Battelle, LLC for the U.S. DOE (under the
contract No. DE-AC05-00OR22725). This work was
also supported in part by the NSF grants CCF-0937690,
CCF-0937908, and a NetApp Faculty Fellowship.

13

226 12th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] IOR HPC Benchmark, https://asc.llnl.

gov/sequoia/benchmarks/#ior.

[2] Los Alamos National Laboratory open-source
LANL-Trace, http://institute.lanl.
gov/data/tdata.

[3] Titan, http://www.olcf.ornl.gov/
titan/.

[4] Wavelet, http://users.rowan.edu/

˜polikar/WAVELETS/WTtutorial.html.

[5] Using Cray Performance Analysis Tools. Docu-
ment S-2474-51, Cray User Documents, http:
//docs.cray.com, 2009.

[6] J. Aach and G. M. Church. Aligning gene ex-
pression time series with time warping algorithms.
Bioinformatics, 17:495–508, 2001.

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,
G. Marin, J. Mellor-Crummey, and N. R. Tallent.
Hpctoolkit: Tools for performance analysis of op-
timized parallel programs. Concurrency and Com-
putation: Practice and Experience, 22(6):685–
701, 2010.

[8] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of
high dimensional data for data mining applications.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD
’98), 1998.

[9] L. Bergroth, H. Hakonen, and T. Raita. A sur-
vey of longest common subsequence algorithms.
In Proceedings of the 7th International Symposium
on String Processing and Information Retrieval
(SPIRE’00), 2000.

[10] D. J. Berndt and J. Clifford. Using dynamic time
warping to find patterns in time series. In Working
Notes of the Knowledge Discovery in Databases
Workshop, 1994.

[11] R. N. Bracewell. The Fourier transform and its
applications. McGraw-Hill New York, 1986.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD ’00), 2000.

[13] S. Bruenn, A. Mezzacappa, W. Hix, J. Blondin,
P. Marronetti, O. Messer, C. Dirk, and S. Yoshida.
2d and 3d core-collapse supernovae simulation re-
sults obtained with the chimera code. Journal
of Physics: Conference Series, 180(2009)012018,
2009.

[14] C. S. Burrus, R. A. Gopinath, H. Guo, J. E. Ode-
gard, and I. W. Selesnick. Introduction to wavelets
and wavelet transforms: a primer, volume 23.
Prentice Hall Upper Saddle River, 1998.

[15] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and
W. Gropp. Parallel I/O prefetching using MPI
file caching and I/O signatures. In Proceedings
of the ACM/IEEE Conference on Supercomputing
(SC ’08), 2008.

[16] P. Carns, K. Harms, W. Allcock, C. Bacon,
S. Lang, R. Latham, and R. Ross. Understanding
and improving computational science storage ac-
cess through continuous characterization. In Pro-
ceedings of the IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST’11),
2011.

[17] P. H. Carns, R. Latham, R. B. Ross, K. Iskra,
S. Lang, and K. Riley. 24/7 Characterization of
petascale I/O workloads. In Proceedings of the
First Workshop on Interfaces and Abstractions for
Scientic Data Storage (IASDS’09), 2009.

[18] S. Chu, E. J. Keogh, D. Hart, and M. J. Pazzani.
Iterative Deepening Dynamic Time Warping for
Time Series. In Proceedings of the 2nd SIAM In-
ternational Conference on Data Mining (SDM’02),
2002.

[19] J. Daly. A model for predicting the optimum
checkpoint interval for restart dumps. In Proceed-
ings of the 1st International Conference on Com-
putational Science (ICCS’03), 2003.

[20] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gen-
eration Computer Systems, 22(3):303–312, 2006.

[21] I. Daubechies. Orthonormal bases of compactly
supported wavelets II: Variations on a theme. SIAM
Journal on Mathematical Analysis, 24:499–519,
1993.

[22] C. de Boor. A practical guide to splines. Springer-
Verlag New York, 1978.

[23] J. R. Deller, J. G. Proakis, and J. H. Hansen.
Discrete-time processing of speech signals. IEEE
New York, NY, USA, 2000.

[24] P. Du, W. A. Kibbe, and S. M. Lin. Improved peak
detection in mass spectrum by incorporating con-
tinuous wavelet transform-based pattern matching.
Bioinformatics, 22(17):2059–2065, 2006.

[25] E.L.Miller and R.H.Katz. Input/output behavior
of supercomputing applications. In Proceedings
of the ACM/IEEE Conference on Supercomputing
(SC’91), 1991.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 227

[26] G. R. Ganger. Generating Representative Synthetic
Workloads: An Unsolved Problem. In Proceedings
of the Computer Measurement Group (CMG’95),
1995.

[27] Z. Gong and X. Gu. PAC: Pattern-driven Appli-
cation Consolidation for Efficient Cloud Comput-
ing. In Proceedings of the 18th IEEE/ACM Inter-
national Symposium on Modeling, Analysis, and
Simulation of Computer Telecommunications Sys-
tems (MASCOTS’10), 2010.

[28] R. Gunasekaran, D. Dillow, G. Shipman, R. Vuduc,
and E. Chow. Characterizing Application Run-
time Behavior from System Logs and Metrics. In
Proceedings of the Characterizing Applications for
Heterogeneous Exascale Systems (CACHES’11),
2011.

[29] H. Guo and C. S. Burrus. Fast approximate Fourier
transform via wavelets transform. In Proceedings
of the International Symposium on Optical Sci-
ence, Engineering, and Instrumentation, 1996.

[30] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C.
Mozer. Automating vertical profiling. In Proceed-
ings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), 2005.

[31] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and
J. H. Chen. Direct numerical simulation of tur-
bulent combustion: fundamental insights towards
predictive models. Journal of Physics: Conference
Series, 16(1):65, 2005.

[32] M. Ilango and V. Mohan. A Survey of Grid Based
Clustering Algorithms. International Journal of
Engineering Science and Technology, 2(8):3441–
3446, 2010.

[33] E. Keogh and C. A. Ratanamahatana. Exact in-
dexing of dynamic time warping. Knowledge and
Information Systems, 7(3):358–386, 2005.

[34] E. J. Keogh and M. J. Pazzani. Scaling up dy-
namic time warping for datamining applications.
In Proceedings of the 6th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Dining, 2000.

[35] N. G. Kingsbury. The dual-tree complex wavelet
transform: a new technique for shift invariance and
directional filters. In Proceedings of the 8th IEEE
Digital Signal Processing (DSP) Workshop, 1998.

[36] D. Kothe and R. Kendall. Computational science
requirements for leadership computing. Oak Ridge
National Laboratory, Technical Report, 2007.

[37] Z. Kurmas and K. Keeton. Synthesizing Repre-
sentative I/O Workloads Using Iterative Distilla-

tion. In Proceedings of the 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis, and
Simulation of Computer Telecommunications Sys-
tems (MASCOTS’03), 2003.

[38] C. Lipowsky, E. Dranischnikow, H. Göttler, T. Got-
tron, M. Kemeter, and E. Schömer. Alignment of
noisy and uniformly scaled time series. In Pro-
ceedings of the Database and Expert Systems Ap-
plications (DEXA’09), 2009.

[39] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksineha-
boon, M. Paun, and S. L. Scott. An optimal check-
point/restart model for a large scale high perfor-
mance computing system. In Proceedings of the
International Parallel Distributed Processing Sym-
posium (IPDPS’08), 2008.

[40] Y. Long, L. Gang, and G. Jun. Selection of the best
wavelet base for speech signal. In Proceedings of
the International Symposium on Intelligent Multi-
media, Video and Speech Processing, 2004.

[41] S. Mallat. A theory for multiresolution signal de-
composition: the wavelet representation. Pattern
Analysis and Machine Intelligence, 11(7):674–
693, 1989.

[42] M. P. Mesnier, M. Wachs, R. R. Simbasivan,
J. Lopez, J. Hendricks, G. R. Ganger, and D. R.
O’Hallaron. //trace: Parallel trace replay with ap-
proximate causal events. In Proceedings of the
5th USENIX Conference on File and Storage Tech-
nologies (FAST’07), 2007.

[43] R. Miller, J. Hill, D. A. Dillow, R. Gunasekaran,
S. Galen, and D. Maxwell. Monitoring Tools For
Large Scale Systems. In Proceedings of the Cray
User Group (CUG’10), 2010.

[44] K. Mohror and K. L. Karavanic. An Investigation
of Tracing Overheads on High End Systems. Tech-
nical report, PSU, 2006.

[45] W. G. Morsi and M. El-Hawary. The most suitable
mother wavelet for steady-state power system dis-
torted waveforms. In Proceedings of the Canadian
Conference on Electrical and Computer Engineer-
ing, 2008.

[46] M. Müller. Dynamic time warping. Informa-
tion Retrieval for Music and Motion, pages 69–84,
2007.

[47] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclat-
ter Ellis, and M. Best. File-access characteristics of
parallel scientific workloads. IEEE Transactions
on Parallel and Distributed Systems, 7(10):1075–
1089, 1996.

[48] S. Oral, F. Wang, D. Dillow, G. Shipman, R. Miller,
and O. Drokin. Efficient object storage journaling

15

228 12th USENIX Conference on File and Storage Technologies USENIX Association

in a distributed parallel file system. In Proceedings
of the 8th USENIX Conference on File and Storage
Technologies (FAST’10), 2010.

[49] B. Pasquale and G. Polyzos. A static anal-
ysis of I/O characteristics of scientific applica-
tions in a production workload. In Proceedings
of the ACM/IEEE Conference on Supercomputing
(SC’93), 1993.

[50] T. C. Peterson, T. R. Karl, P. F. Jamason, R. Knight,
and D. R. Easterling. First difference method:
Maximizing station density for the calculation of
long-term global temperature change. Journal of
Geophysical Research: Atmospheres (1984–2012),
103(D20):25967–25974, 1998.

[51] J. S. Plank and M. G. Thomason. Processor allo-
cation and checkpoint interval selection in cluster
computing systems. Journal of Parallel and dis-
tributed Computing, 61(11):1570–1590, 2001.

[52] A. Povzner, K. Keeton, A. Merchant, C. B. Mor-
rey III, M. Uysal, and M. K. Aguilera. Auto-
graph: automatically extracting workflow file sig-
natures. ACM SIGOPS Operating Systems Review,
43(1):76–83, 2009.

[53] P. C. Roth. Characterizing the I/O behavior of sci-
entific applications on the Cray XT. In Proceed-
ings of the 2nd International Workshop on Petas-
cale Data Storage: held in conjunction with SC’07,
2007.

[54] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen,
and H. Yu. Early experiences in application level
I/O tracing on Blue Gene systems. In Proceedings
of the International Parallel Distributed Process-
ing Symposium (IPDPS’08), 2008.

[55] G. Shipman, D. Dillow, S. Oral, and F. Wang. The
Spider Center Wide File System: From Concept to
Reality. In Proceedings of the Cray User Group
(CUG’09), 2009.

[56] K. Spafford, J. Meredith, J. Vetter, J. Chen,
R. Grout, and R. Sankaran. Accelerating S3D: a
GPGPU case study. In Euro-Par 2009 Parallel
Processing Workshops, 2010.

[57] V. Tarasov, S. Kumar, J. Ma, D. Hildebrand,
A. Povzner, G. Kuenning, and E. Zadok. Extract-
ing flexible, replayable models from large block
traces. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (FAST’12),
2012.

[58] TOP500 Supercomputer Sites, http://www.
top500.org/.

[59] A. Uselton, M. Howison, N. Wright, D. Skinner,
N. Keen, J. Shalf, K. Karavanic, and L. Oliker. Par-

allel I/O performance: From events to ensembles.
In Proceedings of the International Parallel Dis-
tributed Processing Symposium (IPDPS’10), 2010.

[60] J. S. Vetter and M. O. McCracken. Statistical
scalability analysis of communication operations
in distributed applications. In Proceedings of the
8th ACM SIGPLAN symposium on Principles and
Practices of Parallel Programming (PPoPP’01),
2001.

[61] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L.
Miller, D. D. E. Long, and T. T. Mclarty. File
system workload analysis for large scale scien-
tific computing applications. In Proceedings of the
IEEE 21th Symposium on Mass Storage Systems
and Technologies (MSST’04), 2004.

[62] W. W.-S. Wei. Time series analysis. Addison-
Wesley Redwood City, California, 1994.

[63] Y. Xu, J. B. Weaver, D. M. Healy, and J. Lu.
Wavelet transform domain filters: a spatially selec-
tive noise filtration technique. IEEE Transactions
on Image Processing, 3(6):747–758, 1994.

[64] N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath,
T. Niranjan, and S. Susarla. Discovery of applica-
tion workloads from network file traces. In Pro-
ceedings of the 8th USENIX Conference on File
and Storage Technologies (FAST’10), 2010.

[65] J.-C. Yoo and T. H. Han. Fast normalized cross-
correlation. Circuits, Systems and Signal Process-
ing, 28(6):819–843, 2009.

[66] J. W. Young. A first order approximation to the
optimum checkpoint interval. Communications of
the ACM, 17(9):530–531, 1974.

[67] D. Yu, X. Yu, Q. Hu, J. Liu, and A. Wu. Dynamic
time warping constraint learning for large margin
nearest neighbor classification. Information Sci-
ences, 181(13):2787–2796, 2011.

16

USENIX Association 12th USENIX Conference on File and Storage Technologies 229

Balancing Fairness and Efficiency in Tiered Storage Systems with
Bottleneck-Aware Allocation

Hui Wang
Rice University

Peter Varman
Rice University

Abstract

Multi-tiered storage made up of heterogeneous devices
are raising new challenges in allocating throughput fairly
among concurrent clients. The fundamental problem is
finding an appropriate balance between fairness to the
clients and maximizing system utilization.

In this paper we cast the problem within the broader
framework of fair allocation for multiple resources. We
present a new allocation model BAA based on the no-
tion of per-device bottleneck sets. Clients bottlenecked
on the same device receive throughputs in proportion to
their fair shares, while allocation ratios between clients
in different bottleneck sets are chosen to maximize sys-
tem utilization. We show formally that BAA satisfies
fairness properties of Envy Freedom and Sharing Incen-
tive. We evaluated the performance of our method using
both simulation and implementation on a Linux platform.
The experimental results show that our method can pro-
vide both high efficiency and fairness.

1 Introduction

The growing popularity of virtualized data centers hosted
on shared physical resources has raised the importance
of resource allocation issues in such environments. In
addition, the widespread adoption of multi-tiered stor-
age systems [2, 3], made up of solid-state drives (SSDs)
and traditional hard disks (HDs), has made the already
challenging problem of providing QoS and fair resource
allocation considerably more difficult.

Multi-tiered storage has several advantages over tra-
ditional flat storage in the data center: improved perfor-
mance for data access and potential operating cost re-
ductions. However, this architecture also raises many
challenges for providing performance isolation and QoS
guarantees. The large speed gap between SSDs and HDs
means that it is not viable to simply treat the storage sys-
tem as a black box with a certain aggregate IOPS capac-

ity. The system throughput is intrinsically linked to the
relative frequencies with which applications access the
different types of devices. In addition, the throughput de-
pends on how the device capacities are actually divvied
up among the applications. System efficiency is a ma-
jor concern for data center operators since consolidation
ratios are intimately connected to their competitive ad-
vantage. The operator also needs to ensure fairness, so
that the increased system utilization is not obtained at
the cost of treating some users unfairly.

This brings to focus a fundamental tension between
fairness and resource utilization in a system with hetero-
geneous resources. Maintaining high overall system uti-
lization may require favoring some clients disproportion-
ately while starving some others, thereby compromising
fairness. Conversely, allocations based on a rigid no-
tion of fairness can result in reduced system utilization
as some clients are unnecessarily throttled to maintain
parity in client allocations.

The most-widely used concept of fairness is propor-
tional sharing (PS), which provides allocations to clients
in proportion to client-specific weights reflecting their
priority or importance. Adaptations of the classic algo-
rithms for network bandwidth multiplexing [49, 9, 40]
have been proposed for providing proportional fairness
for storage systems [48, 45, 21]. Extended proportional-
share schedulers which provide reservations and limit
guarantees in addition to proportional allocation have
also been proposed for storage systems [46, 19, 22,
23]. However, the vast majority of resource allocation
schemes have been designed to multiplex a single re-
source, and have no natural extension to divide up multi-
ple resources.

The question of fair division of multiple resources in
computer systems was raised in a fundamental paper by
Ghodsi et al [17], who advocated a model called Dom-
inant Resource Fairness (DRF) to guide the allocation
(see Section 2). A number of related allocation ap-
proaches [16, 36, 11, 25, 28, 15, 14, 13, 12, 30, 38] have

230 12th USENIX Conference on File and Storage Technologies USENIX Association

since been proposed; these will be discussed in Section 6.
These models deal mainly with defining the meaning of
fairness in a multi-resource context. For example, DRF
and its extensions consider fairness in terms of a client’s
dominant resource: the resource most heavily used (as a
fraction of its capacity) by a client. The DRF policy is
to equalize the shares of each client’s dominant resource.
In [12], fairness is defined in terms of proportional shar-
ing of the empirically-measured global system bottle-
neck. A theoretical framework called Bottleneck-based
fairness [11] proves constructively the existence of an al-
location giving each client its entitlement on some global
system-wide bottleneck resource. While these models
and algorithms make significant advances to the problem
of defining multi-resource fairness, they do not deal with
the dual problem of their effect on system utilization. In
general these solutions tend to over constrain the system
with fairness requirements, resulting in allocations with
low system utilization.

In this paper we propose a model called Bottleneck
Aware Allocation (BAA) based on the notion of local
bottleneck sets. We present a new allocation policy to
maximize system utilization while providing fairness in
the allocations of the competing clients. The allocations
of BAA enjoy all of the fairness properties of DRF [17],
like Sharing Incentive, Envy Freedom [26, 7, 6], and
Pareto Optimality. However, within this space of “fair”
solutions that includes DRF, it searches for alternative
solutions with higher system efficiency. We prove for-
mally that BAA satisfies these fairness properties. We
use BAA as part of a two-tier allocate and schedule
mechanism: one module uses a standard weighted fair-
scheduler to dispatch requests to the storage system; the
other module monitors the workload characteristics and
dynamically recomputes the weights using BAA for use
by the dispatcher, based on the mix of workloads and
their access characteristics. We evaluate the performance
of our method using simulation and a Linux platform.
The results show that our method can provide both high
efficiency and fairness for heterogeneous storage and dy-
namic workloads.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss the difficulties of achieving both fair-
ness and efficiency in a heterogeneous storage system. In
Section 3 we describe our model and approach to balance
needs of fairness and system efficiency. Formal proofs
are presented in Section 4. We present some empirical
results in Section 5. Related work is summarized in Sec-
tion 6, and we conclude in Section 7.

2 Overview

The storage system is composed of SSDs and HD arrays,
as shown in Figure 1. SSDs and HDs are independent

Figure 1: Tiered storage model

devices without frequent data migrations between them.
A client makes a sequence of IO requests; the target of
each request is either the SSD or the HD, and is known
to the scheduler. An access to the SSD is referred to as
a hit and access to the HD is a miss. The hit (miss) ratio
of client i is the fraction of its IO requests to the SSD
(HD), and is denoted by hi (respectively mi). The hit
ratio of different applications will generally be different.
It may also change in different application phases, but
is assumed to be relatively stable within an application
phase.

The requests of different clients are held in client-
specific queues from where they are dispatched to the
storage array by an IO scheduler. The storage array
keeps a fixed number of outstanding requests in its in-
ternal queues to maximize its internal concurrency. The
IO scheduler is aware of the target device (SSD or HD) of
a request. Its central component is a module to dynam-
ically assign weights to clients based on the measured
miss ratios. These weights are used by the dispatcher
to choose the order of requests to send to the array; the
number of serviced requests of a client is in proportion
to its weight. The weights are computed in accordance
with the fairness policies of BAA so as to maximize sys-
tem utilization based on recently measured miss ratios.

We illustrate the difficulties in achieving these goals
in the next section, followed by a description of our ap-
proach in Section 3.

2.1 Motivating Examples

In traditional proportional fairness a single resource is
divided among multiple clients in the ratio of their as-
signed weights. For instance, if a single disk of 100
IOPS capacity is shared among two backlogged clients
of equal weight, then each client will receive 50 IOPS.
A work-conserving scheduler like Weighted Fair Queu-
ing [9] will provide fine-grained, weight-proportional
bandwidth allocation to the backlogged clients; the sys-
tem will be 100% utilized as long as there are requests
in the system. When the IOs are from heterogeneous

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 231

devices like HDs and SSDs, the situation is consider-
ably more complicated. The device load is determined
by both the allocation ratios (the relative fraction of the
bandwidth assigned to clients), as well as their hit ra-
tios. If the clients with high SSD loads have small al-
location ratio, there may be insufficient requests to keep
the SSD busy. Conversely, maintaining high utilization
of both the HD and the SSD may require adjusting the
allocations in a way that starves some clients, resulting
in unfairness in the allocation.

Example I Suppose the HD and SSD have capacities
of 100 IOPS and 500 IOPS respectively. The system is
shared by backlogged clients 1 and 2 with equal weights
and hit ratios of h1 = 0.5 and h2 = 0.9 respectively. Un-
der proportional-share allocation, both clients should get
an equal number of IOPS. The unique allocation in this
case is for each client to get 166.6 IOPS. Client 1 will get
83.3 IOPS from each device, while client 2 will get 16.6
IOPS from the HD and 150 IOPS from the SSD. The HD
has 100% utilization but the SSD is only 47% utilized
(Figure 2(a)). In order to increase the system utilization,
the relative allocation of the clients needs to be changed
(Figure 2(b)). In fact, both devices can be fully utilized
if the scheduler allocates 100 IOPS to client 1 (50 IOPS
from the HD and 50 from the SSD), and 500 IOPS to
client 2 (50 from the HD and 450 from the SSD). This
is again the unique allocation that maximizes the sys-
tem utilization for the given set of hit ratios. Note that
increasing the utilization to 100% requires a 1 : 5 allo-
cation ratio, and reduces client 1’s throughput from 167
to 100 IOPS while increasing client 2’s throughput from
167 to 500 IOPS.

The example above illustrates a general principle. For
a given set of workload hit ratios, it is not possible to
precisely dictate both the relative allocations (fairness)
and the system utilization (efficiency). How then should
we define the allocations to both provide fairness and
achieve good system utilization?

Consider next how the DRF policy will allocate the
bandwidth. The dominant resource for client 1 is the
HD; for client 2 it is the SSD. Suppose DRF allocates
n IOPS to client 1 and m IOPS to client 2. Equalizing
the dominant shares means that 0.5n/100 = 0.9m/500
or n : m = 9 : 25. This results in an SSD utilization of ap-
proximately 77% (Figure 2(c)). The point to be noted is
that none of these earlier approaches considers the issue
of resource efficiency when deciding on an allocation.
The policies deal with the question of how to set client
allocation ratios to achieve some measure of fairness, but
do not address how the choice affects system utilization.

Example II In the example above suppose we add a third
backlogged client, also with hit ratio 0.5. In this case,
proportional sharing in a 1 : 1 : 1 ratio would result in al-

(a) Allocations in 1:1 ratio. Utilization of the SSD is only 47%

(b) Allocations with 100% utilization. Allocations are in the
ratio 1 : 5.

(c) Allocations using DRF. Allocations are in the ratio 9 : 25.
Utilization of the SSD is 77%.

Figure 2: Allocations in multi-tiered storage. HD ca-
pacity: 100 IOPS and SSD Capacity: 500 IOPS. The hit
ratios of the clients are 0.5 and 0.9 respectively.

3

232 12th USENIX Conference on File and Storage Technologies USENIX Association

locations of 90.9 IOPS each; the client with hit ratio 0.9
would be severely throttled by the allocation ratio, and
the SSD utilization will be only 34.5%. If the weights
were changed to 1 : 1 : 10 instead, then the HD-bound
clients (hit ratio 0.5) would receive 50 IOPS each, and
the SSD-bound client (hit ratio 0.9) would receive 500
IOPS. The utilization of both devices is 100%. The DRF
policy will result in an allocation ratio of 9 : 9 : 25, al-
locations of 78, 78 and 217 IOPS respectively, and SSD
utilization of 55% (further reduced from the 77% of ex-
ample 1). This shows that the system utilization is highly
dependent on the competing workloads, and stresses how
relative allocations (fairness) and system utilization (ef-
ficiency) are intertwined.

2.2 Fairness and Efficiency in Multi-tiered
Storage

As discussed in the previous section, the ratio of alloca-
tion and the system utilization cannot be independently
controlled. In [17], DRF allocations are shown to possess
desirable fairness properties, namely:

• Sharing Incentive: Each client gets at least the
throughput it would get from statically partition-
ing each resource equally among the clients1. This
throughput will be referred to as the fair share of the
client. In this paper we will use fair share defined
by equal partition of the resources2.

• Envy-Freedom: A client cannot increase its
throughput by swapping its allocation with any
other client. That is, clients prefer their own allo-
cation over the allocation of any other client.

• Pareto Efficiency: A client’s throughput cannot be
increased without decreasing another’s throughput.

We propose a bottleneck-aware allocation policy
(BAA), to provide both fairness and high efficiency in
multi-tiered storage systems. BAA will preserve the de-
sirable fairness features listed above. However, we add a
fundamentally new requirement, namely maximizing the
system utilization.

The clients are partitioned into bottleneck sets depend-
ing on the device on which they have a higher load. This
is a local property of a client and does not depend on the
system bottleneck as in [11, 12].

In our model, clients in the same bottleneck set will
receive allocations that are in the ratio of their fair share.
However, there is no predefined ratio between the alloca-
tions of clients in different bottleneck sets. Instead, the

1[36] extends the definition to weighted clients and weighted parti-
tion sizes.

2We can apply the framework of [36] to BAA to handle the case of
unequal weights as well.

system is free to set them in a way that maximizes uti-
lization as long as Envy Freedom, Sharing Incentive and
Pareto Optimality properties are preserved by the result-
ing allocation.

3 Bottleneck-Aware Allocation

In this section, we will discuss our resource allocation
model called Bottleneck-Aware Allocation (BAA) and
the corresponding scheduling algorithm.

3.1 Allocation Model
We begin by precisely defining several terms used in the
model. The capacity of a device is defined as its through-
put (IOPS) when continually busy. As is usually the case,
this definition abstracts the fine-grained variations in ac-
cess times of different types of requests (read or write,
sequential or random etc), and uses a representative (e.g.
random 4KB reads) or average IOPS number to charac-
terize the device. Denote the capacity (in IOPS) of the
disk as Cd and that of the SSD as Cs.

Consider a client i that is receiving a total throughput of
T IOPS. This implies it is receiving T ×hi IOPS from the
SSD. The fraction of the capacity of the SSD that it uses
is (T × hi)/Cs. Similarly, the fraction of the capacity of
the HD that it uses is (T ×mi)/Cd .

Definitions
1. The load of a client i on the SSD is hi/Cs and on the
HD is mi/Cd . It represents the average fraction of the
device capacity that is utilized per IO of a client.

2. Define the system load-balancing point as hbal =
Cs/(Cs +Cd). A workload with hit ratio equal to hbal
will have equal load on both devices. If the hit ratio of a
client is less than or equal to hbal it is said to be bottle-
necked on the HD; if the hit ratio is higher than hbal it is
bottlenecked on the SSD.

3. Partition the clients into two sets D and S based on
their hit ratios. D = {i : hi ≤ hbal} and S = {i : hi > hbal}
are the sets of clients that are bottlenecked on the HD and
SSD respectively.

4. Define the fair share of a client to be the through-
put (IOPS) it gets if each of the resources are partitioned
equally among all the clients. Denote the fair share of
client i by fi.

5. Let Ai denote the allocation of (total IOPS done
by) client i under some resource partitioning. The total
throughput of the system is ∑i Ai.

Example III Consider a system with Cd = 200 IOPS,
Cs = 1000 IOPS and four clients p, q, r, s with hit ratios
hp = 0.75,hq = 0.5,hr = 0.90,hs = 0.95. In this case,

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 233

hbal = 1000/1200 = 0.83. Hence, p and q are bottle-
necked on the HD, while r and s are bottlenecked on the
SSD: D = {p,q} and S = {r,s}.

Suppose the resources are divided equally among the
clients, so that each client sees a virtual disk of 50 IOPS
and a virtual SSD of 250 IOPS. What are the throughputs
of the clients with this static resource partitioning?

Since p and q are HD-bottlenecked, they would use
their entire HD allocation of 50 IOPS, and an additional
amount on the SSD depending on the hit ratios. Since p’s
hit ratio is 3/4, it would get 150 IOPS on the SSD for a
total of 200 IOPS, while q (hq = 0.5) would get 50 SSD
IOPS for a total of 100 IOPS. Thus the fair shares of p
and q are 200 and 100 IOPS respectively. In a similar
manner, r and s would completely use their SSD alloca-
tion of 250 IOPS and an additional amount on the disk.
The fair shares of r and s in this example are 277.8 and
263.2 IOPS respectively.

Our fairness policy is specified by the rules below.
The rules (1) and (2) state that the allocations between
any two clients that are bottlenecked on the same de-
vice are in proportion to their fair share. Condition (3)
states that clients backlogged on different devices should
be envy free. The condition asserts that if client A re-
ceives a higher throughput on some device than client B
it must get an equal or lesser throughput on the other.
We will show in Section 4 that with just rules (1) and
(2), the envy-free property is satisfied between any pair
of clients that belong both in D or both in S. However,
envy-freedom between clients in different sets is explic-
itly enforced by the third constraint.

Fairness Policy

1. Fairness between clients in D:
∀i, j ∈ D, Ai

A j
= fi

f j
. Define ρd =

Ai
fi

to be the ratio of
the allocation of client i to its fair share, i ∈ D.

2. Fairness between clients in S:
∀i, j ∈ S, Ai

A j
= fi

f j
. Define ρs =

A j
f j

to be the ratio of
the allocation of client j to its fair share, j ∈ S.

3. Fairness between a client in D and a client in S:
∀i ∈ D, j ∈ S: h j

hi
≥ Ai

A j
≥ m j

mi
. Note that if hi = 0

then only the constraint Ai
A j

≥ m j
mi

is needed.

Example IV What do the fairness policy constraints
mean for the system of Example III? Rule 1 means that
HD-bound clients p and q should receive allocations in
the ratio 2 : 1 (ratio of their fair shares), i.e. Ap/Aq = 2.
Similarly, rule 2 means that SSD-bound clients r and s
should receive allocations in the ratio 277.8 : 263.2 =
1.06 : 1, i.e. Ar/As = 1.06. Rule 3 implies a constraint
for each of the pairs of clients backlogged on different
devices: (p, r), (p, s), (q, r) and (q, s):

i hr/hp = 1.2 ≥ Ap/Ar ≥ mr/mp = 0.4

ii hs/hp = 1.27 ≥ Ap/As ≥ ms/mp = 0.2

iii hr/hq = 1.8 ≥ Aq/Ar ≥ mr/mq = 0.2

iv hs/hq = 1.9 ≥ Aq/As ≥ ms/mq = 0.1

These linear constraints will be included in a linear
programming optimization model in the next section.

3.2 Optimization Model Formulation
The aim of the resource allocator is to find a suitable allo-
cation Ai for each of the clients. The allocator will max-
imize the system utilization while satisfying the fairness
constraints described in Section 3.1, together with con-
straints based on the capacity of the HD and the SSD. A
direct linear programming (LP) formulation will result
in an optimization problem with n unknowns represent-
ing the allocations of the n clients, and O(n2) constraints
specifying the rules of the fairness policy.

The search space can be drastically reduced using the
auxiliary variables ρd and ρs (called amplification fac-
tors) defined in Section 3.1. Rules 1 and 2 require that
Ai = ρd fi and A j = ρs f j, for clients i ∈ D and j ∈ S.

We now formulate the objective function and con-
straints in terms of the auxiliary quantities ρd and ρs. The
total allocation is:

∑
∀k

Ak = (∑
i∈D

Ai + ∑
j∈S

A j) = (ρd ∑
i∈D

fi +ρs ∑
j∈S

f j).

The total number of IOPS made to the HD is:

ρd ∑
i∈D

fimi + ρs ∑
j∈S

f jm j.

The total number of IOPS made to the SSD is:

ρd ∑
i∈D

fihi +ρs ∑
j∈S

f jh j.

Fairness rule 3 states that: ∀i ∈ D, j ∈ S,

h j

hi
≥ ρd fi

ρs f j
≥

m j

mi

h j f j

hi fi
≥ ρd

ρs
≥

m j f j

mi fi
.

β ≥ ρd

ρs
≥ α.

where

α = maxi, j

{
m j f j

mi fi

}
β = mini, j

{
h j f j

hi fi

}

The final problem formulation is shown below. It is
expressed as a 2-variable linear program with unknowns

5

234 12th USENIX Conference on File and Storage Technologies USENIX Association

ρd and ρs, and four linear constraints between them.
Equations 2 and 3 ensure that the total throughputs from
the HD and the SSD respectively do not exceed their
capacities. Equation 4 ensures that any pair of clients,
which are bottlenecked on the HD and SSD respectively,
are envy free. As mentioned earlier, we will show that
clients which are bottlenecked on the same device will
automatically be envy free.

Optimization for Allocation

Maximize ρd ∑
i∈D

fi + ρs ∑
j∈S

f j (1)

subject to:

ρd ∑
i∈D

fimi + ρs ∑
j∈S

f jm j ≤Cd (2)

ρd ∑
i∈D

fihi + ρs ∑
j∈S

f jh j ≤Cs (3)

β ≥ ρd

ρs
≥ α (4)

Example V We show the steps of the optimization for
the scenario of Example III. D = {p,q}, S = {r,s}, and
the fair shares fp = 200, fq = 100, fr = 277.8 and fs =
263.2. ∑i∈D fi = 200+ 100 = 300, ∑ j∈S f j = 277.8+
263.2 = 541, ∑i∈D fimi = 50+ 50 = 100, ∑ j∈S f jm j =
27.78 + 13.2 = 41, ∑i∈D fihi = 150 + 50 = 200, and
∑ j∈S f jh j = 250 + 250 = 500. Also it can be verified
that α = 0.55 and β = 1.67. Hence, we get the follow-
ing optimization problem:

Maximize : 300ρd + 541ρs (5)

subject to:

100ρd + 41ρs ≤ 200 (6)
200ρd + 500ρs ≤ 1000 (7)

1.67 ≥ ρd

ρs
≥ 0.55 (8)

Solving the linear program gives ρd = 1.41, ρs = 1.44,
which result in allocations Ap = 282.5, Aq = 141.3, Ar =
398.6, As = 377.6, and HD and SSD utilizations of 100%
and 100%.

We end the section by stating precisely the proper-
ties of BAA with respect to fairness and utilization. The
properties are proved in Section 4.

• P1: Clients in the same bottleneck set receive allo-
cations proportional to their fair shares.

• P2: Any pair of clients bottlenecked on the same
device will not envy each other. Combined with
fairness policy (3) which enforces envy freedom be-
tween clients bottlenecked on different devices, we
can assert that the allocations are envy free.

• P3: Every client will receive at least its fair share.
In other words, no client receives less through-
put than it would if the resources had been hard-
partitioned equally among them. Usually, clients
will receive more than their fair share by using ca-
pacity on the other device that would be otherwise
unused.

• P4: The allocation maximizes the system through-
put subject to these fairness criteria.

3.3 Scheduling Framework
The LP described in Section 3.2 calculates the through-
put that each client is allocated based on the mix of hit
ratios and the system capacities. The ratios of these al-
locations make up the weights to a proportional-share
scheduler like WFQ [9], which dispatches requests from
the client queues.

When a new client enters or leaves the system, the al-
locations (i.e. the weights to the proportional scheduler)
need to be updated. Similarly, if a change in a work-
load’s characteristics results in a significant change in its
hit ratio, the allocations should be recomputed to pre-
vent the system utilization from falling too low. Hence,
periodically (or triggered by an alarm based on device
utilizations) the allocation algorithm is invoked to com-
pute the new set of weights for the proportional sched-
uler. We also include a module to monitor the hit ratios
of the clients over a moving window of requests. The hit
ratio statistics are used by the allocation algorithm.

Algorithm 1: Bottleneck-Aware Scheduling
Step 1. For each client maintain statistics of its
hit ratio over a configurable request-window W.
Step 2. Periodically invoke the BAA optimizer
of Section 3.2 to compute the allocation of each
client that maximizes utilization subject to
fairness constraints.
Step 3. Use the allocations computed in Step 2
as relative weights to a proportional-share
scheduler that dispatches requests to the array in
the ratio of their weights.

The allocation algorithm is relatively fast since it re-
quires solving only a small 2-variable LP problem, so
it can be run quite frequently. Nonetheless, it would
be desirable to have a single-level scheme in which the

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 235

be desirable to have a single-level scheme in which the
scheduler continually adapts to the workload character-
istics rather than at discrete steps. In future work we will
investigate the possibility of such a single-level scheme.

4 Formal Results

In this section we formally establish the fairness claims
of BAA. The two main properties are summarized in
Lemma 3 and Lemma 7, which state that the allocations
made by BAA are envy free (EF) and satisfy the sharing
incentive (SI) property. Table 1 summarizes the mean-
ings of different symbols.

Symbol Meaning

Cs,Cd Capacity in IOPS of SSD (HD)
S, D Set of clients bottlenecked on the SSD (HD)

ρs, ρd Proportionality constants of fairness policy
fi Fair Share for client i

hi, mi Hit (Miss) ratio for client i
hbal Load Balance Hit Ratio: Cs/(Cs +Cd)

n Total number of clients

Table 1: List of Symbols

Lemma 1 finds expressions for fair shares. The fair
share of a client is its throughput if it is given a virtual
HD of capacity Cd/n and a virtual SSD of capacity Cs/n.
A client in D will use all the capacity of the virtual HD,
and hence have a fair share of Cd/(n×mi). A client in S
uses all the capacity of the virtual SSD, and its fair share
is Cs/(n×hi).

Lemma 1. Let n be the number of clients. Then fi =
min{Cd/(n × mi),Cs/(n × hi)}. If i ∈ D, then fi =
Cd/(n×mi); else if i ∈ S, then fi =Cs/(n×hi).

Proof. The fair share is the total throughput when a
client uses one of its virtual resources completely. For
i ∈ D, hi ≤ hbal = Cs/(Cs +Cd) and mi ≥ 1 − hbal =
Cd/(Cs +Cd). In this case, Cd/(n×mi) ≤ (Cs +Cd)/n
and Cs/(n× hi) ≥ (Cs +Cd)/n. Hence, the first term is
the smaller one, whence the result follows. A similar ar-
gument holds for i ∈ S.

Lemma 2 states a basic property of BAA allocations:
all clients in a bottleneck set receive equal throughputs
on the device on which they are bottlenecked. This is
simply a consequence of fairness policy which requires
that clients in the same bottleneck set receive throughput
in the ratio of their fair shares.

Lemma 2. All clients in a bottleneck set receive equal
throughputs on the bottleneck device. Specifically, all
clients in D receive ρdCd/n IOPS from the HD; and all
clients in S receive ρsCs/n IOPS from the SSD.

Proof. Let i ∈ D. From fairness policy (1) and lemma 1,
Ai = ρd fi = ρd(Cd/(n×mi)). The number of IOPS from
the HD is therefore Aimi = ρdCd/n. Similarly, for i ∈ S,
Ai = ρs fi = ρs(Cs/(n× hi)), and the number of IOPS
from the SSD is Aihi = ρsCs/n.

To prove EF between two clients, we need to show
that no client receives more throughput on both the re-
sources (HD and SSD). If the two clients are in the same
bottleneck set then this follows from Lemma 2, which
states that both clients will get equal throughputs on their
bottleneck device. When the clients are in different bot-
tleneck sets then the condition is explicitly enforced by
fairness policy (3).

Lemma 3. For any pair of client i, j the allocations
made by BAA are envy free.

Proof. From lemma 2, if i, j ∈ D both clients have the
same number of IOPS on the HD; hence neither can
improve its throughput by getting the others allocation.
Similarly, if i, j ∈ S they do not envy each other, since
nether can increases its throughput by receiving the oth-
ers allocation.

Finally, we consider the case when i ∈ D and j ∈ S.
From fairness policy (3), ∀i ∈ D, j ∈ S: h j

hi
≥ Ai

A j
≥ m j

mi
.

Hence, the allocations on the SSD for clients i and j sat-
isfy Aihi ≤ A jh j, and the allocations on HD for clients i
and j satisfy Aimi ≥ A jm j. So any two flows in different
bottleneck sets will not envy each other. Hence neither i
nor j can get more than the other on both devices.

The following Lemma shows the Sharing Incentive
property holds in the “simple” case. The more difficult
case is shown in Lemma 6. Informally, if the HD is a sys-
tem bottleneck (i.e., it is 100% utilized) then Lemma 4
shows that the clients in D will receive at least 1/n of the
HD bandwidth. The clients in S may get less than that
amount on the HD (and usually will get less). Similarly,
if the SSD is a system bottleneck, then the clients in S
will receive at least 1/n of the SSD bandwidth.
In the remainder of this section we assume that the clients
1,2, · · ·n, are ordered in non-decreasing order of their
hit ratios, and that r of them are in D and the rest in S.
Hence, D = {1, · · · ,r} and S = {r+1, · · · ,n}.

Lemma 4. Suppose the HD (SSD) has a utilization of
100%. Then every i ∈ D (respectively i ∈ S) receives a
throughput of at least fi.

Proof. Let j denote an arbitrary client in S. From fair-
ness policy (3), Aimi ≥ A jm j. That is, the throughput
on the HD of a client in D is greater than or equal to
the throughput on the HD of any client in S. Now, from
lemma 2 the IOPS from the HD of all i ∈ D are equal.
Since, by hypothesis, the disk is 100% utilized, the total

7

236 12th USENIX Conference on File and Storage Technologies USENIX Association

IOPS from the HD is Cd . Hence, for every i ∈ D, the
IOPS on the disk must be at least Cd/n. A symmetrical
proof holds for clients in S.

In order to show the Sharing Incentive property for
clients whose bottleneck device is not the system bot-
tleneck (i.e. is less than 100% utilized), we prove the
following Lemma. Informally, it states that utilization
of the SSD improves if the clients in S can be given a
bigger allocation. The result, while intuitive, is not self
evident. An increase in the SSD allocation to a client
in S increases its HD usage as well. Since the HD is
100% utilized, this reduces HD allocations of clients in
D, which in turn reduces their allocation on the SSD. We
need to check that the net effect is positive in terms of
SSD utilization.

Lemma 5. Consider two allocations that satisfy fairness
policy (1) - (3), and for which the HD has utilization of
100% and the SSD has utilization less than100%. Let ρs
and ρ̂s be the proportionally constants of clients in S for
the two allocations, and let U and Û be the respective
system throughputs. If ρ̂s > ρs then Û >U. A symmetri-
cal result holds if the SSD is 100% utilized and the HD
is less than 100% utilized.

Proof. We show the case for HD 100% utilized. From
Lemma 2, all clients in S have the same throughput
ρsCs/n on the SSD. Define δs to be the difference be-
tween the SSD throughputs of a client in S in the two
allocations. Since ρ̂s > ρs, δs > 0. Similarly, define δd to
be difference between the HD throughput of a client in D
in the two allocations.

An increase of δs in the throughput of client i ∈ S on
the SSD implies an increase on the HD of δs × (mi/hi).
Since the HD is 100% utilized in both allocations, the ag-
gregate allocations of clients in D must decrease by the
total amount ∑i∈S δs × (mi/hi). By Lemma 2, since all
clients in D have the same allocation on the HD, δd =

∑i∈S δs × (mi/hi)/|D|. As a result, the decrease in the al-
location of client j ∈ D on the SSD is δ̂s = δd × (h j/m j).

The total change in the allocation on the SSD in the
two allocations, ∆ is therefore: ∆ = ∑i∈S δs −∑ j∈D δ̂s.
Substituting:

∆ = ∑
i∈S

δs − ∑
j∈D

δd × (h j/m j) (9)

∆ = |S|×δs− ∑
j∈D

(∑
i∈S

δs×(mi/hi)/|D|)×(h j/m j) (10)

Now for all i ∈ S, (mi/hi) ≤ (mr+1/hr+1) and for all
j ∈ D, (h j/m j)≤ (hr/mr).

Substituting in Equation 10:

∆ ≥ |S|×δs −|S|δs × (mr+1/hr+1)× (hr/mr) (11)

∆ ≥ |S|×δs(1−
mr+1

mr
× hr

hr+1
) (12)

Now, mr+1 < mr and hr < hr+1 since r and r+1 are in
D and S respectively. Hence, ∆ > 0.

Finally, we show the Sharing Incentive property for
clients whose bottleneck device is not the system bottle-
neck. The idea is to make the allocation to the clients in
S as large as we can, before the EF requirements prevent
further increase.

Lemma 6. Suppose the HD (SSD) has utilization of
100% and the SSD (HD) has utilization less than 100%.
Then every i ∈ S (respectively i ∈ D) receives a through-
put of at least fi.

Proof. We will show it for clients in S. A symmetrical
proof holds in the other case.

Since BAA maximizes utilization subject to fairness
policy (1) - (3), it follows from Lemma 5 that ρs must
be as large as possible. If i ∈ S, the IOPS it receives on
the HD are ρsCs/n× (mi/hi) which from the EF require-
ments of Lemma 3 must be no more than ρdCd/n, the
IOPS on the HD for any client in D. Hence, ρsCs/n×
(mi/hi) ≤ ρdCd/n or ρs ≤ ρd(Cd/Cs)× (hi/mi), for all
i ∈ S. Since hi/mi is smallest for i = r+1, the maximum
feasible value of ρs is ρs = ρd(Cd/Cs)× (hr+1/mr+1).
Now, hr+1 > hbal , so hr+1/mr+1 > hbal/(1 − hbal) =
Cs/Cd . Hence ρs > ρd . Since the HD is 100% utilized
we know from Lemma 4 that ρd ≥ 1, and so ρs > 1.

From Lemmas 4 to 6 we can conclude:

Lemma 7. Allocations made by BAA satisfy the Sharing
Incentive property.

5 Performance Evaluation

We evaluate our work using both simulation and Linux
system implementation. For simulation, a synthetic set
of workloads was created. Each request is randomly as-
signed to the SSD or HD based on its hit ratio. The re-
quest service time is an exponentially distributed random
variable with mean equal to the reciprocal of the device
IOPS capacity.

In the Linux system, we implemented a prototype by
interposing the BAA scheduler in the IO path. Raw
IO is performed to eliminate the influence of OS buffer
caching. The storage server includes a 1TB SCSI
Western Digital hard disk (7200 RPM 64MB Cache
SATA 6.0Gb/s) and 120GB SAMSUNG 840 Pro Series
SSD. Various block-level workloads from UMass Trace
Repository [1] and Microsoft Exchange server [31] are

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 237

used for the evaluation. These traces are for a homo-
geneous server and do not distinguish between devices.
Since we needed to emulate different proportions of HD
and SSD requests we randomly partitioned the blocks be-
tween the two devices to meet the assumed hit ratio of
the workload. The device utilizations are measured us-
ing Linux tool “iostat”.

5.1 Simulation Experiments

5.1.1 System Efficiency

This experiment compares the system efficiency for three
different schedulers: Fair Queuing (FQ), DRF, and BAA.
The capacities of the HD and SSD are 100 IOPS and
5000 IOPS respectively. The first experiment employs
two clients with hit ratios 0.5 and 0.99. FQ allocates
equal amounts of throughput to the two clients. The DRF
implementation uses the dominant resource shares policy
of [17] to determine allocation weights, and BAA is the
approach proposed in this paper. All workloads are as-
sumed to be continuously backlogged.

The throughputs of the two clients with different
schedulers are shown in Figure 3(a). The figure also
shows the fair share allocation, i.e. the throughput the
workload would get by partitioning the SSD and HD ca-
pacities equally between the two workloads. As can be
seen, the throughput of client 2 under FQ is the lowest
of the three schedulers. In fact, sharing is a disincentive
for client 2 under FQ scheduling, since it would have
been better off with a static partitioning of both devices.
The problem is that the fair scheduler severely throttles
the SSD-bound workload to force the 1 : 1 fairness ratio.
DRF performs much better than FQ. Both clients get a
little more than their fair shares. BAA does extremely
well in this setup and client 2 is able to almost double the
throughput it would have received with a static partition.
We also show the system utilization for the three sched-
ulers in Figure 3(b). BAA is able to fully utilize both
devices, while DRF reaches system utilization of only
around 65%.

Next we add another client with hit ratio of 0.8 to the
workload mix. The throughputs of the clients are shown
in Figure 4(a). Now the throughput of the DRF sched-
uler is also degraded, because it does not adjust the rela-
tive allocations to account for load imbalance. The BAA
scheduler gets higher throughput (but less than 100%)
because it adjusts the weights to balance the system load.
The envy-free requirements put an upper-bound on the
SSD-bound client’s throughput, preventing the utiliza-
tion from going any higher, but still maintaining fairness.

5.1.2 Adaptivity to Hit Ratio Changes

In this experiment, we show how the two-level schedul-
ing framework restores system utilization following a
change in an application’s hit ratio. The capacities of the
HD and SSD are 200 IOPS and 3000 IOPS respectively.
In this simulation, allocations are recomputed every 100s
and the hit ratio is monitored in a moving window of 60s.
There are two clients with initial hit ratios of 0.45 and
0.95. At time 510s, the hit ratio of client 1 falls to 0.2.

Figure 5 shows a time plot of the throughputs of the
clients. The throughputs of both clients falls significantly
at time 510 as shown in Figure 5. The scheduler needs to
be cognizant of changes in the application characteristics
and recalibrate the allocations to increase the efficiency.
At time 600s (the rescheduling interval boundary) the al-
locations are recomputed using the hit ratios that reflect
the current application behavior, and the system through-
put rises again.

In practice the frequency of calibration and the rate
at which the workload hit ratios change can affect sys-
tem performance and stability. As is the case in most
adaptive situations, the techniques work best when sig-
nificant changes in workload characteristics do not occur
at a very fine time scale. We leave the detailed evaluation
of robustness to future work.

Figure 5: Scheduling with dynamic weights when hit ra-
tio changes

5.2 Linux Experiments

We now evaluate BAA in a Linux system, and compare
its behavior with allocations computed using the DRF
policy [17] and the Linux CFQ [39] scheduler. The first
set of experiments deals with evaluating the through-
puts (or system utilization) of the three scheduling ap-
proaches. The second set compares the fairness proper-
ties.

9

238 12th USENIX Conference on File and Storage Technologies USENIX Association

(a) Throughputs (b) Utilizations

Figure 3: Throughputs and utilizations for 2 flows

(a) Throughputs (b) Utilizations

Figure 4: Throughputs and utilizations for 3 flows

5.2.1 Throughputs and Device Utilizations

Throughputs BAA CFQ DRF

Client 1 100 101 95
Client 2 139 134 133

Total 239 235 228

Table 2: Throughputs: all clients in one bottleneck set

Clients in the same bottleneck set. Two workloads
from Web Search [1] are used in this experiment. The
requests include reads and writes and the request sizes
range from 8KB to 32KB.

We first evaluate the performance when all the clients
fall into the same bottleneck set; that is, all the clients are
bottlenecked on the same device. We use hit ratios of 0.3
and 0.5 for the two workloads which makes them both
HD bound. As shown in Table 2 all three schedulers get
similar allocation. In this situation there is just one local
bottleneck set in BAA, which (naturally) coincides with
the system bottleneck device for CFQ as well as being
the dominant resource for DRF. The device utilizations
are the same for all schedulers, as can be expected.
Clients in different bottleneck sets. In this experi-
ment, we evaluate the performance when the clients fall
into different bottleneck sets; that is, some of the clients
are bottlenecked on the HD and some on the SSD. Two

clients, one running a Financial workload [1] (client
1) and the second running an Exchange workload [31]
(client 2) with hit ratios of 0.3 and 0.95 respectively, are
used in the experiment. The request sizes range from 512
bytes to 8MB, and are a mix of read and write requests.
The total experiment time is 10 minutes.

Figure 6 shows the throughput of each client achieved
by the three schedulers. As shown in the figure, BAA
has better total system throughput than the others. CFQ
performs better than DRF but not as good as BAA.

Figure 7 shows the measured utilizations for HD and
SSD using the three schedulers. Figure 7(a) shows that
BAA achieves high system utilization for both HD and
SSD; DRF and CFQ have low SSD utilizations compared
with BAA, as shown in Figure 7(b) and (c). HD utiliza-
tions are good for both DRF and CFQ (almost 100%),
because the system has more disk-bound clients that sat-
urate the disk.

5.2.2 Allocation Properties Evaluation

In this experiment, we evaluate the fairness properties of
allocations (P1 to P4). Four Financial workloads [1] with
hit ratios of 0.2, 0.4, 0.98 and 1.0 are used as the input.
The workloads have a mix of read and write requests and
request sizes range from 512 bytes to 8MB.

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 239

(a) BAA (b) DRF (c) CFQ

Figure 6: Throughputs using three schedulers. BAA achieves higher system throughput (1396 IOPS) than both DRF-
based Allocation (810 IOPS) and Linux CFQ (1011 IOPS).

(a) BAA (b) DRF (c) CFQ

Figure 7: System utilizations using three schedulers. The average utilization are: BAA (HD 94% and SSD 92%), DRF
(HD 99% and SSD 78%), CFQ (HD 99.8% and SSD 83%)

Clients Fair Share Total HD SSD
(IOPS) IOPS IOPS IOPS

Financial 1 50 76 60.8 15.2
Financial 2 67 101 60.8 40.4
Financial 3 561 1068 21.4 1047
Financial 4 550 1047 0 1047

Table 3: Allocations for Financial workloads using BAA

Table 3 shows the allocations of BAA-based schedul-
ing. The second column shows the Fair Share for each
workload. The third column shows the IOPS achieved
by each client, and the portions from the HD and SSD
are shown in the next two columns.

The average capacity of the HD for the workload is
around 140-160 IOPS and the SSD is 2000-2200 IOPS.
We use the upper-bound of the capacity to compute the
fair shares shown in the second column. In this setup,
Financial 1 and Financial 2 are bottlenecked on the HD
and belong to D, while Financial 3 and Financial 4 are
bottlenecked on the SSD and belong to S.

First we verify that clients in the same bottleneck set
receive allocations in proportion to their fair share (P1).
As shown in the Table 3, Financial 1 and 2 get through-
puts of 76 and 101, which are in the same ratio as their

fair share (50 : 67). Similarly, Financial 3 and 4 get
throughputs 1068 and 1047, which are in the ratio of their
fair share of (561 : 550).

HD-bottlenecked workloads Financial 1 and Finan-
cial 2 receive more HD allocation (60.8 IOPS) than both
workloads Financial 3 (21.4 IOPS) and 4 (0 IOPS). Sim-
ilarly, SSD-bottlenecked workloads Financial 3 and Fi-
nancial 4 receive more SSD allocation (1047 and 1047
IOPS) than both workload 1 (15.2 IOPS) and 2 (40.4
IOPS).

It can be verified from columns 2 and 3 that every
client receives at least its fair share. Finally, the system
shows that both HD and SSD are almost fully utilized,
indicating the allocation maximizes the system through-
put subject to these fairness criteria. Similar experi-
ments were also conducted with other workloads, includ-
ing those from Web Search and Exchange Servers. The
results show that properties P1 to P4 are always guaran-
teed.

6 Related Work

There has been substantial work dealing with propor-
tional share schedulers for networks and CPU [9, 18, 44].
These schemes have since been extended to handle the

11

240 12th USENIX Conference on File and Storage Technologies USENIX Association

constraints and requirements of storage and IO schedul-
ing [21, 19, 20, 45, 32, 27, 33]. Extensions of WFQ to
provide reservations for constant capacity servers were
presented in [41]. Reservation and limit controls for stor-
age servers were studied in [29, 46, 22, 24]. All these
models provide strict proportional allocation for a single
resource based on static shares possibly subject to reser-
vation and limit constraints.

As discussed earlier, Ghodsi et al [17] proposed the
DRF policy, which provides fair allocation of multiple
resources on the basis of dominant shares. Ghodsi et
al. [16] extended DRF to packet networks and compared
it to the global bottleneck allocation scheme of [12].
Dolev et al [11] proposed an alternative to DRF based
on fairly dividing a global system bottleneck resource.
Gutman and Nisan [25] considered generalizations of
DRF in a more general utility model, and also gave a
polynomial time algorithm for the construction in Dolev
et al [11]. Parkes et al. [36] extended DRF in several
ways, and in particular studied the case of indivisible
tasks. Envy-freedom has been studied in the areas of eco-
nomics [26] and in game theory [10].

Techniques for isolating random and sequential IOs
using time-quanta based IO allocation were presented
in [37, 34, 42, 43, 39, 8]. IO scheduling for SSDs is ex-
amined in [34, 35]. Placement and scheduling tradeoffs
for hybrid storage were a studied in [47]. For a multi-
tiered storage system, Reward scheduling [13, 14, 15]
proposed making allocations in the ratio of the through-
puts a client would receive when executed in isolation.
Interestingly, both Reward and DRF perform identical
allocations for the storage model of this paper [14] (con-
current operation of the SSD and the HD), although they
start from very different fairness criteria. Hence, Reward
also inherits the fairness properties proved for DRF [17].
For a sequential IO model where only 1 IO is served at a
time, Reward will equalize the IO time allocated to each
client. Note that neither DRF nor Reward explicitly ad-
dress the problem of system utilization.

In the system area, Mesos [5] proposes a two-level ap-
proach to allocate resources to frameworks like Hadoop
and MPI that may share an underlying cluster of servers.
Mesos (and related solutions) rely on OS-level abstrac-
tions like resource containers [4].

7 Conclusions and Future Work

Multi-tiered storage made up of heterogeneous devices
are raising new challenges in providing fair throughput
allocation among clients sharing the system. The fun-
damental problem is finding an appropriate balance be-
tween fairness to the clients and increasing system uti-
lization. In this paper we cast the problem within the
broader framework of fair allocation for multiple re-

sources, which has been drawing considerable amount
of recent research attention. We find that existing meth-
ods almost exclusively emphasize the fairness aspect to
the possible detriment of system utilization.

We presented a new allocation model BAA based on
the notion of per-device bottleneck sets. The model pro-
vides clients that are bottlenecked on the same device
with allocations that are proportional to their fair shares,
while allowing allocation ratios between clients in dif-
ferent bottleneck sets to be set by the allocator to max-
imize utilization. We show formally that BAA satisfies
the properties of Envy Freedom and Sharing Incentive
that are well accepted fairness requirements in microe-
conomics and game theory. Within these fairness con-
straints BAA finds the best system utilization. We formu-
lated the optimization as a compact 2-variable LP prob-
lem. We evaluated the performance of our method using
both simulation and implementation on a Linux platform.
The experimental results show that our method can pro-
vide both high efficiency and fairness.

One avenue of further research is to better understand
the theoretical properties of the Linux CFQ scheduler.
It performs remarkably well in a wide variety of situ-
ations; we feel it is important to better understand its
fairness and efficiency tradeoffs within a suitable theo-
retical framework. We are also investigating single-level
scheduling algorithms to implement the BAA policy, and
plan to conduct empirical evaluations at larger scale be-
yond our modest experimental setup.

Our approach also applies, with suitable defini-
tions and interpretation of quantities, to broader multi-
resource allocation settings as in [17, 11, 36], including
CPU, memory, and network allocations. It can also be
generalized to handle client weights; in this case clients
in the same bottleneck set receive allocations in propor-
tion to their weighted fair shares. We are also investigat-
ing settings in which the SSD is used as a cache; this will
involve active data migration between the devices, mak-
ing the resource allocation problem considerably more
complex.

Acknowledgments

We thank the reviewers of the paper for their insight-
ful comments which helped shape the revision. We are
grateful to our shepherd Arif Merchant whose advice and
guidance helped improve the paper immensely. The sup-
port of NSF under Grant CNS 0917157 is greatly appre-
ciated.

References
[1] Storage performance council (umass trace repository), 2007.

http://traces.cs.umass.edu/index.php/Storage.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 241

[2] EMC: Fully automate storage tiering.
http://www.emc.com/about/glossary/fast.htm, 2012.

[3] Tintri: VM aware storage. http://www.tintri.com, 2012.

[4] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource con-
tainers: a new facility for resource management in server systems.
In OSDI ’99.

[5] BENJAMIN, H., AND ET. AL. Mesos: a platform for fine-grained
resource sharing in the data center. In NSDI’11.

[6] BERTSIMAS, D., FARIAS, V. F., AND TRICHAKIS, N. On the
efficiency-fairness trade-off. Manage. Sci. 58, 12 (Dec. 2012),
2234–2250.

[7] BERTSIMAS, D., FARIAS, V. F., AND TRICHAKIS, V. F. The
price of fairness. Operations Research 59, 1 (Jan. 2011), 17–31.

[8] BRUNO, J., BRUSTOLONI, J., GABBER, E., OZDEN, B., AND
SILBERSCHATZ, A. Disk scheduling with Quality of Service
guarantees. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems, Volume 2 (1999), IEEE
Computer Society.

[9] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queuing algorithm. Journal of Internetwork-
ing Research and Experience 1, 1 (September 1990), 3–26.

[10] DEVANUR, N. R., HARTLINE, J. D., AND YAN, Q. Envy free-
dom and prior-free mechanism design. CoRR abs/1212.3741
(2012).

[11] DOLEV, D., FEITELSON, D. G., HALPERN, J. Y., KUPFER-
MAN, R., AND LINIAL, N. No justified complaints: On fair
sharing of multiple resources. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference (New York,
NY, USA, 2012), ITCS ’12, ACM, pp. 68–75.

[12] EGI, N., IANNACCONE, G., MANESH, M., MATHY, L., AND
RATNASAMY, S. Improved parallelism and scheduling in multi-
core software routers. The Journal of Supercomputing 63, 1
(2013), 294–322.

[13] ELNABLY, A., DU, K., AND VARMAN, P. Reward scheduling
for QoS scheduling in cloud applications. In 12th IEEE/ACM
International Conference on Cluster, Cloud, and Grid Computing
(CCGRID’12, May 2012).

[14] ELNABLY, A., AND VARMAN, P. Application specific QoS
scheduling in storage servers. In 24th ACM Symposium on Par-
allel Algorithms and Architectures (SPAA’12, June 2012).

[15] ELNABLY, A., WANG, H., GULATI, A., AND VARMAN, P. Effi-
cient QoS for multi-tiered storage systems. In 4th USENIX Work-
shop on Hot Topics in Storage and File Systems (June 2012).

[16] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA, I.
Multi-resource fair queueing for packet processing. In Proceed-
ings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication (New York, NY, USA, 2012), SIGCOMM ’12, ACM,
pp. 1–12.

[17] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: fair
allocation of multiple resource types. In Proceedings of the 8th
USENIX conference on Networked systems design and implemen-
tation (Berkeley, CA, USA, 2011), NSDI’11, USENIX Associa-
tion, pp. 24–24.

[18] GOYAL, P., VIN, H. M., AND CHENG, H. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switch-
ing networks. IEEE/ACM Trans. Netw. 5, 5 (1997), 690–704.

[19] GULATI, A., AHMAD, I., AND WALDSPURGER, C. PARDA:
Proportional Allocation of Resources in Distributed Storage Ac-
cess. In (FAST ’09)Proceedings of the Seventh Usenix Conference
on File and Storage Technologies (Feb 2009).

[20] GULATI, A., KUMAR, C., AHMAD, I., AND KUMAR, K. Basil:
Automated io load balancing across storage devices. In Usenix
FAST (2010), pp. 169–182.

[21] GULATI, A., MERCHANT, A., AND VARMAN, P. pClock: An
arrival curve based approach for QoS in shared storage systems.
In ACM SIGMETRICS (2007).

[22] GULATI, A., MERCHANT, A., AND VARMAN, P. mClock: Han-
dling Throughput Variability for Hypervisor IO Scheduling . In
USENIX OSDI (2010).

[23] GULATI, A., SHANMUGANATHAN, G., ZHANG, X., AND VAR-
MAN, P. Demand based hierarchical qos using storage resource
pools. In Proceedings of the 2012 USENIX conference on An-
nual Technical Conference (Berkeley, CA, USA, 2012), USENIX
ATC’12, USENIX Association, pp. 1–1.

[24] GULATI, A., SHANMUGANATHAN, G., ZHANG, X., AND VAR-
MAN, P. Demand based hierarchical qos using storage resource
pools. In Proceedings of the 2012 USENIX Conference on An-
nual Technical Conference (Berkeley, CA, USA, 2012), USENIX
ATC’12, USENIX Association, pp. 1–1.

[25] GUTMAN, A., AND NISAN, N. Fair allocation without trade.
CoRR abs/1204.4286 (2012).

[26] JACKSON, M. O., AND KREMER, I. Envy-freeness and imple-
mentation in large economies. Review of Economic Design 11, 3
(2007), 185–198.

[27] JIN, W., CHASE, J. S., AND KAUR, J. Interposed proportional
sharing for a storage service utility. In ACM SIGMETRICS ’04
(2004).

[28] JOE-WONG, C., SEN, S., LAN, T., AND CHIANG, M. In IN-
FOCOM (2012), A. G. Greenberg and K. Sohraby, Eds., IEEE,
pp. 1206–1214.

[29] KARLSSON, M., KARAMANOLIS, C., AND ZHU, X. Triage:
Performance differentiation for storage systems using adaptive
control. Trans. Storage 1, 4 (2005), 457–480.

[30] KASH, I., PROCACCIA, A. D., AND SHAH, N. No agent left
behind: Dynamic fair division of multiple resources. In Proceed-
ings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems (Richland, SC, 2013), AAMAS ’13, In-
ternational Foundation for Autonomous Agents and Multiagent
Systems, pp. 351–358.

[31] KAVALANEKAR, S., WORTHINGTON, B., ZHANG, Q., AND
SHARDA, V. Characterization of storage workload traces from
production windows servers. In Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on (2008),
pp. 119–128.

[32] LUMB, C., MERCHANT, A., AND ALVAREZ, G. Façade: Virtual
storage devices with performance guarantees. File and Storage
technologies (FAST’03) (March 2003), 131–144.

[33] LUMB, C. R., SCHINDLER, J., GANGER, G. R., NAGLE, D. F.,
AND RIEDEL, E. Towards higher disk head utilization: extracting
free bandwidth from busy disk drives. In Usenix OSDI (2000).

[34] PARK, S., AND SHEN, K. Fios: A fair, efficient flash i/o sched-
uler. In FAST (2012).

[35] PARK, S., AND SHEN, K. Flashfq: A fair queueing i/o scheduler
for flash-based ssds. In Usenix ATC (2013).

[36] PARKES, D. C., PROCACCIA, A. D., AND SHAH, N. Beyond
dominant resource fairness: Extensions, limitations, and indivis-
ibilities. In Proceedings of the 13th ACM Conference on Elec-
tronic Commerce (New York, NY, USA, 2012), EC ’12, ACM,
pp. 808–825.

[37] POVZNER, A., KALDEWEY, T., BRANDT, S., GOLDING, R.,
WONG, T. M., AND MALTZAHN, C. Efficient guaranteed disk
request scheduling with Fahrrad. SIGOPS Oper. Syst. Rev. 42, 4
(2008), 13–25.

13

242 12th USENIX Conference on File and Storage Technologies USENIX Association

[38] PROCACCIA, A. D. Cake cutting: Not just child’s play. Commu-
nications of the ACM 56, 7 (2013), 78–87.

[39] SHAKSHOBER, D. J. Choosing an I/O Scheduler for Red Hat
Enterprise Linux 4 and the 2.6 Kernel. In In Red Hat magazine
(June 2005).

[40] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queueing
using deficit round robin. In Proc. of SIGCOMM ’95 (August
1995).

[41] STOICA, I., ABDEL-WAHAB, H., AND JEFFAY, K. On the dual-
ity between resource reservation and proportional-share resource
allocation. SPIE (February 1997).

[42] VALENTE, P., AND CHECCONI, F. High Throughput Disk
Scheduling with Fair Bandwidth Distribution. In IEEE Trans-
actions on Computers (2010), no. 9, pp. 1172–1186.

[43] WACHS, M., ABD-EL-MALEK, M., THERESKA, E., AND
GANGER, G. R. Argon: performance insulation for shared stor-
age servers. In USENIX FAST (Berkeley, CA, USA, 2007).

[44] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery schedul-
ing: flexible proportional-share resource management. In Usenix
OSDI (1994).

[45] WANG, Y., AND MERCHANT, A. Proportional-share scheduling
for distributed storage systems. In Usenix FAST (Feb 2007).

[46] WONG, T. M., GOLDING, R. A., LIN, C., AND BECKER-
SZENDY, R. A. Zygaria: Storage performance as a managed
resource. In Proceedings of the 12th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (Washington, DC,
USA, 2006), RTAS ’06, IEEE Computer Society, pp. 125–134.

[47] WU, X., AND REDDY, A. L. N. Exploiting concurrency to im-
prove latency and throughput in a hybrid storage system. In MAS-
COTS (2010), pp. 14–23.

[48] ZHANG, J., SIVASUBRAMANIAM, A., WANG, Q., RISKA, A.,
AND RIEDEL, E. Storage performance virtualization via through-
put and latency control. In MASCOTS (2005), pp. 135–142.

[49] ZHANG, L. VirtualClock: A new traffic control algorithm for
packet-switched networks. ACM Trans. Comput. Syst. 9, 2, 101–
124.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 243

SpringFS: Bridging Agility and Performance in Elastic Distributed Storage

Lianghong Xu�, James Cipar�, Elie Krevat�, Alexey Tumanov�

Nitin Gupta�, Michael A. Kozuch†, Gregory R. Ganger�
�Carnegie Mellon University, †Intel Labs

Abstract
Elastic storage systems can be expanded or contracted

to meet current demand, allowing servers to be turned
off or used for other tasks. However, the usefulness of an
elastic distributed storage system is limited by its agility:
how quickly it can increase or decrease its number of
servers. Due to the large amount of data they must mi-
grate during elastic resizing, state-of-the-art designs usu-
ally have to make painful tradeoffs among performance,
elasticity and agility.

This paper describes an elastic storage system, called
SpringFS, that can quickly change its number of active
servers, while retaining elasticity and performance goals.
SpringFS uses a novel technique, termed bounded write
offloading, that restricts the set of servers where writes
to overloaded servers are redirected. This technique,
combined with the read offloading and passive migration
policies used in SpringFS, minimizes the work needed
before deactivation or activation of servers. Analysis of
real-world traces from Hadoop deployments at Facebook
and various Cloudera customers and experiments with
the SpringFS prototype confirm SpringFS’s agility, show
that it reduces the amount of data migrated for elastic re-
sizing by up to two orders of magnitude, and show that
it cuts the percentage of active servers required by 67–
82%, outdoing state-of-the-art designs by 6–120%.

1 Introduction

Distributed storage can and should be elastic, just like
other aspects of cloud computing. When storage is pro-
vided via single-purpose storage devices or servers, sep-
arated from compute activities, elasticity is useful for
reducing energy usage, allowing temporarily unneeded
storage components to be powered down. However, for
storage provided via multi-purpose servers (e.g. when
a server operates as both a storage node in a distributed
filesystem and a compute node), such elasticity is even
more valuable— providing cloud infrastructures with the
freedom to use such servers for other purposes, as ten-
ant demands and priorities dictate. This freedom may
be particularly important for increasingly prevalent data-
intensive computing activities (e.g., data analytics).

Data-intensive computing over big data sets is quickly
becoming important in most domains and will be a ma-
jor consumer of future cloud computing resources [7,
4, 3, 2]. Many of the frameworks for such comput-
ing (e.g., Hadoop [1] and Google’s MapReduce [10])
achieve efficiency by distributing and storing the data on
the same servers used for processing it. Usually, the data
is replicated and spread evenly (via randomness) across
the servers, and the entire set of servers is assumed to
always be part of the data analytics cluster. Little-to-no
support is provided for elastic sizing1 of the portion of
the cluster that hosts storage—only nodes that host no
storage can be removed without significant effort, mean-
ing that the storage service size can only grow.

Some recent distributed storage designs (e.g.,
Sierra [18], Rabbit [5]) provide for elastic sizing, origi-
nally targeted for energy savings, by distributing replicas
among servers such that subsets of them can be powered
down when the workload is low without affecting data
availability; any server with the primary replica of data
will remain active. These systems are designed mainly
for performance or elasticity (how small the system size
can shrink to) goals, while overlooking the importance
of agility (how quickly the system can resize its footprint
in response to workload variations), which we find has a
significant impact on the machine-hour savings (and so
the operating cost savings) one can potentially achieve.
As a result, state-of-the-art elastic storage systems
must make painful tradeoffs among these goals, unable
to fulfill them at the same time. For example, Sierra
balances load across all active servers and thus provides
good performance. However, this even data layout limits
elasticity— at least one third of the servers must always
be active (assuming 3-way replication), wasting machine
hours that could be used for other purposes when the
workload is very low. Further, rebalancing the data
layout when turning servers back on induces significant
migration overhead, impairing system agility.

1We use “elastic sizing” to refer to dynamic online resizing, down
from the full set of servers and back up, such as to adapt to workload
variations. The ability to add new servers, as an infrequent adminis-
trative action, is common but does not itself make a storage service
“elastic” in this context; likewise with the ability to survive failures of
individual storage servers.

1

244 12th USENIX Conference on File and Storage Technologies USENIX Association

In contrast, Rabbit can shrink its active footprint to
a much smaller size (≈10% of the cluster size), but its
reliance on Everest-style write offloading [16] induces
significant cleanup overhead when shrinking the active
server set, resulting in poor agility.

This paper describes a new elastic distributed stor-
age system, called SpringFS, that provides the elastic-
ity of Rabbit and the peak write bandwidth character-
istic of Sierra, while maximizing agility at each point
along a continuum between their respective best cases.
The key idea is to employ a small set of servers to store
all primary replicas nominally, but (when needed) of-
fload writes that would go to overloaded servers to only
the minimum set of servers that can satisfy the write
throughput requirement (instead of all active servers).
This technique, termed bounded write offloading, ef-
fectively restricts the distribution of primary replicas
during offloading and enables SpringFS to adapt dy-
namically to workload variations while meeting perfor-
mance targets with a minimum loss of agility—most of
the servers can be extracted without needing any pre-
removal cleanup. SpringFS further improves agility by
minimizing the cleanup work involved in resizing with
two more techniques: read offloading offloads reads
from write-heavy servers to reduce the amount of write
offloading needed to achieve the system’s performance
targets; passive migration delays migration work by a
certain time threshold during server re-integration to re-
duce the overall amount of data migrated. With these
techniques, SpringFS achieves agile elasticity while pro-
viding performance comparable to a non-elastic storage
system.

Our experiments demonstrate that the SpringFS de-
sign enables significant reductions in both the fraction
of servers that need to be active and the amount of mi-
gration work required. Indeed, its design for where and
when to offload writes enables SpringFS to resize elas-
tically without performing any data migration at all in
most cases. Analysis of traces from six real Hadoop de-
ployments at Facebook and various Cloudera customers
show the oft-noted workload variation and the potential
of SpringFS to exploit it—SpringFS reduces the amount
of data migrated for elastic resizing by up to two orders
of magnitude, and cuts the percentage of active servers
required by 67–82%, outdoing state-of-the-art designs
like Sierra and Rabbit by 6–120%.

This paper makes three main contributions: First, to
the best of our knowledge, it is the first to show the im-
portance of agility in elastic distributed storage, high-
lighting the need to resize quickly (at times) rather than
just hourly as in previous designs. Second, SpringFS
introduces a novel write offloading policy that bounds
the set of servers to which writes to over-loaded pri-
mary servers are redirected. Bounded write offloading,

together with read offloading and passive migration sig-
nificantly improve the system’s agility by reducing the
cleanup work during elastic resizing. These techniques
apply generally to elastic storage with an uneven data
layout. Third, we demonstrate the significant machine-
hour savings that can be achieved with elastic resizing,
using six real-world HDFS traces, and the effectiveness
of SpringFS’s policies at achieving a “close-to-ideal”
machine-hour usage.

The remainder of this paper is organized as follows.
Section 2 describes elastic distributed storage generally,
the importance of agility in such storage, and the limita-
tions of the state-of-the-art data layout designs in fulfill-
ing elasticity, agility and performance goals at the same
time. Section 3 describes the key techniques in SpringFS
design and how they can increase agility of elasticity.
Section 4 overviews the SpringFS implementation. Sec-
tion 5 evaluates the SpringFS design.

2 Background and Motivation

This section motivates our work. First, it describes the
related work on elastic distributed storage, which pro-
vides different mechanisms and data layouts to allow
servers to be extracted while maintaining data availabil-
ity. Second, it demonstrates the significant impact of
agility on aggregate machine-hour usage of elastic stor-
age. Third, it describes the limitations of state-of-the-art
elastic storage systems and how SpringFS fills the signif-
icant gap between agility and performance.

2.1 Related Work
Most distributed storage is not elastic. For example, the
cluster-based storage systems commonly used in support
of cloud and data-intensive computing environments,
such as the Google File System(GFS) [11] or the Hadoop
Distributed Filesystem [1], use data layouts that are not
amenable to elasticity. The Hadoop Distributed File Sys-
tem (HDFS), for example, uses a replication and data-
layout policy wherein the first replica is placed on a node
in the same rack as the writing node (preferably the writ-
ing node, if it contributes to DFS storage), the second
and third on random nodes in a randomly chosen dif-
ferent rack than the writing node. In addition to load
balancing, this data layout provides excellent availabil-
ity properties—if the node with the primary replica fails,
the other replicas maintain data availability; if an entire
rack fails (e.g., through the failure of a communication
link), data availability is maintained via the replica(s) in
another rack. But, such a data layout prevents elastic-
ity by requiring that almost all nodes be active—no more
than one node per rack can be turned off without a high
likelihood of making some data unavailable.

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 245

Recent research [5, 13, 18, 19, 17] has provided new
data layouts and mechanisms for enabling elasticity in
distributed storage. Most notable are Rabbit [5] and
Sierra [18]. Both organize replicas such that one copy
of data is always on a specific subset of servers, termed
primaries, so as to allow the remainder of the nodes to
be powered down without affecting availability, when
the workload is low. With workload increase, they can
be turned back on. The same designs and data distri-
bution schemes would allow for servers to be used for
other functions, rather than turned off, such as for higher-
priority (or higher paying) tenants’ activities. Writes in-
tended for servers that are inactive2 are instead written
to other active servers—an action called write availabil-
ity offloading—and then later reorganized (when servers
become active) to conform to the desired data layout.

Rabbit and Sierra build on a number of techniques
from previous systems, such as write availability offload-
ing and power gears. Narayanan, Donnelly, and Row-
stron [15] described the use of write availability offload-
ing for power management in enterprise storage work-
loads. The approach was used to redirect traffic from oth-
erwise idle disks to increase periods of idleness, allowing
the disks to be spun down to save power. PARAID [20]
introduced a geared scheme to allow individual disks in
a RAID array to be turned off, allowing the power used
by the array to be proportional to its throughput.

Everest [16] is a distributed storage design that used
write performance offloading3, rather than to avoid turn-
ing on powered-down servers, in the context of enter-
prise storage. In Everest, disks are grouped into distinct
volumes, and each write is directed to a particular vol-
ume. When a volume becomes overloaded, writes can be
temporarily redirected to other volumes that have spare
bandwidth, leaving the overloaded volume to only han-
dle reads. Rabbit applies this same approach, when nec-
essary, to address overload of the primaries.

SpringFS borrows the ideas of write availability and
performance offloading from prior elastic storage sys-
tems. We expand on previous work by developing new
offloading and migration schemes that effectively elim-
inate the painful tradeoff between agility and write per-
formance in state-of-the-art elastic storage designs.

2We generally refer to a server as inactive when it is either pow-
ered down or reused for other purposes. Conversely, we call a server
active when it is powered on and servicing requests as part of a elastic
distributed storage system.

3Write performance offloading differs from write availability of-
floading in that it offloads writes from overloaded active servers to
other (relatively idle) active servers for better load balancing. The
Everest-style and bounded write offloading schemes are both types of
write performance offloading.

2.2 Agility is important

By “agility”, we mean how quickly one can change the
number of servers effectively contributing to a service.
For most non-storage services, such changes can often
be completed quickly, as the amount of state involved
is small. For distributed storage, however, the state in-
volved may be substantial. A storage server can service
reads only for data that it stores, which affects the speed
of both removing and re-integrating a server. Removing
a server requires first ensuring that all data is available on
other servers, and re-integrating a server involves replac-
ing data overwritten (or discarded) while it was inactive.

The time required for such migrations has a direct im-
pact on the machine-hours consumed by elastic storage
systems. Systems with better agility are able to more ef-
fectively exploit the potential of workload variation by
more closely tracking workload changes. Previous elas-
tic storage systems rely on very infrequent changes (e.g.,
hourly resizing in Sierra [18]), but we find that over half
of the potential savings is lost with such an approach due
to the burstiness of real workloads.

Figure 1: Workload variation in the Facebook trace.
The shaded region represents the potential reduction in
machine-hour usage with a 1-minute resizing interval.

As one concrete example, Figure 1 shows the num-
ber of active servers needed, as a function of time in the
trace, to provide the required throughput in a randomly
chosen 4-hour period from the Facebook trace described
in Section 5. The dashed and solid curves bounding the
shaded region represent the minimum number of active
servers needed if using 1-hour and 1-minute resizing in-
tervals, respectively. For each such period, the number
of active servers corresponds to the number needed to
provide the peak throughput in that period, as is done
in Sierra to avoid significant latency increases. The area
under each curve represents the machine time used for
that resizing interval, and the shaded region represents
the increased server usage (more than double) for the 1-
hour interval. We observe similar burstiness and conse-
quences of it across all of the traces.

3

246 12th USENIX Conference on File and Storage Technologies USENIX Association

2.3 Bridging Agility and Performance
Previous elastic storage systems overlook the importance
of agility, focusing on performance and elasticity. This
section describes the data layouts of state-of-the-art elas-
tic storage systems, specifically Sierra and Rabbit, and
how their layouts represent two specific points in the
tradeoff space among elasticity, agility and performance.
Doing so highlights the need for a more flexible elastic
storage design that fills the void between them, providing
greater agility and matching the best of each.

We focus on elastic storage systems that ensure data
availability at all times. When servers are extracted from
the system, at least one copy of all data must remain ac-
tive to serve read requests. To do so, state-of-the-art elas-
tic storage designs exploit data replicas (originally for
fault tolerance) to ensure that all blocks are available at
any power setting. For example, with 3-way replication4,
Sierra stores the first replica of every block (termed pri-
mary replica) in one third of servers, and writes the other
2 replicas to the other two thirds of servers. This data lay-
out allows Sierra to achieve full peak performance due to
balanced load across all active servers, but it limits the
elasticity of the system by not allowing the system foot-
print to go below one third of the cluster size. We show
in section 5.2 that such limitation can have a significant
impact on the machine-hour savings that Sierra can po-
tentially achieve, especially during periods of low work-
load.

Rabbit, on the other hand, is able to reduce its system
footprint to a much smaller size (≈10% of the cluster
size). It does so by storing the replicas according to an
equal-work data layout, so that it achieves power pro-
portionality for read requests. That is, read performance
scales linearly with the number of active servers: if 50%
of the servers are active, the read performance of Rabbit
should be at least 50% of its maximum read performance.
The equal-work data layout ensures that, with any num-
ber of active servers, each server is able to perform an
equal share of the read workload. In a system storing B
blocks, with p primary servers and x active servers, each
active server must store at least B/x blocks so that reads
can be distributed equally, with the exception of the pri-
mary servers. Since a copy of all blocks must be stored
on the p primary servers, they each store B/p blocks.
This ensures (probabilistically) that when a large quan-
tity of data is read, no server must read more than the
others and become a bottleneck. This data layout allows
Rabbit to keep the number of primary servers (p=N/e2)
very small (e is Euler’s constant). The small number of

4We assume 3-way replication for all data blocks throughout this
paper, which remains the default policy for HDFS. The data layout
designs apply to other replication levels as well. Different approaches
than Sierra, Rabbit and SpringFS are needed when erasure codes are
used for fault tolerance instead of replication.

Figure 2: Primary data distribution for Rabbit without
offloading (grey) and Rabbit with offloading (light grey).
With offloading, primary replicas are spread across all
active servers during writes, incurring significant cleanup
overhead when the system shrinks its size.

primary servers provides great agility—Rabbit is able to
shrink its system size down to p without any cleanup
work—but it can create bottlenecks for writes. Since
the primary servers must store the primary replicas for
all blocks, the maximum write throughput of Rabbit is
limited by the maximum aggregate write throughout of
the p primary servers, even when all servers are active.
In contrast, Sierra is able to achieve the same maximum
write throughput as that of HDFS, that is, the aggregate
write throughput of N/3 servers (recall: N servers write
3 replicas for every data block).

Rabbit borrows write offloading from the Everest sys-
tem [16] to solve this problem. When primary servers
become the write performance bottleneck, Rabbit simply
offloads writes that would go to heavily loaded servers
across all active servers. While such write offloading
allows Rabbit to achieve good peak write performance
comparable to non-modified HDFS due to balanced load,
it significantly impairs system agility by spreading pri-
mary replicas across all active servers, as depicted in
Figure 2. Consequently, before Rabbit shrinks the sys-
tem size, cleanup work is required to migrate some pri-
mary replicas to the remaining active servers so that at
least one complete copy of data is still available after the
resizing action. As a result, the improved performance
from Everest-style write offloading comes at a high cost
in system agility.

Figure 3 illustrates the very different design points
represented by Sierra and Rabbit, in terms of the trade-
offs among agility, elasticity and peak write perfor-
mance. Read performance is the same for all of these
systems, given the same number of active servers. The
number of servers that store primary replicas indicates
the minimal system footprint one can shrink to without
any cleanup work. As described above, state-of-the art
elastic storage systems such as Sierra and Rabbit suf-
fer from the painful tradeoff between agility and perfor-

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 247

Figure 3: Elastic storage system comparison in terms of
agility and performance. N is the total size of the clus-
ter. p is the number of primary servers in the equal-work
data layout. Servers with at least some primary repli-
cas cannot be deactivated without first moving those pri-
mary replicas. SpringFS provides a continuum between
Sierra’s and Rabbit’s (when no offload) single points
in this tradeoff space. When Rabbit requires offload,
SpringFS is superior at all points. Note that the y-axis
is discontinuous.

mance due to the use of a rigid data layout. SpringFS
provides a more flexible design that provides the best-
case elasticity of Rabbit, the best-case write performance
of Sierra, and much better agility than either. To achieve
the range of options shown, SpringFS uses an explicit
bound on the offload set, where writes of primary repli-
cas to overloaded servers are offloaded to only the mini-
mum set of servers (instead of all active servers) that can
satisfy the current write throughput requirement. This
additional degree of freedom allows SpringFS to adapt
dynamically to workload changes, providing the desired
performance while maintaining system agility.

3 SpringFS Design and Policies

This section describes SpringFS’s data layout, as well as
the bounded write offloading and read offloading policies
that minimize the cleanup work needed before deactiva-
tion of servers. It also describes the passive migration
policy used during a server’s re-integration to address
data that was written during the server’s absence.

3.1 Data Layout and Offloading Policies

Data layout. Regardless of write performance, the
equal-work data layout proposed in Rabbit enables the
smallest number of primary servers and thus provides
the best elasticity in state-of-the-art designs.5 SpringFS
retains such elasticity using a variant of the equal-work
data layout, but addresses the agility issue incurred by
Everest-style offloading when write performance bottle-
necks arise. The key idea is to bound the distribution
of primary replicas to a minimal set of servers (instead
of offloading them to all active servers), given a tar-
get maximum write performance, so that the cleanup
work during server extraction can be minimized. This
bounded write offloading technique introduces a param-
eter called the offload set: the set of servers to which
primary replicas are offloaded (and as a consequence re-
ceive the most write requests). The offload set provides
an adjustable tradeoff between maximum write perfor-
mance and cleanup work. With a small offload set, few
writes will be offloaded, and little cleanup work will be
subsequently required, but the maximum write perfor-
mance will be limited. Conversely, a larger offload set
will offload more writes, enabling higher maximum write
performance at the cost of more cleanup work to be done
later. Figure 4 shows the SpringFS data layout and its
relationship with the state-of-the-art elastic data layout
designs. We denote the size of the offload set as m, the
number of primary servers in the equal-work layout as p,
and the total size of the cluster as N. When m equals p,
SpringFS behaves like Rabbit and writes all data accord-
ing to the equal-work layout (no offload); when m equals
N/3, SpringFS behaves like Sierra and load balances all
writes (maximum performance). As illustrated in Fig-
ure 3, the use of the tunable offload set allows SpringFS
to achieve both end points and points in between.

Choosing the offload set. The offload set is not a rigid
setting, but determined on the fly to adapt to workload
changes. Essentially, it is chosen according to the tar-
get maximum write performance identified for each re-
sizing interval. Because servers in the offload set write
one complete copy of the primary replicas, the size of
the offload set is simply the maximum write throughput
in the workload divided by the write throughput a single
server can provide. Section 5.2 gives a more detailed de-
scription of how SpringFS chooses the offload set (and
the number of active servers) given the target workload
performance.

Read offloading. One way to reduce the amount of
cleanup work is to simply reduce the amount of write
offloading that needs to be done to achieve the system’s

5Theoretically, no other data layout can achieve a smaller number
of primary servers while maintaining power-proportionality for read
performance.

5

248 12th USENIX Conference on File and Storage Technologies USENIX Association

performance targets. When applications simultaneously
read and write data, SpringFS can coordinate the read
and write requests so that reads are preferentially sent
to higher numbered servers that naturally handle fewer
write requests. We call this technique read offloading.

Despite its simplicity, read offloading allows SpringFS
to increase write throughput without changing the offload
set by taking read work away from the low numbered
servers (which are the bottleneck for writes). When a
read occurs, instead of randomly picking one among
the servers storing the replicas, SpringFS chooses the
server that has received the least number of total re-
quests recently. (The one exception is when the client
requesting the read has a local copy of the data. In this
case, SpringFS reads the replica directly from that server
to exploit machine locality.) As a result, lower num-
bered servers receive more writes while higher numbered
servers handle more reads. Such read/write distribution
balances the overall load across all the active servers
while reducing the need for write offloading.

Replica placement. When a block write occurs,
SpringFS chooses target servers for the 3 replicas in the
following steps: The primary replica is load balanced
across (and thus bounded in) the m servers in the cur-
rent offload set. (The one exception is when the client
requesting the write is in the offload set. In this case,
SpringFS writes the primary copy to that server, in-
stead of the server with the least load in the offload set,
to exploit machine locality.) For non-primary replicas,
SpringFS first determines their target servers according
to the equal-work layout. For example, the target server
for the secondary replica would be a server numbered
between p+ 1 and ep, and that for the tertiary replica
would be a server numbered between ep + 1 and e2 p,
both following the probability distribution as indicated
by the equal-work layout (lower numbered servers have
higher probability to write the non-primary replicas). If
the target server number is higher than m, the replica is
written to that server. However, if the target server num-
ber is between p+ 1 and m (a subset of the offload set),
the replica is instead redirected and load balanced across
servers outside the offload set, as shown in the shaded re-
gions in Figure 4. Such redirection of non-primary repli-
cas reduces the write requests going to the servers in the
offload set and ensures that these servers store only the
primary replicas.

Fault tolerance and multi-volume support. The use
of an uneven data layout creates new problems for fault
tolerance and capacity utilization. For example, when a
primary server fails, the system may need to re-integrate
some non-primary servers to restore the primary repli-
cas onto a new server. SpringFS includes the data lay-
out refinements from Rabbit that minimize the number
of additional servers that must be re-activated if such fail-

Figure 4: SpringFS data layout and its relationship with
previous designs. The offload set allows SpringFS to
achieve a dynamic tradeoff between the maximum write
performance and the cleanup work needed before ex-
tracting servers. In SpringFS, all primary replicas are
stored in the m servers of the offload set. The shaded re-
gions indicate writes of non-primary replicas that would
have gone to the offload set (in SpringFS) are instead
redirected and load balanced outside the set.

ure happens. Writes that would have gone to the failed
primary server are instead redirected to other servers in
the offload set to preserve system agility. Like Rabbit,
SpringFS also accommodates multi-volume data layouts
in which independent volumes use distinct servers as pri-
maries in order to allow small values of p without limit-
ing storage capacity utilization to 3p/N.

3.2 Passive Migration for Re-integration

When SpringFS tries to write a replica according to its
target data layout but the chosen server happens to be
inactive, it must still maintain the specified replication
factor for the block. To do this, another host must be
selected to receive the write. Availability offloading is
used to redirect writes that would have gone to inactive
servers (which are unavailable to receive requests) to the
active servers. As illustrated in Figure 5, SpringFS load
balances availability offloaded writes together with the
other writes to the system. This results in the availability
offloaded writes going to the less-loaded active servers
rather than adding to existing write bottlenecks on other
servers.

Because of availability offloading, re-integrating a
previously deactivated server is more than simply restart-
ing its software. While the server can begin servicing its
share of the write workload immediately, it can only ser-
vice reads for blocks that it stores. Thus, filling it accord-
ing to its place in the target equal-work layout is part of
full re-integration.

When a server is reintegrated to address a workload

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 249

Figure 5: Availability offloading. When SpringFS works
in the power saving mode, some servers (n+1 to N) are
deactivated. The shaded regions show that writes that
would have gone to these inactive servers are offloaded
to higher numbered active servers for load balancing.

increase, the system needs to make sure that the active
servers will be able to satisfy the read performance re-
quirement. One option is to aggressively restore the
equal work data layout before reintegrated servers begin
servicing reads. We call this approach aggressive mi-
gration. Before anticipated workload increases, the mi-
gration agent would activate the right number of servers
and migrate some data to the newly activated servers so
that they store enough data to contribute their full share
of read performance. The migration time is determined
by the number of blocks that need to be migrated, the
number of servers that are newly activated, and the I/O
throughput of a single server. With aggressive migration,
cleanup work is never delayed. Whenever a resizing ac-
tion takes place, the property of the equal-work layout is
obeyed—server x stores no less than B

x blocks.
SpringFS takes an alternate approach called passive

migration, based on the observation that cleanup work
when re-integrating a server is not as important as when
deactivating a server (for which it preserves data avail-
ability), and that the total amount of cleanup work can
be reduced by delaying some fraction of migration work
while performance goals are still maintained (which
makes this approach better than aggressive migration).
Instead of aggressively fixing the data layout (by ac-
tivating the target number of servers in advance for a
longer period of time), SpringFS temporarily activates
more servers than would minimally be needed to satisfy
the read throughput requirement and utilizes the extra
bandwidth for migration work and to address the reduced
number of blocks initially on each reactivated server. The
number of extra servers that need to be activated is de-
termined in two steps. First, an initial number is cho-
sen to ensure that the number of valid data blocks still
stored on the activated servers is more than the fraction
of read workload they need to satisfy, so that the perfor-

mance requirement is satisfied. Second, the number may
be increased so that the extra servers provide enough I/O
bandwidth to finish a fraction (1/T , where T is the mi-
gration threshold as described below) of migration work.
To avoid migration work building up indefinitely, the mi-
gration agent sets a time threshold so that whenever a
migration action takes place, it is guaranteed to finish
within T minutes. With T > 1 (the default resizing inter-
val), SpringFS delays part of the migration work while
satisfying throughput requirement. Because higher num-
bered servers receive more writes than their equal-work
share, due to write offloading, some delayed migration
work can be replaced by future writes, which reduces the
overall amount of data migration. If T is too large, how-
ever, the cleanup work can build up so quickly that even
activating all the servers cannot satisfy the throughput
requirement. In practice, we find a migration threshold
T = 10 to be a good choice and use this setting for the
trace analysis in Section 5. Exploring automatic setting
of T is an interesting future work.

4 Implementation

SpringFS is implemented as a modified instance of
the Hadoop Distributed File System (HDFS), version
0.19.16. We build on a Scriptable Hadoop interface that
we built into Hadoop to allow experimenters to imple-
ment policies in external programs that are called by
the modified Hadoop. This enables rapid prototyping
of new policies for data placement, read load balancing,
task scheduling, and re-balancing. It also enables us to
emulate both Rabbit and SpringFS in the same system,
for better comparison. SpringFS mainly consists of four
components: data placement agent, load balancer, resiz-
ing agent and migration agent, all implemented as python
programs called by the Scriptable Hadoop interface.

Data placement agent. The data placement agent
determines where to place blocks according to the
SpringFS data layout. Ordinarily, when a HDFS client
wishes to write a block, it contacts the HDFS NameNode
and asks where the block should be placed. The
NameNode returns a list of pseudo-randomly chosen
DataNodes to the client, and the client writes the data
directly to these DataNodes. The data placement agent
starts together with the NameNode, and communicates
with the NameNode using a simple text-based protocol
over stdin and stdout. To obtain a placement deci-
sion for the R replicas of a block, the NameNode writes
the name of the client machine as well as a list of candi-

60.19.1 was the latest Hadoop version when our work started. We
have done a set of experiments to verify that HDFS performance dif-
fers little, on our experimental setup, between version 0.19.1 and the
latest stable version (1.2.1). We believe our results and findings are not
significantly affected by still using this older version of HDFS.

7

250 12th USENIX Conference on File and Storage Technologies USENIX Association

date DataNodes to the placement agent’s stdin. The
placement agent can then filter and reorder the candi-
dates, returning a prioritized list of targets for the write
operation. The NameNode then instructs the client to
write to the first R candidates returned.

Load balancer. The load balancer implements the
read offloading policy and preferentially sends reads to
higher numbered servers that handle fewer write requests
whenever possible. It keeps an estimate of the load on
each server by counting the number of requests sent to
each server recently. Every time SpringFS assigns a
block to a server, it increments a counter for the server.
To ensure that recent activity has precedence, these coun-
ters are periodically decayed by 0.95 every 5 seconds.
While this does not give the exact load on each server,
we find its estimates good enough (within 3% off opti-
mal) for load balancing among relatively homogeneous
servers.

Resizing agent. The resizing agent changes
SpringFS’s footprint by setting an activity state for each
DataNode. On every read and write, the data placement
agent and load balancer will check these states and re-
move all “INACTIVE” DataNodes from the candidate
list. Only “ACTIVE” DataNodes are able to service reads
or writes. By setting the activity state for DataNodes,
we allow the resources (e.g., CPU and network) of “IN-
ACTIVE” nodes to be used for other activities with no
interference from SpringFS activities. We also modified
the HDFS mechanisms for detecting and repairing under-
replication to assume that “INACTIVE” nodes are not
failed, so as to avoid undesired re-replication.

Migration agent. The migration agent crawls the en-
tire HDFS block distribution (once) when the NameNode
starts, and it keeps this information up-to-date by modi-
fying HDFS to provide an interface to get and change the
current data layout. It exports two metadata tables from
the NameNode, mapping file names to block lists and
blocks to DataNode lists, and loads them into a SQLite
database. Any changes to the metadata (e.g., creating a
file, creating or migrating a block) are then reflected in
the database on the fly. When data migration is sched-
uled, the SpringFS migration agent executes a series of
SQL queries to detect layout problems, such as blocks
with no primary replica or hosts storing too little data. It
then constructs a list of migration actions to repair these
problems. After constructing the full list of actions, the
migration agent executes them in the background. To al-
low block-level migration, we modified the HDFS client
utility to have a “relocate” operation that copies a block
to a new server. The migration agent uses GNU Parallel
to execute many relocates simultaneously.

5 Evaluation

This section evaluates SpringFS and its offloading poli-
cies. Measurements of the SpringFS implementation
show that it provide performance comparable to unmod-
ified HDFS, that its policies improve agility by reduc-
ing the cleanup required, and that it can agilely adapt
its number of active servers to provide required perfor-
mance levels. In addition, analysis of six traces from real
Hadoop deployments shows that SpringFS’s agility en-
ables significantly reduced commitment of active servers
for the highly dynamic demands commonly seen in prac-
tice.

5.1 SpringFS prototype experiments

Experimental setup: Our experiments were run on a
cluster of 31 machines. The modified Hadoop software is
run within KVM virtual machines, for software manage-
ment purposes, but each VM gets its entire machine and
is configured to use all 8 CPU cores, all 8 GB RAM, and
100 GB of local hard disk space. One machine was con-
figured as the Hadoop master, hosting both the NameN-
ode and the JobTracker. The other 30 machines were
configured as slaves, each serving as an HDFS DataN-
ode and a Hadoop TaskTracker. Unless otherwise noted,
SpringFS was configured for 3-way replication (R = 3)
and 4 primary servers (p = 4).

To simulate periods of high I/O activity, and effec-
tively evaluate SpringFS under different mixes of I/O
operations, we used a modified version of the standard
Hadoop TestDFSIO storage system benchmark called
TestDFSIO2. Our modifications allow for each node to
generate a mix of block-size (128 MB) reads and writes,
distributed randomly across the block ID space, with a
user-specified write ratio.

Except where otherwise noted, we specify a file size
of 2GB per node in our experiments, such that the single
Hadoop map task per node reads or writes 16 blocks. The
total time taken to transfer all blocks is aggregated and
used to determine a global throughput. In some cases, we
break down the throughput results into the average aggre-
gate throughput of just the block reads or just the block
writes. This enables comparison of SpringFS’s perfor-
mance to the unmodified HDFS setup with the same re-
sources. Our experiments are focused primarily on the
relative performance changes as agility-specific param-
eters and policies are modified. Because the original
Hadoop implementation is unable to deliver the full per-
formance of the underlying hardware, our system can
only be compared reasonably with it and not the capa-
bility of the raw storage devices.

Effect of offloading policies: Our evaluation fo-
cuses on how SpringFS’s offloading policies affect per-

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 251

Figure 6: Performance comparison of Rabbit with no of-
fload, original HDFS, and SpringFS with varied offload
set.

formance and agility. We also measure the cleanup work
created by offloading and demonstrate that SpringFS’s
number of active servers can be adapted agilely to
changes in workload intensity, allowing machines to be
extracted and used for other activities.

Figure 6 presents the peak sustained I/O bandwidth
measured for HDFS, Rabbit and SpringFS at different of-
fload settings. (Rabbit and SpringFS are identical when
no offloading is used.) In this experiment, the write ra-
tio is varied to demonstrate different mixes of read and
write requests. SpringFS, Rabbit and HDFS achieve sim-
ilar performance for a read-only workload, because in all
cases there is a good distribution of blocks and replicas
across the cluster over which to balance the load. The
read performance of SpringFS slightly outperforms the
original HDFS due to its explicit load tracking for bal-
ancing.

When no offloading is needed, both Rabbit and
SpringFS are highly elastic and able to shrink 87% (26
non-primary servers out of 30) with no cleanup work.
However, as the write workload increases, the equal-
work layout’s requirement that one replica be written
to the primary set creates a bottleneck and eventually
a slowdown of around 50% relative to HDFS for a
maximum-speed write-only workload. SpringFS pro-
vides the flexibility to tradeoff some amount of agility for
better write throughput under periods of high write load.
As the write ratio increases, the effect of SpringFS’s of-
floading policies becomes more visible. Using only a
small number of offload servers, SpringFS significantly
reduces the amount of data written to the primary servers
and, as a result, significantly improves performance over
Rabbit. For example, increasing the offload set from four
(i.e., just the four primaries) to eight doubles maximum
throughput for the write-only workload, while remain-
ing agile—the cluster is still able to shrink 74% with no

Figure 7: Cleanup work (in blocks) needed to reduce
active server count from 30 to X, for different offload
settings. The “(offload=6)”, “(offload=8)” and “(of-
fload=10)” lines correspond to SpringFS with bounded
write offloading. The “(offload=30)” line corresponds to
Rabbit using Everest-style write offloading. Deactivat-
ing only non-offload servers requires no block migration.
The amount of cleanup work is linear in the number of
target active servers.

cleanup work.
Figure 7 shows the number of blocks that need to

be relocated to preserve data availability when reducing
the number of active servers. As desired, SpringFS’s
data placements are highly amenable to fast extrac-
tion of servers. Shrinking the number of nodes to a
count exceeding the cardinality of the offload set re-
quires no clean-up work. Decreasing the count into the
write offload set is also possible, but comes at some
cost. As expected, for a specified target, the cleanup
work grows with an increase in the offload target set.
SpringFS with no offload reduces to the based equal-
work layout, which needs no cleanup work when ex-
tracting servers but suffers from write performance bot-
tlenecks. The most interesting comparison is Rabbit’s
full offload (offload=30) against SpringFS’s full offload
(offload=10). Both provide the cluster’s full aggregate
write bandwidth, but SpringFS’s offloading scheme does
it with much greater agility—66% of the cluster could
still be extracted with no cleanup work and more with
small amounts of cleanup. We also measured actual
cleanup times, finding (not surprisingly) that they cor-
relate strongly with the number of blocks that must be
moved.

SpringFS’s read offloading policy is simple and re-
duces the cleanup work resulting from write offloading.
To ensure that its simplicity does not result in lost oppor-
tunity, we compare it to the optimal, oracular schedul-
ing policy with claircognizance of the HDFS layout. We

9

252 12th USENIX Conference on File and Storage Technologies USENIX Association

Figure 8: Agile resizing in a 3-phase workload

use an Integer Linear Programming (ILP) model that
minimizes the number of reads sent to primary servers
from which primary replica writes are offloaded. The
SpringFS read offloading policy, despite its simple re-
alization, compares favorably and falls within 3% from
optimal on average.

Agile resizing in SpringFS: Figure 8 illustrates
SpringFS’s ability to resize quickly and deliver required
performance levels. It uses a sequence of three bench-
marks to create phases of workload intensity and mea-
sures performance for two cases: “SpringFS (no resiz-
ing)” where the full cluster stays active throughout the
experiment and “SpringFS (resizing)” where the system
size is changed with workload intensity. As expected,
the performance is essentially the same for the two cases,
with a small delay observed when SpringFS re-integrates
servers for the third phase. But, the number of machine
hours used is very different, as SpringFS extracts ma-
chines during the middle phase.

This experiment uses a smaller setup, with only 7
DataNodes, 2 primaries, 3 in the offload set, and 2-
way replication. The workload consists of 3 consecu-
tive benchmarks. The first benchmark is a TestDFSIO2
benchmark that writes 7 files, each 2GB in size for a total
of 14GB written. The second benchmark is one SWIM
job [9] randomly picked from a series of SWIM jobs syn-
thesized from a Facebook trace which reads 4.2GB and
writes 8.4GB of data. The third benchmark is also a
TestDFSIO2 benchmark, but with a write ratio of 20%.
The TestDFSIO2 benchmarks are I/O intensive, whereas
the SWIM job consumes only a small amount of the full
I/O throughput. For the resizing case, 4 servers are ex-
tracted after the first write-only TestDFSIO2 benchmark
finishes (shrinking the active set to 3), and those servers
are reintegrated when the second TestDFSIO2 job starts.
In this experiment, the resizing points are manually set
when phase switch happens. Automatic resizing can
be done based on previous work on workload predic-
tion [6, 12, 14].

The results in Figure 8 are an average of 10 runs
for both cases, shown with a moving average of 3 sec-
onds. The I/O throughput is calculated by summing read

throughput and write throughput multiplied by the repli-
cation factor. Decreasing the number of active SpringFS
servers from 7 to 3 does not have an impact on its per-
formance, since no cleanup work is needed. As ex-
pected, resizing the cluster from 3 nodes to 7 imposes
a small performance overhead due to background block
migration, but the number of blocks to be migrated is
very small—about 200 blocks are written to SpringFS
with only 3 active servers, but only 4 blocks need to be
migrated to restore the equal-work layout. SpringFS’s
offloading policies keep the cleanup work small, for
both directions. As a result, SpringFS extracts and re-
integrates servers very quickly.

5.2 Policy analysis with real-world traces

This subsection evaluates SpringFS in terms of machine-
hour usage with real-world traces from six industry
Hadoop deployments and compares it against three other
storage systems: Rabbit, Sierra, and the default HDFS.
We evaluate each system’s layout policies with each
trace, calculate the amount of cleanup work and the esti-
mated cleaning time for each resizing action, and sum-
marize the aggregated machine-hour usage consumed
by each system for each trace. The results show that
SpringFS significantly reduces machine-hour usage even
compared to the state-of-the-art elastic storage systems,
especially for write-intensive workloads.

Trace overview: We use traces from six real Hadoop
deployments representing a broad range of business
activities, one from Facebook and five from different
Cloudera customers. The six traces are described and
analyzed in detail by Chen et al. [8]. Table 1 summa-
rizes key statistics of the traces. The Facebook trace
(FB) comes from Hadoop DataNode logs, each record
containing timestamp, operation type (HDFS READ or
HDFS WRITE), and the number of bytes processed.
From this information, we calculate the aggregate HDFS
read/write throughput as well as the total throughput,
which is the sum of read and write throughput multi-
plied by the replication factor (3 for all the traces). The
five Cloudera customer traces (CC-a through CC-e, us-
ing the terminology from [8]) all come from Hadoop job
history logs, which contain per-job records of job dura-
tion, HDFS input/output size, etc. Assuming the amount
of HDFS data read or written for each job is distributed
evenly within the job duration, we also obtain the aggre-
gated HDFS throughput at any given point of time, which
is then used as input to the analysis program.

Trace analysis and results: To simplify calcula-
tion, we make several assumptions. First, the maximum
measured total throughput in the traces corresponds to
the maximum aggregate performance across all the ma-
chines in the cluster. Second, the maximum throughput

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 253

Table 1: Trace summary. CC is “Cloudera Customer”
and FB is “Facebook”. HDFS bytes processed is the sum
of HDFS bytes read and HDFS bytes written.

Trace Machines Date Length Bytes
processed

CC-a <100 2011 1 month 69TB
CC-b 300 2011 9 days 473TB
CC-c 700 2011 1 month 13PB
CC-d 400-500 2011 2.8 months 5PB
CC-e 100 2011 9 days 446TB
FB 3000 2010 10 days 10.5PB

a single machine can deliver, not differentiating reads
and writes, is derived from the maximum measured to-
tal throughput divided by the number of machines in the
cluster. In order to calculate the machine hour usage for
each storage system, the analysis program needs to de-
termine the number of active servers needed at any given
point of time. It does this in the following steps: First, it
determines the number of active servers needed in the
imaginary “ideal” case, where no cleanup work is re-
quired at all, by dividing the total HDFS throughput by
the maximum throughput a single machine can deliver.
Second, it iterates through the number of active servers
as a function of time. For each decrease in the active
set of servers, it checks for any cleanup work that must
be done by analyzing the data layout at that point. If
any cleanup is required, it delays resizing until the work
is done or the performance requirement demands an in-
crease of the active set, to allow additional bandwidth
for necessary cleanup work. For increases in the active
set of servers, it turns on some extra servers to satisfy
the read throughput and uses the extra bandwidth to do a
fraction of migration work, using the passive migration
policy (for all the systems) with the migration threshold
set to be T=10.

Figures 9 and 10 show the number of active servers
needed, as a function of time, for the 6 traces. Each
graph has 4 lines, corresponding to the “ideal” storage
system, SpringFS, Rabbit and Sierra, respectively. We

Figure 9: Facebook trace

Figure 10: Traces: CC-a, CC-b, CC-c, CC-d, and CC-e

do not show the line for the Default HDFS, but since it is
not elastic, its curve would be a horizontal line with the
number of active servers always being the full cluster size
(the highest value on the Y axis). While the original trace
durations range from 9 days to 2.8 months, we only show
a 4-hour-period for each trace for clarity. We start trace

11

254 12th USENIX Conference on File and Storage Technologies USENIX Association

replaying more than 3 days before the 4-hour period, to
make sure it represents the situation when systems are in
a steady state and includes the effect of delaying migra-
tion work.

As expected, SpringFS exhibits better agility than
Rabbit, especially when shrinking the size of the clus-
ter, since it needs no cleanup work until resizing down to
the offload set. Such agility difference between SpringFS
and Rabbit is shown in Figure 9 at various points of
time (e.g., at minute 110, 140, and 160). The gap be-
tween the two lines indicates the number of machine
hours saved due to the agility-aware read and bounded
write policies used in SpringFS. SpringFS also achieves
lower machine-hour usage than Sierra, as confirmed in
all the analysis graphs. While a Sierra cluster can shrink
down to 1/3 of its total size without any cleanup work,
it is not able to further decrease the cluster size. In con-
trast, SpringFS can shrink the cluster size down to ap-
proximately 10% of the original footprint. When I/O ac-
tivity is low, the difference in minimal system footprint
can have a significant impact on the machine-hour us-
age (e.g., as illustrated in Figure 10(b), Figure 10(c) and
Figure 10(e)). In addition, when expanding cluster size,
Sierra incurs more cleaning overhead than SpringFS, be-
cause deactivated servers need to migrate more data to
restore its even data layout. These results are summa-
rized in Figure 11, which shows the extra number of
machine hours used by each storage system, compared
and normalized to the ideal system. In these traces,
SpringFS outperforms the other systems by 6% to 120%.
For the traces with a relatively high write ratio, such
as the FB, CC-d and CC-e traces, SpringFS is able to
achieve a “close-to-ideal” (within 5%) machine-hour us-
age. SpringFS is less close to ideal for the other three
traces because they frequently need even less than the
13% primary servers that SpringFS cannot deactivate.

Figure 12 summarizes the total amount of data mi-
grated by Rabbit, Sierra and SpringFS while running
each trace. With bounded write offloading and read of-
floading, SpringFS is able to reduce the amount of data
migration by a factor of 9–208, as compared to Rabbit.
SpringFS migrates significantly less data than Sierra as
well, because data migrated to restore the equal-work
data layout is much less than that to restore an even data
layout.

All of the trace analysis above assumes passive mi-
gration during server reintegration for all three systems
compared, since it is useful to all of them. To evaluate the
advantage of passive migration, specifically, we repeated
the same trace analysis using the aggressive migration
policy. The results show that passive migration reduces
the amount of data migrated, relative to aggressive mi-
gration, by 1.5–7× (across the six traces) for SpringFS,
1.2–5.6× for Sierra, and 1.2–3× for Rabbit. The bene-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

CC-a CC-b CC-c CC-d CC-e FB

M
ac

hi
ne

 h
ou

rs
, n

or
m

al
iz

ed
 to

 Id
ea

l

Trace

SpringFS
Sierra
Rabbit

Figure 11: Number of machine hours needed to execute
each trace for each system, normalized to the “Ideal” sys-
tem (1 on the y-axis, not shown).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CC-a CC-b CC-c CC-d CC-e FB

Da
ta

 m
ig

ra
te

d,
 n

or
m

al
iz

ed
 to

 R
ab

bi
t

Trace

SpringFS
Sierra
Rabbit

Figure 12: Total data migrated for Rabbit, Sierra and
SpringFS, normalized to results for Rabbit.

fit for Sierra and SpringFS is more significant, because
their data migration occurs primarily during server re-
integration.

6 Conclusion

SpringFS is a new elastic storage system that fills the
space between state-of-the-art designs in the tradeoff
among agility, elasticity, and performance. SpringFS’s
data layout and offloading/migration policies adapt to
workload demands and minimize the data redistribution
cleanup work needed for elastic resizing, greatly increas-
ing agility relative to the best previous elastic storage de-
signs. As a result, SpringFS can satisfy the time-varying
performance demands of real environments with many
fewer machine hours. Such agility provides an impor-
tant building block for resource-efficient data-intensive

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 255

computing (a.k.a. Big Data) in multi-purpose clouds with
competing demands for server resources.

There are several directions for interesting future
work. For example, the SpringFS data layout assumes
that servers are approximately homogeneous, like HDFS
does, but some real-world deployments end up with het-
erogeneous servers (in terms of I/O throughput and ca-
pacity) as servers are added and replaced over time. The
data layout could be refined to exploit such heterogene-
ity, such as by using more powerful servers as primaries.
Second, SpringFS’s design assumes a relatively even
popularity of data within a given dataset, as exists for
Hadoop jobs processing that dataset, so it will be inter-
esting to explore what aspects change when addressing
the unbalanced access patterns (e.g., Zipf distribution)
common in servers hosting large numbers of relatively
independent files.

Acknowledgements: We thank Cloudera and Face-
book for sharing the traces and Yanpei Chen for releas-
ing SWIM. We thank the members and companies of the
PDL Consortium (including Actifio, APC, EMC, Face-
book, Fusion-io, Google, HP Labs, Hitachi, Huawei,
Intel, Microsoft Research, NEC Labs, NetApp, Oracle,
Panasas, Samsung, Seagate, Symantec, VMWare, and
Western Digital) for their interest, insights, feedback,
and support. This research was sponsored in part by In-
tel as part of the Intel Science and Technology Center
for Cloud Computing (ISTC-CC). Experiments were en-
abled by generous hardware donations from Intel, Ne-
tApp, and APC.

References

[1] Hadoop, 2012. http://hadoop.apache.org.

[2] MIT, Intel unveil new initia-
tives addressing ‘Big Data’, 2012.
http://web.mit.edu/newsoffice/2012/big-data-
csail-intel-center-0531.html.

[3] AMPLab, 2013. http://amplab.cs.berkeley.edu.

[4] ISTC-CC Research, 2013. www.istc-cc.cmu.edu.

[5] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A.
Kozuch, and K. Schwan. Robust and flexible
power-proportional storage. ACM Symposium on
Cloud Computing, pages 217–228, 2010.

[6] P. Bodik, M. Armbrust, K. Canini, A. Fox, M. Jor-
dan, and D. Patterson. A case for adaptive dat-
acenters to conserve energy and improve reliabil-
ity. University of California at Berkeley, Tech. Rep.
UCB/EECS-2008-127, 2008.

[7] R. E. Bryant. Data-Intensive Supercomputing: The
Case for DISC. Technical report, Carnegie Mellon
University, 2007.

[8] Y. Chen, S. Alspaugh, and R. Katz. Interactive an-
alytical processing in big data systems: A cross
industry study of mapreduce workloads. VLDB,
2012.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz.
The case for evaluating mapreduce performance us-
ing workload suites. MASCOTS, 2011.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51:107–108, January 2008.

[11] S. Ghemawat, H. Gobioff, and S. tak Leung. The
Google File System. In SOSP, pages 29–43, 2003.

[12] D. Gmach, J. Rolia, L. Cherkasova, and A. Kem-
per. Workload analysis and demand prediction of
enterprise data center applications. IISWC, 2007.

[13] J. Leverich and C. Kozyrakis. On the Energy
(In)efficiency of Hadoop Clusters. HotPower,
2009.

[14] M. Lin, A. Wierman, L. L. Andrew, and
E. Thereska. Dynamic right-sizing for power-
proportional data centers. INFOCOM, 2011.

[15] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. In USENIX Conference on
File and Storage Technologies, pages 1–15, Berke-
ley, CA, USA, 2008. USENIX Association.

[16] D. Narayanan, A. Donnelly, E. Thereska, S. El-
nikety, and A. Rowstron. Everest: Scaling down
peak loads through I/O off-loading. In OSDI, 2008.

[17] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building Distributed Enterprise
Disk Arrays from Commodity Components. In AS-
PLOS, pages 48–58, 2004.

[18] E. Thereska, A. Donnelly, and D. Narayanan.
Sierra: practical power-proportionality for data
center storage. In EuroSys, pages 169–182, 2011.

[19] N. Vasić, M. Barisits, V. Salzgeber, and D. Kos-
tic. Making Cluster Applications Energy-Aware.
In Workshop on Automated Control for Datacenters
and Clouds, pages 37–42, New York, 2009.

[20] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang,
P. L. Reiher, and G. H. Kuenning. PARAID: A
Gear-Shifting Power-Aware RAID. TOS, 2007.

13

USENIX Association 12th USENIX Conference on File and Storage Technologies 257

Migratory Compression: Coarse-grained Data Reordering to Improve
Compressibility

Xing Lin1, Guanlin Lu2, Fred Douglis2, Philip Shilane2, Grant Wallace2

1University of Utah, 2EMC Corporation – Data Protection and Availability Division

Abstract

We propose Migratory Compression (MC), a coarse-
grained data transformation, to improve the effectiveness
of traditional compressors in modern storage systems.
In MC, similar data chunks are re-located together, to
improve compression factors. After decompression,
migrated chunks return to their previous locations. We
evaluate the compression effectiveness and overhead
of MC, explore reorganization approaches on a variety
of datasets, and present a prototype implementation of
MC in a commercial deduplicating file system. We also
compare MC to the more established technique of delta
compression, which is significantly more complex to
implement within file systems.

We find that Migratory Compression improves com-
pression effectiveness compared to traditional compres-
sors, by 11% to 105%, with relatively low impact on run-
time performance. Frequently, adding MC to a relatively
fast compressor like gzip results in compression that is
more effective in both space and runtime than slower al-
ternatives. In archival migration, MC improves gzip com-
pression by 44–157%. Most importantly, MC can be im-
plemented in broadly used, modern file systems.

1 Introduction

Compression is a class of data transformation techniques
to represent information with fewer bits than its original
form, by exploiting statistical redundancy. It is widely
used in the storage hierarchy, such as compressed mem-
ory [24], compressed SSD caches [15], file systems [4]
and backup storage systems [28]. Generally, there is a
tradeoff between computation and compressibility: of-
ten much of the available compression in a dataset can be
achieved with a small amount of computation, but more
extensive computation (and memory) can result in better
data reduction [7].

There are various methods to improve compressibility,
which largely can be categorized as increasing the look-
back window and reordering data. Most compression
techniques find redundant strings within a window of

data; the larger the window size, the greater the opportu-
nity to find redundant strings, leading to better compres-
sion. However, to limit the overhead in finding redun-
dancy, most real-world implementations use small win-
dow sizes. For example, DEFLATE, used by gzip, has a
64 KB sliding window [6] and the maximum window for
bzip2 is 900 KB [8]. The only compression algorithm
we are aware of that uses larger window sizes is LZMA
in 7z [1], which supports history up to 1 GB.1 It usually
compresses better than gzip and bzip2 but takes sig-
nificantly longer. Some other compression tools such as
rzip [23] find identical sequences over a long distance
by computing hashes over fixed-sized blocks and then
rolling hashes over blocks of that size throughout the
file; this effectively does intra-file deduplication but can-
not take advantage of small interspersed changes. Delta
compression (DC) [9] can find small differences in sim-
ilar locations between two highly similar files. While
this enables highly efficient compression between simi-
lar files, it cannot delta-encode widely dispersed regions
in a large file or set of files without targeted pair-wise
matching of similar content [12].

Data reordering is another way to improve compres-
sion: since compression algorithms work by identifying
repeated strings, one can improve compression by group-
ing similar characters together. The Burrows-Wheeler
Transform (BWT) [5] is one such example that works
on relatively small blocks of data: it permutes the order
of the characters in a block, and if there are substrings
that appear often, the transformed string will have single
characters repeat in a row. BWT is interesting because
the operation to invert the transformed block to obtain
the original data requires only that an index be stored
with the transformed data and that the transformed data
be sorted lexicographically to use the index to identify
the original contents. bzip2 uses BWT as the second
layer in its compression stack.

1The specification of LZMA supports windows up to 4 GB, but we
have not found a practical implementation for Linux that supports more
than 1 GB and use that number henceforth. One alternative compressor,
xz [27], supports a window of 1.5 GB, but we found its decrease in
throughput highly disproportionate to its increase in compression.

258 12th USENIX Conference on File and Storage Technologies USENIX Association

What we propose is, in a sense, a coarse-grained BWT
over a large range (typically tens of GBs or more). We
call it Migratory Compression (MC) because it tries to
rearrange data to make it more compressible, while pro-
viding a mechanism to reverse the transformation after
decompression. Unlike BWT, however, the unit of move-
ment is kilobytes rather than characters and the scope of
movement is an entire file or group of files. Also, the
recipe to reconstruct the original data is a nontrivial size,
though still only ~0.2% of the original file.

With MC, data is first partitioned into chunks. Then
we ‘sort’ chunks so that similar chunks are grouped and
located together. Duplicated chunks are removed and
only the first appearance of that copy is stored. Standard
compressors are then able to find repeated strings across
adjacent chunks.2 Thus MC is a preprocessor that can
be combined with arbitrary adaptive lossless compres-
sors such as gzip, bzip2, or 7z; if someone invented
a better compressor, MC could be integrated with it via
simple scripting. We find that MC improves gzip by up
to a factor of two on datasets with high rates of similarity
(including duplicate content), usually with better perfor-
mance. Frequently gzip with MC compresses both bet-
ter and faster than other off-the-shelf compressors like
bzip2 and 7z at their default levels.

We consider two principal use cases of MC:

mzip is a term for using MC to compress a single file.
With mzip, we extract the resemblance informa-
tion, cluster similar data, reorder data in the file,
and compress the reordered file using an off-the-
shelf compressor. The compressed file contains the
recipe needed to restore the original contents after
decompression. The bulk of our evaluation is in the
context of stand-alone file compression; henceforth
mzip refers to integrating MC with traditional com-
pressors (gzip by default unless stated otherwise).

Archival involves data migration from backup storage
systems to archive tiers, or data stored directly in an
archive system such as Amazon Glacier [25]. Such
data are cold and rarely read, so the penalty result-
ing from distributing a file across a storage system
may be acceptable. We have prototyped MC in the
context of the archival tier of the Data Domain File
System (DDFS) [28].

There are two runtime overheads for MC. One is to
detect similar chunks: this requires a preprocessing stage
to compute similarity features for each chunk, followed

2It is possible for an adaptive compressor’s history to be smaller
than size of two chunks, in which case it will not be able to take advan-
tage of these adjacent chunks. For instance, if the chunks were 64 KB,
gzip would not match the start of one chunk against the start of the next
chunk. By making the chunk size small relative to the compressor’s
window size, we avoid such issues.

by clustering chunks that share these features. The other
overhead comes from the large number of I/Os neces-
sary to reorganize the original data, first when perform-
ing compression and later to transform the uncompressed
output back to its original contents. We quantify the ef-
fectiveness of using fixed-size or variable-size chunks,
three chunk sizes (2 KB, 8 KB and 32 KB), and differ-
ent numbers of features, which trade compression against
runtime overhead. For the data movement overhead, we
evaluate several approaches as well as the relative perfor-
mance of hard disks and solid state storage.

In summary, our work makes the following contri-
butions. First, we propose Migratory Compression, a
new data transformation algorithm. Second, we evaluate
its effectiveness with real-world datasets, quantify
the overheads introduced and evaluate three data re-
organization approaches with both HDDs and SSDs.
Third, we compare mzip with DC and show that these
two techniques are comparable, though with different
implementation characteristics. Last, we demonstrate its
effectiveness with an extensive evaluation of Migratory
Compression during archival within a deduplicating
storage system, DDFS.

2 Alternatives

One goal of any compressor is to distill data into a min-
imal representation. Another is to perform this trans-
formation with minimal resources (computation, mem-
ory, and I/O). These two goals are largely conflicting, in
that additional resources typically result in better com-
pression, though frequently with diminishing returns [7].
Here we consider two alternatives to spending extra re-
sources for better compression: moving similar data to-
gether and delta-compressing similar data in place.

2.1 Migratory v Traditional Compression
Figure 1 compares traditional compression and Migra-
tory Compression. The blue chunks at the end of the
file (A’ and A”) are similar to the blue chunk at the start
(A), but they have small changes that keep them from
being entirely identical. With (a) traditional compres-
sion, there is a limited window over which the compres-
sor will look for similar content, so A’ and A” later in the
file don’t get compressed relative to A. With (b) MC, we
move these chunks to be together, followed by two more
similar chunks B and B’. Note that the two green chunks
labeled D are identical rather than merely similar, so the
second is replaced by a reference to the first.

One question is whether we could simply obtain ex-
tra compression by increasing the window size of a stan-
dard compressor. We see later (Section 5.4.4) that the
“maximal” setting for 7z, which uses a 1 GB lookback

USENIX Association 12th USENIX Conference on File and Storage Technologies 259

(a) Traditional compression.

(b) Migratory Compression.

Figure 1: Compression alternatives. With MC similar
data moves close enough together to be identified as re-
dundant, using the same compression window.

window (and a memory footprint over 10 GB) and sub-
stantial computation, often results in worse compression
with poorer throughput than the default 7z setting inte-
grated with MC.

2.2 Migratory v Delta Compression

Another obvious question is how MC compares to a simi-
lar technology, delta compression (DC) [9]. The premise
of DC is to encode an object A′ relative to a similar ob-
ject A, and it is effectively the same as compressing A,
discarding the output of that compression, and using the
compressor state to continue compressing A′. Anything
in A′ that repeats content in A is replaced by a reference
to its location in A, and content within A′ that repeats pre-
vious content in A′ can also be replaced with a reference.

When comparing MC and DC, there are striking sim-
ilarities because both can use features to identify similar
chunks. These features are compact (64 bytes per 8 KB
chunk by default), allowing GBs or even TBs of data
to be efficiently searched for similar chunks. Both tech-
niques improve compression by taking advantage of re-
dundancy between similar chunks: MC reads the chunks
and writes them consecutively to aid standard compres-
sors, while DC reads two similar chunks and encodes one
relative to the other. We see in Section 5.3 that MC gen-
erally improves compression and has faster performance
than intra-file DC, but these differences are rather small
and could be related to internal implementation details.

One area where MC is clearly superior to DC is in
its simplicity, which makes it compatible with numerous
compressors and eases integration with storage systems.
Within a storage system, MC is a nearly seamless addi-
tion since all of the content still exists after migration—it
is simply at a different offset than before migration. For
storage systems that support indirection, such as dedupli-
cated storage [28], MC causes few architectural changes,
though it likely increases fragmentation. On the other

hand, DC introduces dependencies between data chunks
that span the storage system: storage functionality has
to be modified to handle indirections between delta com-
pressed chunks and the base chunks against which they
have been encoded [20]. Such modifications affect such
system features as garbage collection, replication, and in-
tegrity checks.

3 Approach

Much of the focus of our work on Migratory Compres-
sion is in the context of reorganizing and compressing a
single file (mzip), described in Section 3.1. In addition,
we compare mzip to in-place delta-encoding of similar
data (Section 3.2) and reorganization during migration
to an archival tier within DDFS (Section 3.3).

3.1 Single-File Migratory Compression

The general idea of MC is to partition data into chunks
and reorder them to store similar chunks sequentially,
increasing compressors’ opportunity to detect redundant
strings and leading to better compression. For standalone
file compression, this can be added as a pre-processing
stage, which we term mzip. A reconstruction process is
needed as a post-processing stage in order to restore the
original file after decompression.

3.1.1 Similarity Detection with Super-features

The first step in MC is to partition the data into chunks.
These chunks can be fixed size or variable size “content-
defined chunks.” Prior work suggests that in general
variable-sized chunks provide a better opportunity to
identify duplicate and similar data [12]; however, virtual
machines use fixed-sized blocks, and deduplicating VM
images potentially benefits from fixed-sized blocks [21].
We default to variable-sized chunks based on the com-
parison of fixed-sized and variable-sized units below.

One big challenge to doing MC is to identify similar
chunks efficiently and scalably. A common practice is to
generate similarity features for each chunk; two chunks
are likely to be similar if they share many features. While
it is possible to enumerate the closest matches by com-
paring all features, a useful approximation is to group
sets of features into super-features (SFs): two data ob-
jects that have a single SF in common are likely to be
fairly similar [3]. This approach has been used numerous
times to successfully identify similar web pages, files,
and/or chunks within files [10, 12, 20].

Because it is now well understood, we omit a detailed
explanation of the use of SFs here. We adopt the “First-
Fit” approach of Kulkarni, et al. [12], which we will term

260 12th USENIX Conference on File and Storage Technologies USENIX Association

the greedy matching algorithm. Each time a chunk is pro-
cessed, its N SFs are looked up in N hash tables, one per
SF. If any SF matches, the chunk is associated with the
other chunks sharing that SF (i.e., it is added to a list and
the search for matches terminates). If no SF matches, the
chunk is inserted into each of the N hash tables so that
future matches can be identified.

We explored other options, such as sorting all chunks
on each of the SFs to look for chunks that match sev-
eral SFs rather than just one. Across the datasets we an-
alyzed, this sort marginally improved compression but
the computational overhead was disproportionate. Note,
however, that applying MC to a file that is so large that its
metadata (fingerprints and SFs) is too large to process in
memory would require some out-of-core method such as
sorting.

3.1.2 Data Migration and Reconstruction

Given information about which chunks in a file are
similar, our mzip preprocessor outputs two recipes:
migrate and restore. The migrate recipe contains the
chunk order of the reorganized file: chunks identified
to be similar are located together, ordered by their
offset within the original file. (That is, a later chunk is
moved to be adjacent to the first chunk it is similar to.)
The restore recipe contains the order of chunks in the
reorganized file and is used to reconstruct the original
file. Generally, the overhead of generating these recipes
is orders of magnitude less than the the overhead of
physically migrating the data stored in disk.

Figure 2: An example of the reorganization and restore
procedures.

Figure 2 presents a simplified example of these two
procedures, assuming fixed chunk sizes. We show a file
with a sequence of chunks A through D, and including
A’ and B’ to indicate chunks that are similar to A and
B respectively. The reorganized file places A’ after A

and B’ after B, so the migrate recipe specifies that the
reorganized file consists of chunk 0 (A), chunk 3 (A’),
chunk 1 (B), chunk 5 (B’), and so on. The restore recipe
shows that to obtain the original order, we output chunk
0 (A), chunk 2 (B), chunk 4 (C), chunk 1 (A’), etc. from
the reorganized file. (For variable-length chunks, the
recipes contain byte offsets and lengths rather than block
offsets.)

Once we have the migrate recipe and the restore
recipe, we can create the reorganized file. Reorganiza-
tion (migration) and reconstruction are complements of
each other, each moving data from a specific location in
an input file to a desired location in the output file. (There
is a slight asymmetry resulting from deduplication, as
completely identical chunks can be omitted completely
in the reorganized file, then copied 1-to-N when recon-
structing the original file.)

There are several methods for moving chunks.

In-Memory. When the original file can fit in memory,
we can read in the whole file into memory and out-
put chunks in the reorganized order sequentially.
We call this the ‘in-mem’ approach.

Chunk-level. When we cannot fit the original file in
memory, the simplest way to reorganize a file is to
scan the chunk order in the migrate recipe: for ev-
ery chunk needed, seek to the offset of that chunk
in the original file, read it, and output it to the reor-
ganized file. When using HDDs, this could become
very inefficient because of the number of random
I/Os involved.

Multi-pass. We also designed a ‘multi-pass’ algorithm,
which scans the original file repeatedly from start to
finish; during each pass, chunks in a particular reorg
range of the reorganized file are saved in a mem-
ory buffer while others are discarded. At the end of
each pass, chunks in the memory buffer are output
to the reorganized file and the reorg range is moved
forward. This approach replaces random I/Os with
multiple scans of the original file. (Note that if the
file fits in memory, the in-memory approach is the
multi-pass approach with a single pass.)

Our experiments in Section 5.2 show that the in-
memory approach is best, but when memory is insuf-
ficient, the multi-pass approach is more efficient than
chunk-level. We can model the relative costs of the two
approaches as follows. Let T be elapsed time, where Tmp
is the time for multipass and Tc is the time when using
individual chunks. Focusing only on I/O costs, Tmp is the
time to read the entire file sequentially N times, where N
is the number of passes over the data. If disk through-
put is D and the file size is S, Tmp = S ∗N/D. For a size
of 15GB, 3 passes, and 100MB/s throughput, this works

USENIX Association 12th USENIX Conference on File and Storage Technologies 261

out to 7.7 minutes for I/O. If CS represents the chunk
size, the number of chunk-level I/O operations is S/CS
and the elapsed time is Tc = S/CS

IOPS . For a disk with 100
IOPS and an 8KB chunk size, this equals 5.4 hours. Of
course there is some locality, so what fraction of I/Os
must be sequential or cached for the chunk approach to
break even with the multi-pass one? If we assume that
the total cost for chunk-level is the cost of reading the
file once sequentially3 plus the cost of random I/Os, then
we solve for the cost of the random fraction (RF) of I/Os
equaling the cost of N −1 sequential reads of the file:

S∗ (N −1)/D =
S∗RF/CS

IOPS

giving
RF =

(N −1)∗ IOPS∗CS
D

.

In the example above, this works out to 16
1024 = 1.6%;

i.e., if more than 1.6% of the data has dispersed similarity
matches, then the multi-pass method should be preferred.

Solid-state disks, however, offer a good compromise.
Using SSDs to avoid the penalty of random I/Os on
HDDs causes the chunk approach to come closer to the
in-memory performance.

3.1.3 mzip Workflow

(a) Compression (b) Decompression

Figure 3: Migratory Compression workflow.

Figure 3 presents the compression and decompression
workflows in mzip. Compression/decompression and
segmentation are adopted from existing tools, while sim-
ilarity detection and reorganization/restoration are spe-
cially developed and highlighted in red. The original file
is read once by the segmenter, computing cryptograph-
ically secure fingerprints (for deduplication) and resem-
blance features, then it is read again by the reorganizer

3Note that if there are so many random I/Os that we do not read
large sequential blocks, Tmp is reduced by a factor of 1−RF .

to produce a file for compression. (This file may exist
only as a pipeline between the reorganizer and the com-
pressor, not separately stored, something we did for all
compressors but rzip as it requires the ability to seek.)
To restore the file, the compressed file is decompressed
and its restore recipe is extracted from the beginning of
the resulting file. Then the rest of that file is processed
by the restorer, in conjunction with the recipe, to produce
the original content.

3.2 Intra-file Delta Compression
When applied in the context of a single file, we hypothe-
sized that mzip would be slightly better than delta com-
pression (DC) because its compression state at the time
the similar chunk is compressed includes content from
many KBs-MBs of data, depending on the compressor.
To evaluate how mzip compares with DC within a file,
we implemented a version of DC that uses the same work-
flows as mzip, except the ‘reorganizer’ and the ‘restorer’
in mzip are replaced with a ‘delta-encoder’ and a ‘delta-
decoder.’ The delta-encoder encodes each similar chunk
as a delta against a base chunk while the delta-decoder
reconstructs a chunk, by patching the delta to its base
chunk. (In our implementation, the chunk earliest in
the file is selected as the base for each group of simi-
lar chunks. We use xdelta [14] for encoding, relying on
the later compression pass to compress anything that has
not been removed as redundant.)

3.3 Migratory Compression in an Archival
Storage System

In addition to reorganizing the content of individual files,
MC is well suited for reducing data requirements within
an entire file system. However, this impacts read local-
ity, which is already an issue for deduplicating storage
systems [13]. This performance penalty therefore makes
it a good fit for systems with minimal requirements for
read performance. An archival system, such as Ama-
zon Glacier [25] is a prime use case, as much of its data
will not be reread; when it is, significant delays can be
expected. When the archival system is a tier within a
backup environment, such that data moves in bulk at reg-
ular intervals, the data migration is an opportune time to
migrate similar chunks together.

To validate the MC approach in a real storage system,
we’ve implemented a prototype using the existing dedu-
plicating Data Domain Filesystem (DDFS) [28]. After
deduplication, chunks in DDFS are aggregated into com-
pression regions (CRs), which in turn are aggregated into
containers. DDFS can support two storage tiers: an ac-
tive tier for backups and a long-term retention tier for
archival; while the former stores the most recent data

262 12th USENIX Conference on File and Storage Technologies USENIX Association

within a time period (e.g., 90 days), the latter stores the
relatively ‘cold’ data that needs to be retained for an ex-
tended time period (e.g., 5 years) before being deleted.
Data migration is important for customers who weigh
the dollar-per-GB cost over the migrate/retrieval perfor-
mance for long-term data.

A daemon called data migration is used to migrate se-
lected data periodically from the active tier to the archive
tier. For performance reasons, data in the active tier is
compressed with a simple LZ algorithm while we use
gzip in the archive tier for better compression. Thus, for
each file to be migrated in the namespace, DDFS reads out
the corresponding compression regions from the active
tier, uncompresses each, and recompresses with gzip.

The MC technique would offer customers a fur-
ther tradeoff between the compression ratio and mi-
grate/retrieval throughput. It works as follows:

Similarity Range. Similarity detection is limited to files
migrated in one iteration, for instance all files writ-
ten in a span of two weeks or 90 days.

Super-features. We use 12 similarity features, com-
bined as 3 SFs. For each container to be migrated,
we read out its metadata region, extract the SFs as-
sociated with each chunk, and write these to a file
along with the chunk’s fingerprint.

Clustering. Chunks are grouped in a similar fashion to
the greedy single SF matching algorithm described
in Section 3.1.1, but via sorting rather than a hash
table.

Data reorganization. Similar chunks are written to-
gether by collecting them from the container set in
multiple passes, similar to the single-file multi-pass
approach described in Section 3.1.2 but without a
strict ordering. Instead, the passes are selected by
choosing the largest clusters of similar chunks in the
first one-third, then smaller clusters, and finally dis-
similar chunks. Since chunks are grouped by any of
3 SFs, we use 3 Bloom filters, respectively, to iden-
tify which chunks are desired in a pass. We then
copy the chunks needed for a given pass into the CR
designated for a given chunk’s SF; the CR is flushed
to disk if it reaches its maximum capacity.

Note that DDFS already has the notion of a mapping of
a file identifier to a tree of chunk identifiers, and relocat-
ing a chunk does not affect the chunk tree associated with
a file. Only the low-level index mapping a chunk finger-
print to a location in the storage system need be updated
when a chunk is moved. Thus, there is no notion of a
restore recipe in the DDFS case, only a recipe specifying
which chunks to co-locate.

In theory, MC could be used in the backup tier as well
as for archival: the same mechanism for grouping sim-
ilar data could be used as a background task. However,
the impact on data locality would not only impact read
performance [13], it could degrade ingest performance
during backups by breaking the assumptions underlying
data locality: DDFS expects an access to the fingerprint
index on disk to bring nearby entries into memory [28].

4 Methodology

We discuss evaluation metrics in Section 4.1, tunable pa-
rameters in Section 4.2, and datasets in Section 4.3.

4.1 Metrics

The high-level metrics by which to evaluate a compres-
sor are the compression factor (CF) and the resource
usage of the compressor. CF is the ratio of an original
size to its compressed size, i.e higher CFs correspond to
more data eliminated through compression; deduplica-
tion ratios are analogous.

In general, resource usage equates to processing time
per unit of data, which can be thought of as the through-
put of the compressor. There are other resources to
consider, such as the required memory: in some sys-
tems memory is plentiful and even the roughly 10 GB of
DRAM used by 7z with its maximum 1 GB dictionary is
fine; in some cases the amount of memory available or
the amount of compression being done in parallel results
in a smaller limit.

Evaluating the performance of a compressor is further
complicated by the question of parallelization. Some
compressors are inherently single-threaded while others
support parallel threads. Generally, however, the fastest
compression is also single-threaded (e.g., gzip), while
a slower but more effective compressor such as 7z is
slower despite its multiple threads. We consider end-to-
end time, not CPU time.

Most of our experiments were run inside a virtual ma-
chine, hosted by an ESX server with 2x6 Intel 2.67GHz
Xeon X5650 cores, 96 GB memory, and 1-TB 3G SATA
7.2k 2.5in drives. The VM is allocated 90 GB memory
except in cases when memory is explicitly limited, as
well as 8 cores and a virtual disk with a 100 GB ext4
partition on a two-disk RAID-1 array. For 8 KB random
accesses, we have measured 134 IOPS for reads (as well
as 385 IOPS for writes, but we are not evaluating ran-
dom writes), using a 70 GB file and an I/O queue depth
of 1. For 128 KB sequential accesses, we measured 108
MB/s for reads and 80 MB/s for writes. The SSD used
is a Samsung Pro 840, with 22K IOPS for random 8 KB
reads and 264 MB/s for 128 KB sequential reads (write

USENIX Association 12th USENIX Conference on File and Storage Technologies 263

Dataset Size (GB) Dedupe (X)
Compression Factor of Standalone

Compressors (X)
Type Name gzip bzip2 7z rzip

Workstation Backup WS1 17.36 1.69 2.70 3.22 4.44 4.46
WS2 15.73 1.77 2.32 2.61 3.16 3.12

Email Server Backup EXCHANGE1 13.93 1.06 1.83 1.92 3.35 3.99
EXCHANGE2 17.32 1.02 2.78 3.13 4.75 4.79

VM Image Ubuntu-VM 6.98 1.51 3.90 4.26 6.71 6.69
Fedora-VM 27.95 1.19 3.21 3.49 4.22 3.97

Table 1: Dataset summary: size, deduplication factor of 8 KB variable chunking and compression ratios of standalone
compressors.

throughputs become very low because of no TRIM sup-
port in the hypervisor: 20 MB/s for 128 KB sequential
writes). To minimize performance variation, all other
virtual machines were shut down except those provid-
ing system services. Each experiment was repeated three
times; we report averages. We don’t plot error bars be-
cause the vast majority of experiments have a relative
standard error under 5%; in a couple of cases, decom-
pression timings vary with 10–15% relative error.

To compare the complexity of MC with other compres-
sion algorithms, we ran most experiments in-memory. In
order to evaluate the extra I/O necessary when files do
not fit in memory, some experiments limit memory size
to 8 GB and use either an SSD or hard drive for I/O.

The tool that computes chunk fingerprints and features
is written in C, while the tools that analyze that data to
cluster similar chunks and reorganize the files are written
in Perl. The various compressors are off-the-shelf Linux
tools installed from repositories.

4.2 Parameters Explored
In addition to varying the workload by evaluating differ-
ent datasets, we consider the effect of a number of pa-
rameters. Defaults are shown in bold.

Compressor. We consider gzip, bzip2, 7z, and rzip,
with or without MC.

Compression tuning. Each compressor can be run with
a parameter that trades off performance against
compressibility. We use the default parameters
unless specified otherwise.

MC chunking. Are chunks fixed or variable sized?
MC chunk size. How large are chunks? We consider 2,

8, and 32 KB; for variable-sized chunks, these rep-
resent target averages.

MC resemblance computation. How are super-features
matched? (Default: Four SFs, matched greedily,
one SF at a time.)

MC data source. When reorganizing an input file or re-
constructing the original file after decompression,

where is the input stored? We consider an in-
memory file system, SSD, and hard disk.

4.3 Datasets

Table 1 summarizes salient characteristics of the input
datasets used to test mzip, two types of backups and a
pair of virtual machine images. Each entry shows the to-
tal size of the file processed, its deduplication ratio (half
of them can significant boost their CF using MC simply
through deduplication), and the CF of the four off-the-
shelf compressors. We find that 7z and rzip both com-
press significantly better than the others and are similar
to each other.

• We use four single backup image files taken from
production deduplication backup appliances. Two
are backups of workstations while the other two are
backups of Exchange email servers.

• We use two virtual machine disk images consisting
of VMware VMDK files. One has Ubuntu 12.04.01
LTS installed while the other uses Fedora Core re-
lease 4 (a dated but stable build environment).

5 mzip Evaluation

The most important consideration in evaluating MC is
whether the added effort to find and relocate similar
content is justified by the improvement in compression.
Section 5.1 compares CF and throughput across the six
datasets. Section 5.2 looks specifically at the throughput
when memory limitations force repeated accesses to disk
and finds that SSDs would compensate for random I/O
penalties. Section 5.3 compares mzip to a similar intra-
file DC tool. Finally, Section 5.4 considers additional
sensitivity to various parameters and configurations.

264 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

(a) EXCHANGE1

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

(b) EXCHANGE2

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(c) Fedora-VM

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

(d) Ubuntu-VM

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

(e) WS1

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

(f) WS2

Figure 4: Compression throughput vs. Compression Factor for all datasets, using unmodified compression or MC, for
four compressors. The legend for all plots appears in (c).

5.1 Compression Effectiveness and Perfor-
mance Tradeoff

Figure 4 plots compression throughput versus compres-
sion factor, using the six datasets. All I/O was done using
an in-memory file system. Each plot shows eight points,
four for the off-the-shelf compressors (gzip, bzip2, 7z,
and rzip) using default settings and four for these com-
pressors using MC.

Generally, adding MC to a compressor significantly
improves the CF (23–105% for gzip, 18–84% for
bzip2, 15–74% for 7z and 11–47% for rzip). It is un-
surprising that rzip has the least improvement, since it
already finds duplicate chunks across a range of a file, but
MC further increases that range. Depending on the com-
pressor and dataset, throughput may decrease moderately
or it may actually improve as a result of the compressor
getting (a) deduplicated and (b) more compressible in-
put. We find that 7z with MC always gets the highest
CF, but often another compressor gets nearly the same
compression with better throughput. We also note that
in general, for these datasets, off-the-shelf rzip com-
presses just about as well as off-the-shelf 7z but with
much higher throughput. Better, though, the combination
of gzip and MC has a comparable CF to any of the other
compressors without MC, and with still higher through-
put, making it a good choice for general use.

Decompression performance may be more impor-
tant than compression performance for use cases where
something is compressed once but uncompressed many

times. Figure 5 shows decompression throughput versus
CF for two representative datasets. For WS1, we see that
adding MC to existing compressors tends to improve CF
while significantly improving decompression through-
put. It is likely because deduplication leads to less data
to decompress. For EXCHANGE1, CF improves sub-
stantially as well, with throughput not greatly affected.
Only for Fedora-VM (not shown) does gzip decom-
pression throughput decrease in any significant fashion
(from about 140 MB/s to 120).

5.2 Data Reorganization Throughput

To evaluate how mzip may work when a file does not fit
in memory, we experimented with a limit of 8 GB RAM
when the input data is stored in either a solid state disk
(SSD) or hard disk drive (HDD). The output file is stored
in the HDD. When reading from HDD, we evaluated two
approaches: chunk-level and multi-pass. Since SSD has
no random-access penalty, we use only chunk-level and
compare SSD to in-mem.

Figure 6 shows the compression throughputs for SSD-
based and HDD-based mzip. (Henceforth mzip refers
to gzip+ MC.) We can see that SSD approaches in-
memory performance, but as expected there is a signifi-
cant reduction in throughput using the HDD. This reduc-
tion can be mitigated by the multipass approach. For in-
stance, using a reorg range of 60% of memory, 4.81 GB,
if the file does not fit in memory, the throughput can be
improved significantly for HDD-based mzip by compar-

USENIX Association 12th USENIX Conference on File and Storage Technologies 265

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8

D
ec

om
p.

 T
pu

t.
(M

B/
s)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(a) WS1

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8

D
ec

om
p.

 T
pu

t.
(M

B/
s)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(b) EXCHANGE1

Figure 5: Decompression throughput vs. Compression
Factor for two representative datasets (WS1 and EX-
CHANGE1), using unmodified compression or MC.

 0
 5

 10
 15
 20
 25
 30
 35

UBUN-VM EXCH1 WS1

C
om

p.
 T

pu
t.

(M
B/

s)

MEM
SSD-CHUNK

HDD-MULTIPASS
HDD-CHUNK

Figure 6: Compression throughput comparison for
HDD-based or SSD-based gzip (MC).

ison to accessing each chunk in the order it appears in
the reorganized file (and paying the corresponding costs
of random I/Os).

Note that Ubuntu-VM can approximately fit in
available memory, so the chunk-level approach performs
better than multi-pass: multi-pass reads the file sequen-
tially twice, while chunk-level can use OS-level caching.

5.3 Delta Compression

Figure 7 compares the compression and performance
achieved by mzip to compression using in-place delta-

 0
 2
 4
 6
 8

EX1
EX2

FEDO
UBUN

WS1
WS2

C
F

(X
)

Dedup
gz

MC
Delta

(a) Compression Factor, by contributing
technique

 0
 10
 20
 30

EX1
EX2

FEDO
UBUN

WS1
WS2

C
om

p.
 T

pu
t.

(M
B/

s)

MC Delta
(b) Compression Throughput

Figure 7: Comparison between mzip and gzip (delta
compression) in terms of compression factor and com-
pression throughput. CFs are broken down by dedup and
gzip (same for both), plus the additional benefit of either
MC or DC.

encoding,4 as described in Section 3.2. Both use gzip
as the final compressor. Figure 7(a) shows the CF for
each dataset, broken out by the contribution of each tech-
nique. The bottom of each stacked bar shows the impact
of deduplication (usually quite small but up to a factor of
1.8). The next part of each bar shows the additional con-
tribution of gzip after deduplication has been applied,
but with no reordering or delta-encoding. Note that these
two components will be the same for each pair of bars.
The top component is the additional benefit of either
mzip or delta-encoding. mzip is always slightly better
(from 0.81% to 4.89%) than deltas, but with either tech-
nique we can get additional compression beyond the gain
from deduplication and traditional compression: > 80%
more for EXCHANGE1, > 40% more for EXCHANGE2
and > 25% more for WS1.

Figure 7(b) plots the compression throughput for mzip
and DC, using an in-memory file system (we omit decom-
pression due to space limitations). mzip is consistently
faster than DC. For compression, mzip averages 7.21%
higher throughput for these datasets. while for decom-
pression mzip averages 29.35% higher throughput.

4Delta-encoding plus compression is delta compression. Some
tools such as vcdiff [11] do both simultaneously, while our tool delta-
encodes chunks and then compresses the entire file.

266 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 2
 4
 6
 8

UBUN EX1 WS1

C
F

(X
)

2K
8K

32K
STD gz

(a) Compression Factor

 0
 4
 8

 12
 16
 20

2 8 32 gz 2 8 32 gz 2 8 32 gzR
un

tim
e

(m
in

)

UBUN EX1 WS1
Segment

Cluster
Reorg+gz

STD gz
(b) Runtime, by component cost

Figure 8: Compression factor and runtime for mzip,
varying chunk size.

5.4 Sensitivity to Environment
The effectiveness and performance of MC depend on how
it is used. We looked into various chunk sizes, com-
pared fixed-size with variable-size chunking, evaluated
the number of SFs to use in clustering and studied differ-
ent compression levels and window sizes.

5.4.1 Chunk Size

Figure 8 plots gzip-MC (a) CF and (b) runtime as a func-
tion of chunk size (we show runtime to break down in-
dividual components by their contribution to the overall
delay). We shrink and increase the default 8 KB chunk
size by a factor of 4. Compression increases slightly in
shrinking from 8 KB to 2 KB but decreases dramatically
moving up to 32 KB. The improvement from the smaller
chunksize is much less than seen when only deduplica-
tion is performed [26], because MC eliminates redun-
dancy among similar chunks as well as identical ones.
The reduction when increasing to 32 KB is due to a com-
bination of fewer chunks to be detected as identical and
similar and the small gzip lookback window: similar
content in one chunk may not match content from the
preceding chunk.

Figure 8(b) shows the runtime overhead, broken down
by processing phase. The right bar for each dataset corre-

 0

 2

 4

 6

 8

 10

UBUN EX1 WS1

C
F

(X
)

FIXED
VARIABLE

(a) Compression Factor

 0

 5

 10

 15

 20

F V F V F V

R
un

tim
e

(m
in

)

UBUN EX1 WS1

Segment
Cluster

Reorg+gz

(b) Runtime

Figure 9: Compression factor and runtime for mzip,
when either fixed-size or variable-size chunking is used.

sponds to standalone gzip without MC, and the remain-
ing bars show the additive costs of segmentation, clus-
tering, and the pipelined reorganization and compres-
sion. Generally performance is decreased by moving to
a smaller chunk size, but interestingly in two of the three
cases it is also worse when moving to a larger chunk size.
We attribute the lower throughput to the poorer dedu-
plication and compression achieved, which pushes more
data through the system.

5.4.2 Chunking Algorithm

Data can be divided into fixed-sized or variable-sized
blocks. For MC, supporting variable-sized chunks re-
quires tracking individual byte offsets and sizes rather
than simply block offsets. This increases the recipe sizes
by about a factor of two, but because the recipes are small
relative to the original file, the effect of this increase
is limited. In addition, variable chunks result in better
deduplication and matching than fixed, so CFs from us-
ing variable chunks are 14.5% higher than those using
fixed chunks.

Figure 9 plots mzip compression for three datasets,
when fixed-size or variable-size chunking is used. From
Figure 9(a), we can see that variable-size chunking gives
consistently better compression. Figure 9(b) shows that
the overall performance of both approaches is compara-
ble and sometimes variable-size chunking has better per-
formance. Though variable-size chunking spends more
time in the segmentation stage, the time to do compres-
sion can be reduced considerably when more chunks are
duplicated or grouped together.

USENIX Association 12th USENIX Conference on File and Storage Technologies 267

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B/

s)

Compression Factor (X)

gz-DEF
gz-MAX

gz-DEF(mc)
gz-MAX(mc)

bz
bz(mc)

7z-DEF
7z-MAX

7z-DEF(mc)
7z-MAX(mc)

rz-DEF
rz-MAX

rz-DEF(mc)
rz-MAX(mc)

Figure 10: Comparison between the default and the max-
imum compression level, for standard compressors with
and without MC, on the WS1 dataset.

5.4.3 Resemblance Computation

By default we use sixteen features, combined into four
SFs, and a match on any SF is sufficient to indicate
a match between two chunks. In fact most similar
chunks are detected by using a single SF; however,
considering three more SFs has little change in com-
pression throughputs and sometimes improves compres-
sion factors greatly (e.g., a 13.6% improvement for EX-
CHANGE1). We therefore default to using 4 SFs.

5.4.4 Compression Window

For most of this paper we have focused on the default
behavior of the three compressors we have been con-
sidering. For gzip, the “maximal” level makes only
a small improvement in CF but with a significant drop
in throughput, compared to the default. In the case of
bzip2, the default is equivalent to the level that does the
best compression, but overall execution time is still man-
ageable, and lower levels do not change the results signif-
icantly. In the case of 7z, there is an enormous difference
between its default level and its maximal level: the max-
imal level generally gives a much higher CF with only a
moderate drop in throughput. For rzip, we use an un-
documented parameter “-L20”to increase the window to
2 GB; increasing the window beyond that had diminish-
ing returns because of the increasingly coarse granularity
of duplicate matching.

Figure 10 shows the compression throughput and CF
for WS1 when the default or maximum level is used, for
different compressors with and without MC. (The results
are similar for other datasets.) From this figure, we can
tell that maximal gzip reduces throughput without dis-
cernible effect on CF; 7z without MC improves CF dis-
proportionately to its impact on performance; and max-
imal 7z (MC) moderately improves CF and reduces per-
formance. More importantly, with MC and standard com-

pressors, we can achieve higher CFs with much higher
compression throughout than compressors’ standard
maximal level. For example, the open diamond mark-
ing 7z-DEF(MC) is above and to the right of the close
inverted triangle marking 7z-MAX. Without MC, rzip’s
maximal level improves performance with comparable
throughput; with MC, rzip gets the same compression
as 7z-MAX with much better throughput, and rzip-MAX
decreases that throughput without improving CF. The
best compression comes from 7z-MAX with MC, which
also has better throughput than 7z-MAX without MC.

6 Archival Migration in DDFS

In addition to using MC in the context of a single
file, we can implement it in the file system layer. As
an example, we evaluated MC in DDFS, running on a
Linux-based backup appliance equipped with 8x2 Intel
2.53GHz Xeon E5540 cores and 72 GB memory. In our
experiment, either the active tier or archive tier is backed
by a disk array of 14 1-TB SATA disks. To minimize
performance variation, no other workloads ran during the
experiment.

6.1 Datasets
DDFS compresses each compression region using either
LZ or gzip. Table 2 shows the characteristics of a few
backup datasets using either form of compression. (Note
that the WORKSTATIONS dataset is the union of several
workstation backups, including WS1 and WS2, and all
datasets are many backups rather than a single file as be-
fore.) The logical size refers to pre-deduplication data,
and most datasets deduplicate substantially.

The table shows that gzip compression is 25–44%
better than LZ on these datasets, hence DDFS uses gzip
by default for archival. We therefore compare base gzip
with gzip after MC preprocessing. For these datasets, we
reorganize all backups together, which is comparable to
an archive migration policy that migrates a few months at
a time; if archival happened more frequently, the benefits
would be reduced.

6.2 Results
Figure 11(a) depicts the compressibility of each dataset,
including separate phases of data reorganization. As de-
scribed in Section 3.3, we migrate data in thirds. The top
third contains the biggest clusters and achieves the great-
est compression. The middle third contain smaller clus-
ters and may not compress quite as well, and the bottom
third contains the smallest clusters, including clusters
of a single chunk (nothing similar to combine it with).
The next bar for each dataset shows the aggregate CF

268 12th USENIX Conference on File and Storage Technologies USENIX Association

Type Name Logical Dedup. Dedup. + LZ LZ CF Dedup. + gzip
gzip CFSize (GB) Size (GB) Size (GB) (GB)

Workstation WORKSTATIONS 2471 454 230 1.97 160 2.84

Email
Server

EXCHANGE1 570 51 27 1.89 22 2.37
EXCHANGE2 718 630 305 2.07 241 2.61
EXCHANGE3 596 216 103 2.10 81 2.67

Table 2: Datasets used for archival migration evaluation.

 0

 5

 10

 15

 20

 25

WS EX1 EX2 EX3

co
m

pr
es

si
on

 fa
ct

or

first 1/3
middle 1/3

last 1/3
MC total

gzip total

(a) CFs as a function of migration phase

 0

 0.2

 0.4

 0.6

 0.8

 1

WS EX1 EX2 EX3

co
nt

rib
ut

io
n

to
 c

om
pr

es
si

on

gzip
top 1/3
top 2/3
all
remaining

(b) Fraction of data saved in each migration
phase

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

ru
nt

im
e

(m
in

s)

number of threads

gzip total
sorting

first 1/3
middle 1/3

last 1/3

(c) Durations, as a function of threads, for
EXCHANGE1

Figure 11: Breakdown of the effect of migrating data, using just gzip or using MC in 3 phases.

using MC, while the right-most bar shows the compres-
sion achieved with gzip and no reorganization. Collec-
tively, MC achieves 1.44–2.57× better compression than
the gzip baseline. Specifically, MC outperforms gzip
most (by 2.57×) on the workstations dataset, while it im-
proves the least (by 1.44×) on EXCHANGE3.

Figure 11(b) provides a different view into the same
data. Here, the cumulative fraction of data saved for
each dataset is depicted, from bottom to top, normalized
by the post-deduplicated dataset size. The greatest sav-
ings (about 60% of each dataset) come from simply do-
ing gzip, shown in green. If we reorganize the top third
of the clusters, we additionally save the fraction shown
in red. By reorganizing the top two-thirds we include the
fraction in blue; interestingly, in the case of WORKSTA-
TIONS, the reduction achieved by MC in the middle third
relative to gzip is higher than that of the top third, be-
cause gzip alone does not compress the middle third as
well as it compresses the top. If we reorganize everything
that matches other data, we may further improve com-
pression, but only two datasets have a noticeable impact
from the bottom third. Finally, the portion in gray at the
top of each bar represents the data that remains after MC.

There are some costs to the increased compression.
First, MC has a considerably higher memory footprint
than the baseline: compared to gzip, the extra memory
usage for reorganization buffers is 6 GB (128 KB com-
pression regions * 48 K regions filled simultaneously).
Second, there is run-time overhead to identify clusters of
similar chunks and to copy and group the similar data.
To understand what factors dominate the run-time over-

head of MC, Figure 11(c) reports the elapsed time to copy
the post-deduplication 51 GB EXCHANGE1 dataset to the
archive tier, with and without MC, as a function of the
number of threads (using a log scale). We see that mul-
tithreading significantly improves the processing time of
each pass. We divide the container range into multiple
subranges and copy the data chunks from each subrange
into in-memory data reorganization buffers with multi-
ple worker threads. As the threads increase from 1 to 16,
the baseline (gzip) duration drops monotonically and is
uniformly less than the MC execution time. On the other
hand, MC achieves the minimum execution time with 8
worker threads; further increasing the thread count does
not reduce execution time, an issue we attribute to intra-
bucket serialization within hash table operations and in-
creased I/O burstiness.

Reading the entire EXCHANGE1 dataset, there is a
30% performance degradation after MC compared to
simply copying in the original containers. Such a read
penalty would be unacceptable for primary storage,
problematic for backup [13], but reasonable for archival
data given lower performance expectations. But reading
back just the final backup within the dataset is 7× slower
than without reorganization, if all chunks are relocated
whenever possible. Fortunately, there are potentially sig-
nificant benefits to partial reorganization. The greatest
compression gains are obtained by grouping the biggest
clusters, so migrating only the top-third of clusters can
provide high benefits at moderate cost. Interestingly,
if just the top third of clusters are reorganized, there is
only a 24% degradation reading the final backup.

USENIX Association 12th USENIX Conference on File and Storage Technologies 269

7 Related Work

Compression is a well-trodden area of research. Adap-
tive compression, in which strings are matched against
patterns found earlier in a data stream, dates back to the
variants of Lempel-Ziv encoding [29, 30]. Much of the
early work in compression was done in a resource-poor
environment, with limited memory and computation, so
the size of the adaptive dictionary was severely limited.
Since then, there have been advances in both encoding
algorithms and dictionary sizes, so for instance Pavlov’s
7z uses a “Lempel-Ziv-Markov-Chain” (LZMA) algo-
rithm with a dictionary up to 1 GB [1]. With rzip, stan-
dard compression is combined with rolling block hashes
to find large duplicate content, and larger lookahead win-
dows decrease the granularity of duplicate detection [23].

The Burrows-Wheeler Transform (BWT), incorporated
into bzip2, rearranges data—within a relatively small
window—to make it more compressible [5]. This trans-
form is reasonably efficient and easily reversed, but it is
limited in what improvements it can effect.

Delta compression, described in Section 2.2, refers to
compressing a data stream relative to some other known
data [9]. With this technique, large files must normally
be compared piecemeal, using subfiles that are identified
on the fly using a heuristic to match data from the old and
new files [11]. MC is similar to that sort of heuristic, ex-
cept it permits deltas to be computed at the granularity of
small chunks (such as 8 KB) rather than a sizable fraction
of a file. It has been used for network transfers, such as
updating changing Web pages over HTTP [16]. One can
also deduplicate identical chunks in network transfers at
various granularities [10, 17].

DC has also been used in the context of deduplicating
systems. Deltas can be done at the level of individual
chunks [20] or large units of MBs or more [2]. Fine-
grained comparisons have a greater chance to identify
similar chunks but require more state.

These techniques have limitations in the range of
data over which compression will identify repeated
sequences; even the 1 GB dictionary used by 7-zip
is small compared to many of today’s files. There
are other ways to find redundancy spread across large
corpa. As one example, REBL performed fixed-sized
or content-defined chunking and then used resemblance
detection to decide which blocks or chunks should be
delta-encoded [12]. Of the approaches described here,
MC is logically the most similar to REBL, in that it
breaks content into variable sized chunks and identifies
similar chunks to compress together. The work on REBL
only reported the savings of pair-wise DC on any chunks
found to be similar, not the end-to-end algorithm and
overhead to perform standalone compression and later
reconstruct the original data. From the standpoint of

rearranging data to make it more compressible, MC is
most similar to BWT.

8 Future Work

We briefly mention two avenues of future work, applica-
tion domains and performance tuning.

Compression is commonly used with networking
when the cost of compression is offset by the bandwidth
savings. Such compression can take the form of sim-
ple in-line coding, such as that built into modems many
years ago, or it can be more sophisticated traffic shaping
that incorporates delta-encoding against past data trans-
mitted [19, 22]. Another point along the compression
spectrum would be to use mzip to compress files prior to
network transfer, either statically (done once and saved)
or dynamically (when the cost of compression must be
included in addition to network transfer and decompres-
sion). We conducted some initial experiments using rpm
files for software distribution, finding that a small frac-
tion of these files gained a significant benefit from mzip,
but expanding the scope of this analysis to a wider range
of data would be useful. Finally, it may be useful to com-
bine mzip with other redundancy elimination protocols,
such as content-based naming [18].

With regard to performance tuning, we have been
gaining experience with MC in the context of the archival
system. The tradeoffs between compression factors and
performance, both during archival and upon later reads to
an archived file, bear further analysis. In addition, it may
be beneficial to perform small-scale MC in the context
of the backup tier (rather than the archive tier), recog-
nizing that the impact to read performance must be min-
imized. mzip also has potential performance improve-
ments, such as multi-threading and reimplementing in a
more efficient programming language.

9 Conclusions

Storage systems must optimize space consumption while
remaining simple enough to implement. Migratory Com-
pression reorders content, improving traditional com-
pression by up to 2× with little impact on throughput
and limited complexity. When compressing individual
files, MC paired with a typical compressor (e.g., gzip or
7z) provides a clear improvement. More importantly, MC
delivers slightly better compression than delta-encoding
without the added complexities of tracking dependencies
(for decoding) between non-adjacent chunks. Migratory
Compression can deliver significant additional consump-
tion for broadly used file systems.

270 12th USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgments

We acknowledge Nitin Garg for his initial suggestion
of improving data compression by collocating simi-
lar content in the Data Domain File System. We
thank Remzi Arpaci-Dusseau, Scott Auchmoody, Wind-
sor Hsu, Stephen Manley, Harshad Parekh, Hugo Pat-
terson, Robert Ricci, Hyong Shim, Stephen Smaldone,
Andrew Tridgell, and Teng Xu for comments and feed-
back on earlier versions and/or the system. We especially
thank our shepherd, Zheng Zhang, and the anonymous
reviewers; their feedback and guidance have been espe-
cially helpful.

References

[1] 7-zip. http://www.7-zip.org/. Retrieved Sep.
7, 2013.

[2] ARONOVICH, L., ASHER, R., BACHMAT, E., BIT-
NER, H., HIRSCH, M., AND KLEIN, S. T. The de-
sign of a similarity based deduplication system. In
Proceedings of SYSTOR 2009: The Israeli Experi-
mental Systems Conference (2009).

[3] BRODER, A. Z. On the resemblance and contain-
ment of documents. In In Compression and Com-
plexity of Sequences (SEQUENCES97) (1997),
IEEE Computer Society.

[4] BURROWS, M., JERIAN, C., LAMPSON, B., AND
MANN, T. On-line data compression in a log-
structured file system. In Proceedings of the fifth
international conference on Architectural support
for programming languages and operating systems
(1992), ASPLOS V.

[5] BURROWS, M., AND WHEELER, D. J. A block-
sorting lossless data compression algorithm. Tech.
Rep. SRC-RR-124, Digital Equipment Corpora-
tion, 1994.

[6] DEUTSCH, P. DEFLATE Compressed Data For-
mat Specification version 1.3. RFC 1951 (Informa-
tional), May 1996.

[7] FIALA, E. R., AND GREENE, D. H. Data com-
pression with finite windows. Communications of
the ACM 32, 4 (Apr. 1989), 490–505.

[8] GILCHRIST, J. Parallel data compression with
bzip2. In Proceedings of the 16th IASTED Inter-
national Conference on Parallel and Distributed
Computing and Systems (2004), vol. 16, pp. 559–
564.

[9] HUNT, J. J., VO, K.-P., AND TICHY, W. F. Delta
algorithms: an empirical analysis. ACM Trans.
Softw. Eng. Methodol. 7 (April 1998), 192–214.

[10] JAIN, N., DAHLIN, M., AND TEWARI, R. Ta-
per: Tiered approach for eliminating redundancy in
replica synchronization. In 4th USENIX Confer-
ence on File and Storage Technologies (2005).

[11] KORN, D. G., AND VO, K.-P. Engineering a dif-
ferencing and compression data format. In USENIX
Annual Technical Conference (2002).

[12] KULKARNI, P., DOUGLIS, F., LAVOIE, J., AND
TRACEY, J. M. Redundancy elimination within
large collections of files. In USENIX 2004 Annual
Technical Conference (June 2004).

[13] LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT,
D. Improving restore speed for backup systems
that use inline chunk-based deduplication. In 11th
USENIX Conference on File and Storage Technolo-
gies (Feb 2013).

[14] MACDONALD, J. File system support for delta
compression. Masters thesis. Department of Elec-
trical Engineering and Computer Science, Univer-
sity of California at Berkeley, 2000.

[15] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M.,
FLOURIS, M. D., AND BILAS, A. Using transpar-
ent compression to improve SSD-based I/O caches.
In Proceedings of the 5th European Conference on
Computer Systems (2010), EuroSys ’10.

[16] MOGUL, J. C., DOUGLIS, F., FELDMANN, A.,
AND KRISHNAMURTHY, B. Potential benefits of
delta encoding and data compression for http. In
Proceedings of the ACM SIGCOMM ’97 confer-
ence on Applications, technologies, architectures,
and protocols for computer communication (1997),
SIGCOMM ’97.

[17] MUTHITACHAROEN, A., CHEN, B., AND
MAZIÈRES, D. A low-bandwidth network file
system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles
(2001), SOSP ’01.

[18] PARK, K., IHM, S., BOWMAN, M., AND PAI,
V. S. Supporting practical content-addressable
caching with CZIP compression. In USENIX ATC
(2007).

[19] RIVERBED TECHNOLOGY. Wan Optimization
(Steelhead). http://www.riverbed.com/products-
solutions/products/wan-optimization-steelhead/,
2014. Retrieved Jan. 13, 2014.

USENIX Association 12th USENIX Conference on File and Storage Technologies 271

[20] SHILANE, P., WALLACE, G., HUANG, M., AND
HSU, W. Delta compressed and deduplicated stor-
age using stream-informed locality. In Proceed-
ings of the 4th USENIX conference on Hot Topics
in Storage and File Systems (June 2012), USENIX
Association.

[21] SMALDONE, S., WALLACE, G., AND HSU, W. Ef-
ficiently storing virtual machine backups. In Pro-
ceedings of the 5th USENIX conference on Hot
Topics in Storage and File Systems (June 2013),
USENIX Association.

[22] SPRING, N. T., AND WETHERALL, D. A protocol-
independent technique for eliminating redundant
network traffic. In ACM SIGCOMM (2000).

[23] TRIDGELL, A. Efficient algorithms for sorting and
synchronization. PhD thesis, Australian National
University Canberra, 1999.

[24] TUDUCE, I. C., AND GROSS, T. Adaptive main
memory compression. In USENIX 2005 Annual
Technical Conference (April 2005).

[25] VARIA, J., AND MATHEW, S. Overview of amazon
web services, 2012.

[26] WALLACE, G., DOUGLIS, F., QIAN, H., SHI-
LANE, P., SMALDONE, S., CHAMNESS, M., AND
HSU, W. Characteristics of backup workloads in
production systems. In FAST’12: Proceedings of
the 10th Conference on File and Storage Technolo-
gies (2012).

[27] xz. http://tukaani.org/xz/. Retrieved Sep.
25, 2013.

[28] ZHU, B., LI, K., AND PATTERSON, H. Avoiding
the disk bottleneck in the data domain deduplica-
tion file system. In 6th USENIX Conference on File
and Storage Technologies (Feb 2008).

[29] ZIV, J., AND LEMPEL, A. A universal algorithm
for sequential data compression. IEEE Transac-
tions on Information Theory 23, 3 (May 1977),
337–343.

[30] ZIV, J., AND LEMPEL, A. Compression of indi-
vidual sequences via variable-rate coding. Infor-
mation Theory, IEEE Transactions on 24, 5 (1978),
530–536.

USENIX Association 12th USENIX Conference on File and Storage Technologies 273

Resolving Journaling of Journal Anomaly in Android I/O:

Multi-Version B-tree with Lazy Split

Wook-Hee Kim†, Beomseok Nam†, Dongil Park‡, Youjip Won‡

† Ulsan National Institute of Science and Technology, Korea

{okie90,bsnam}@unist.ac.kr
‡ Hanyang University, Korea

{idoitlpg,yjwon}@hanyang.ac.kr

Abstract
Misaligned interaction between SQLite and EXT4 of

the Android I/O stack yields excessive random writes. In

this work, we developed multi-version B-tree with lazy

split (LS-MVBT) to effectively address the Journaling of

Journal anomaly in Android I/O. LS-MVBT is carefully

crafted to minimize the write traffic caused by fsync()

call of SQLite. The contribution of LS-MVBT consists

of two key elements: (i) Multi-version B-tree effectively

reduces “the number of fsync() calls” via weaving the

crash recovery information within the database itself in-

stead of maintaining a separate file, and (ii) it signif-

icantly reduces “the number of dirty pages to be syn-

chronized in a single fsync() call” via optimizing the

multi-version B-tree for Android I/O. The optimization

of multi-version B-tree consists of three elements: lazy

split, metadata embedding, and disabling sibling redistri-

bution. We implemented LS-MVBT in Samsung Galaxy

S4 with Android 4.3 Jelly Bean. The results are im-

pressive. For SQLite, the LS-MVBT exhibits 70% (704

insertions/sec vs. 416 insertions/sec), and 1,220% per-

formance improvement against WAL mode and TRUN-

CATE mode (704 insertions/sec vs. 55 insertions/sec),

respectively.

1 Introduction

In the era of mobile computing, smartphones and smart

devices generate more network traffic than PCs [1]. It has

been reported that 80% of the smartphones sold in the

third quarter of 2013 are Android smartphones [2]. De-

spite the rapid proliferation of Android smartphones, the

I/O stack of Android platform leaves much to be desired

as it fails to fully leverage the maximum performance

from hardware resources. Kim et al. [3] reported that

in an Android device, storage I/O performance indeed

has significant impact on the overall system performance

although it has been believed that the slow storage per-

formance should be masked due to even slower network

subsystem. The poor storage performance mainly comes

from the discrepancies in interaction between SQLite

and EXT4.

SQLite is a serverless database engine that is used ex-

tensively in Android applications to persistently manage

the data. SQLite maintains crash recovery information

for a transaction in a separate file which is log for write-

ahead logging (or rollback journal). In an SQLite trans-

action, every update in the log or rollback journal and ac-

tual updates in the database table are separately commit-

ted to the storage device via fsync() calls. In TRUN-

CATE1 mode, a single insert operation of 100 byte record

entails 2 fsync() calls and eventually generates 9 write

operations (36 KB) to the storage device. 100 byte of

database insert amplifies to over 36 KB when it reaches

the storage device[4]. The main cause of this unexpected

behavior is that EXT4 filesystem journals the journaling

activity of SQLite through heavy-weight fsync() calls.

This is called the Journaling of Journal anomaly [4].

There are several ways to resolve the Journaling of

Journal anomaly. One way is to tune the I/O stack in OS

layer, such as eliminating unnecessary metadata flushes

and storing journal blocks on a separate block device [5].

Another way is to integrate the recovery information into

the database file itself so that the database can be re-

stored without an external journal file. Multi-Version B-

Tree (MVBT) proposed by Becker et al. [6] is an exam-

ple of the latter. The excessive I/O operations also cause

other problems such as shortening the lifetime of NAND

eMMC since NAND flash cells can only be erased or

written to a limited number of times before they fail.

In this work, we dedicate our efforts on resolving

the Journaling of Journal anomaly from which the An-

droid I/O stack suffers. Journaling of Journal anomaly

is caused by two reasons: the number of fsync() calls

in an SQLite transaction and the overhead of a single

fsync() call in EXT4. In order to reduce the number

1one of the journal modes in SQLite

274 12th USENIX Conference on File and Storage Technologies USENIX Association

of fsync() calls as well as the overhead of a single

fsync() call, we developed a variant of Multi-version

B-tree, LS-MVBT (Lazy Split Multi-Version B-Tree). The

contributions of this work are summarized as follows.

• LS-MVBT We resolve the Journaling of Jour-

nal anomaly with multi-version B-tree that weaves

transaction recovery information into the database

file itself instead of using separate rollback journal

file or WAL log file.

• Lazy split LS-MVBT reduces the number of dirty

pages flushed to the storage device when a B-tree

node overflows. Our proposed lazy split algorithm

minimizes the number of modified B-tree nodes by

combining a historical dead node with one of its

new split nodes.

• Buffer reservation LS-MVBT further reduces the

chances of dirtying an extra node by padding some

buffer space in lazy split nodes. If a lazy split node

is accessed again and additional data items need to

be stored, they are stored in reserved buffer space

instead of splitting it.

• Metadata embedding LS-MVBT reduces the I/O

traffic by not flushing the database header page to

the storage device. Instead, our proposed metadata

embedding method moves the file change counter

metadata from database header page into the last

modified B-tree node which should be flushed any-

way.

• Disabling sibling redistribution Sibling redis-

tribution (migration of overflown data into left

and right sibling nodes) has been widely used in

database systems, but we show that it significantly

increases the number of dirty nodes. LS-MVBT

prevents sibling redistribution to improve write per-

formance at the cost of slightly slowing search per-

formance.

• Lazy garbage collection Version-based data struc-

tures require garbage collection for dead entries.

LS-MVBT reclaims dead entries of a B-tree node

only when the node needs to be modified by a cur-

rent write transaction. This lazy garbage collection

does not increase the amount of data to be flushed,

since it only cleans up dirty nodes.

We implemented LS-MVBT in one of the most recent

smartphone models, Galaxy-S4. Our extensive experi-

mental study shows that LS-MVBT exhibits 70% perfor-

mance improvement against WAL mode and 1,220% im-

provement against TRUNCATE mode in SQLite transac-

tions. WAL mode may suffer from long recovery latency

for replaying the log. LS-MVBT outperforms WAL

mode not only in terms of transaction performance, e.g.,

insertion/sec, but also in terms of recovery time. Our

experiment shows recovery time in LS-MVBT is up to

440% faster than that in WAL mode.

The rest of the paper is organized as follows: In sec-

tion 2, we discuss other research efforts related to the

Android I/O stack and database recovery modes includ-

ing multi-version B-trees. In section 3, we present how

multi-version B-tree (MVBT) resolves the Journaling of

Journal anomaly. In section 4, we present our design of a

variant of MVBT, LS-MVBT (Lazy Split Multi-Version

B-tree). In section 5, we propose further optimizations

including metadata embedding, disabling sibling redis-

tribution, and lazy garbage collection that reduce the

number of dirty pages. Section 6 provides the perfor-

mance results and analysis. In section 7, we conclude

the paper.

2 Related Work

SQLite is a key component in the Android I/O stack

which allows the applications to manage their data in a

persistent manner [7]. In Android based smartphones,

contrary to common perception, the major performance

bottleneck is shown to be the storage device rather than

the air-link [3], and the journaling activity is shown to

be the dominant source of storage traffic [3, 4]. Lee

et al. showed Android applications generate excessive

amount of EXT4 journal I/O’s, most of which are caused

by SQLite [5]. The excessive I/O traffic is found to be

caused by the misaligned interaction between the SQLite

and EXT4 [4]. Jeong et al. improved the Android

I/O stack by employing a set of optimizations, which

include fdatasync() instead of fsync(), F2FS, ex-

ternal journaling, polling-based I/O, and WAL mode in

SQLite instead of other journal modes. With these opti-

mization methods, Jeong et. al achieved 300% improve-

ment in SQLite performance without any hardware assis-

tance [4].

Database recovery has been implemented in many dif-

ferent ways. While log-based recovery methods such

as ARIES [8] are commonly used in many other server-

based database management systems, rollback journal is

used as the default atomic commit and rollback method

in SQLite although WAL (Write-Ahead Logging) has be-

come available since SQLite 3.7 [7].

In addition to the rollback journal and log-based re-

covery methods, many version-based atomic commit and

rollback methods have been studied in the past. Version-

based recovery methods integrate the recovery informa-

tion into the database itself so that the database can be

restored without an external journal file [6, 9, 10, 11].

Some examples include the write-once balanced tree

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 275

(WOBT) for indelible storage [9], version-based hash-

ing method for accessing temporal data [12], and the

time-split B+-tree (TSBT) [10] which is implemented in

Microsoft SQL Server. Multi-version B+-tree (MVBT)

proposed by Becker et al. [6] is designed to give a new

unique version for each write operation. The version-

based B-tree is proved to be asymptotically optimal in

a sense that its time and space complexity are the same

as those of the single-version B-tree. Becker’s MVBT

does not support multiple updates within a single transac-

tion, but this drawback was overcome by Transactional

MVBT which improved the MVBT by giving the same

timestamp to the data items updated by the same trans-

action [13]. Our LS-MVBT is implemented based on the

Transactional MVBT with several optimizations we pro-

pose in section 4.

The latest non-volatile semiconductor storage, such

as NAND flash memory and STT-MRAM, sheds new

light on the version-based atomic commit and rollback

methods [14, 15]. Venkataraman et al. proposed a B-

tree structure called CDDS (Consistent and Durable Data

Structure) B-tree which is almost identical to MVBT ex-

cept that it focuses on implementing multi-version infor-

mation on non-volatile memory (NVRAM) [15]. For

durability and consistency, CDDS uses a combination

of mfence and clflush instructions to guarantee that

memory writes are atomically flushed to NVRAM.

As write operations on flash memory systems have

high latency, Li et al. developed FD-tree which is opti-

mized for write operations on flash storage devices [16].

As the FD-tree needs a recovery scheme such as jour-

naling or write-ahead-logging, the version-based recov-

ery scheme can also be employed by FD-tree. If so, our

proposed optimizations for multi-version B-tree can be

employed on FD-tree as well.

Current database recovery schemes are based on the

traditional two layers - volatile memory and non-volatile

disks - but the advent of the NVRAM presents new chal-

lenges, i.e., write-ahead logging (WAL) causes some

complications if the memory is non-volatile [17]. WAL

recovery scheme is designed in a way that any update

operation to a B-tree page has to be recorded in a per-

manent write-ahead-log file first while the dirty B-tree

nodes stay in volatile memory. If a database node is

also in permanent NVRAM, the logging is not “write-

ahead”. With NVRAM, the WAL scheme must be re-

designed. An alternative solution is to use version-based

recovery scheme for NVRAM as in CDDS B-tree. Lazy

split, metadata embedding, and other optimizations that

we propose in this work can be used to reduce the num-

ber of write operations even for CDDS B-tree.

3 Multi-Version B-tree

3.1 Journaling of Journal Anomaly in An-

droid I/O

In the Android platform, fsync() call is triggered by the

commit of an SQLite transaction. As the journaling ac-

tivity of SQLite propagates expensive metadata update

operations to the file systems, SQLite spends most of

its insertion (or update) time on fsync() function call

for journal and database files [4]. The issue of resolving

Journaling of Journal anomaly boils down to two techni-

cal ingredients: (i) reducing the number of fsync() calls

in an SQLite transaction and (ii) reducing the number of

dirty pages which need to be synchronized to the storage

in a single fsync() call. Both of these two constituents

eventually aim at reducing the write traffic to the block

device.

In rollback journal modes (DELETE, TRUNCATE,

and PERSIST) of SQLite, a single transaction consists of

two phases: database journaling and the database update.

SQLite calls fsync() at the end of each phase to make

the result of each phase persistent. In EXT4 with ordered

mode journal, fsync() consists of two phases: (i) writ-

ing the updated data blocks to a file and (ii) committing

the updated metadata for the respective file to the journal.

Most database updates in a smartphone, e.g. inserting a

schedule in the calendar, inserting a phone number in the

address book, or writing a note in the Facebook time-

line, are less than a few hundred bytes [5]. As a result,

in the first phase of fsync(), the number of updated file

blocks rarely goes beyond a single block (4 KB). In the

second phase of fsync(), committing a journal transac-

tion to the filesystem journal entails four or more write

operations, including journal descriptor, group descrip-

tor, block bitmap, inode table, and journal commit mark,

to the storage. Each of these entries corresponds to a sin-

gle filesystem block.

In an effort to reduce the number of fsync() calls

in an SQLite transaction, we implemented version-based

B-tree, multi-version B-tree by Becker et al. [6], which

maintains update history within the B-tree itself instead

of maintaining it in a separate rollback journal file (or log

file). This saves SQLite one or more fsync() calls.

3.2 Multi-Version B-Tree

In multi-version B-tree (MVBT), each insert, delete, or

update transaction increases “the most recent consistent

version” in the header page of a B-tree. Each key-

value pair stored in MVBT defines its own life span -

[versionstart ,versionend). When a key-value pair is in-

serted with a new version v, the life span of the new

key-value pair is set to [v,∞). When a key-value pair

3

276 12th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Multi-Version B-Tree split: After inserting an

entry with key 25 into MVBT, three new nodes are cre-

ated.

is deleted at version v, its life span is set to - [vold ,v).
Update transaction creates a new cell entry that has the

transaction’s version as its starting version [v,∞) and the

old cell entry updates its valid end version to the previ-

ous consistent version number [vold ,v). The key-value

pair whose versionend of life span is not ∞ is called a

dead entry. The one with infinite life span is called a live

entry. In multi-version B-trees, the search operation is

trivial. A read transaction first examines the latest con-

sistent version number and uses it to find valid entries

in B-tree nodes, i.e., if a version of a read transaction is

not within the life span of a key-value pair, the respective

data is ignored by the read transaction.

If a node overflows, the entries in the overflown node

are distributed into two newly allocated nodes, which is

referred to as “node split”. An additional new node is

then allocated as a parent node or an existing parent node

is updated with the two newly created nodes. The life

spans of the two new nodes are set to [v,∞). An over-

flown node becomes dead via setting the node’s version

range [vold ,∞) to [vold ,v). In summary, a single node

split creates at least four dirty nodes in version-based B-

tree structures. (Please refer to [6] and [15] for more

detailed discussions on the insertion and split algorithms

of version-based B-tree.). In the commit phase of a trans-

action, SQLite writes dirty nodes in the B-tree using the

write() system call and triggers fsync() to make the

result of the write() persistent.

Figure 1 shows how an MVBT splits a node when it

overflows. Suppose a B-tree node can hold at most four

entries in the example. When a new entry with key 25

is inserted by a transaction whose version is 5, the node

P1 splits and a half of the live entries are copied to a

new node, P2, and the other half of the live entries are

copied to another new node, P3. The previous node P1

now becomes a dead node and it becomes available only

for the transactions whose versions are older (smaller)

than 5. The two new nodes should be pointed by a parent

node and the version range of the dead node should also

be updated in the parent node. In the example, a new root

node, P4, is created and the pointers to the three child

nodes are stored.

The recovery in multi-version B-tree is simple and

straightforward. Multi-version B-tree maintains the ver-

sion numbers of currently outstanding transactions at the

storage. In current SQLite, there can be at most one out-

standing write transaction for a given B-tree [7]. In the

recovery phase, the recovery module first reconstructs

the multi-version B-tree in memory from the storage and

determines the version number of aborted transaction.

Then, it scans all the nodes and adjusts the life span of

each cell entry to obliterate the effect of aborted trans-

action. The life span which ends at v, i.e., [vold ,v), is

revoked to [vold ,∞) and all cell entries which start at v

are deleted.

The recent eMMC controllers generate error correc-

tion code for 4 KB or 8 KB page, hence multi-version B-

tree can rely on fsync() to atomically move from one

consistent state to the next in the unit of page size. Even

if the eMMC controller promises that only single sector

writes are atomic and the B-tree node size is a multiple

of the sector size, multi-version B-tree guarantees cor-

rect recovery as it creates a new key-value pair with new

version information instead of overwriting previous key-

value pairs. A multi-version B-tree node can be consid-

ered a combination of B-tree node and journal.

4 Lazy Split Multi-version B-Trees

MVBT successfully reduces the number of fsync()

calls in an SQLite transaction as it eliminates the jour-

naling activity of SQLite. Our next effort is dedicated

to minimizing the overhead of a single fsync() call in

MVBT. The essence of the optimization is to minimize

the number of dirty nodes which are flushed to the disk

as a result of a single SQLite transaction.

4.1 Multi-Version B-Tree Node in SQLite

We modified the B-tree node structure of SQLite and im-

plemented a multi-version B-tree. Figure 2 shows the

layout of an SQLite B-tree node which consists of two

area: (i) cell content area that holds key-value pairs and

(ii) cell pointer array which contains the array of point-

ers (offsets) each of which points to the actual key-value

pair. Cell pointer array is sorted in key order. In the mod-

ified B-tree node structure, each key-value pair defines

its own life span - [versionstart ,versionend), illustrated as

[sv,ev). The augmentation with start and end version

number is universal across all the version-based B-tree

structures [6, 15]. In our MVBT node design, we set

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 277

Figure 2: In modified Multi-Version B-Tree node, each

key-value pair is tagged with its valid starting version and

ending version.

Algorithm 1

Lazy Split Algorithm

procedure
LazySplit(n, parent,v)

1: // n is an overflown B-tree node.

2: // parent is the parent node.

3: // v is the version of a current transaction.

4: newNode ← allocateNewBtreeNode()

5: Find the median key value k to split

6: for i ← 0,n.numCells−1 do

7: if k < n.cell[i].key ∧ v ≤ n.cell[i].endVersion then

8: n.cell[i].endVersion ← v

9: newNode.insert(n.cell[i])

10: n.liveCells−−
11: end if

12: end for

13: // Update the parent with the split key and version

14: maxLiveKey ← f indMaxLiveKey(n,v)
15: parent.update(n,maxLiveKey,∞)

16: maxDeadKey ← f indMaxDeadKey(n,v)
17: parent.insert(n,maxDeadKey,v)
18: maxLiveKey2 ← f indMaxLiveKey(newNode,v)
19: parent.insert(newNode,maxLiveKey2,∞)

end procedure

aside a small fraction of bytes in the header of each node

for lazy split and metadata embedding improvement.

4.2 Lazy Split

We develop an alternative split algorithm, Lazy Split,

for MVBT that significantly reduces the number of dirty

pages.

In MVBT, a single node split operation results in at

least four dirty B-tree nodes as shown in Figure 1. The

objective of maintaining a separate dead node in MVBT

is to make garbage collection and recovery simple. On

the other hand, creating a separate dead node yields an

additional dirty page which needs to be flushed to disk.

Unlike in other client/server databases, rollback opera-

Figure 3: LS-MVBT: With the lazy split, an overflown

node creates a single sibling node.

tions do not occur frequently in SQLite, because SQLite

allows only one process at a time to have write permis-

sion to a database file [7], and rollback operations of a

version-based B-tree are already very simple. Therefore,

we argue that benefit of creating a separate dead node

in the legacy split algorithm of MVBT hardly offsets the

additional performance overhead during fsync() that it

induces.

Algorithm 1 shows our lazy split algorithm that post-

pones marking an overflown node as dead, if possible.

Instead of creating an extra dead node, lazy split algo-

rithm combines a dead node with a live sibling node. I.e.,

the lazy node is a half dead node combined with one of

the new split nodes. In the lazy split algorithm, the over-

flown node creates only one new sibling node. Once the

median key value to split is determined, the key-value

pairs whose keys are greater than the median value are

copied to the new sibling node as live entries. In the

overflown node, the end versions of the copied key-value

pairs are changed from ∞ to the current transaction’s ver-

sion in order to mark them as dead entries. In the original

MVBT, the key-value pairs whose keys are smaller than

the median key value are copied to another new left sib-

ling node, but lazy split algorithm does not create the left

sibling node and does not change the end versions of the

smaller half of the key-value pairs.

Figure 3 shows an example of lazy split. When key 25

is inserted into node P1, the greater half of the key-value

pairs (key 12 and key 40) are moved to a new node, P2,

and they are marked dead in P1. Instead of creating an-

other new node and moving the smaller half of the key-

value pairs to it, lazy split algorithm keeps them in the

overflown node. The dead entries in the lazy node will

be garbage collected by the next write transaction that

modifies the lazy node. Note that the lazy node has two

pointers pointing to it in its parent node: one for the dead

entries and the other for the live entries. The same insert

operation in the original MVBT will create a left sibling

5

278 12th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: A new entry with key 9 is inserted into an over-

flown lazy node but its dead entries can not be deleted be-

cause transaction 5 is the current transaction and it may

abort later. In this case, the reserved space can be used to

hold the new entries and delay the node split again. But

if the same transaction inserts an entry with key 7, the

reserved space of the lazy node also overflows and we

do not have any other option but to create a new left sib-

ling node P4 and move the live entries (5[5,∞), 7[5,∞),

9[5,∞), and 10[5,∞)) to P4.

node, store the key 5 and key 10 in the left sibling node,

and mark the two key-value entries dead in the historic

dead node as shown in Figure 1. In the example, the valid

version ranges of key 5 and key 10 are partitioned in the

two nodes. This redundancy does not help anything es-

pecially when we consider the short lifespan of SQLite

transactions. The dead entries are not needed by any sub-

sequent write transactions and thus can be safely garbage

collected in the next modification of the lazy node be-

cause a write transaction holds an exclusive lock for the

database file. The legacy split algorithm of MVBT cre-

ates four dirty nodes but lazy split decreases the number

of dirty nodes by one, creating only three dirty nodes.

4.3 Reserved Buffer Space for Lazy Split

The lazy node does not have any space left for additional

data items to be inserted after the split. If an inserted key

is greater than the median key value and is stored in a

new node as in Figure 1, the lazy split succeeds. How-

ever, if a new inserted item needs to be stored in the lazy

node, a new sibling node must be created as in the orig-

inal MVBT split algorithm. In order to avoid splitting a

lazy node, we reserve a certain amount of space in a LS-

MVBT node to accommodate the inserted key in the lazy

split node as shown in Figure 4.

To avoid cascade split, the size of the reserved buffer

space should be sufficiently large to accommodate the

Algorithm 2

Rollback Algorithm

procedure
Rollback(n,v)

1: // n is a B-tree node

2: // v is the version of aborted transaction

3: for i ← 0,n.numCells−1 do

4: if n.cell[i].startVersion == v then

5: remove n.cell[i]

6: if n is an internal node then

7: freeNode(n.child[i],v)

8: continue

9: end if

10: deleteEntry(n.child[i])

11: else if n.cell[i].endVersion == v then

12: n.cell[i].endVersion ← ∞
13: if n is an internal node then

14: Delete a median key entry k that was used to split

the lazy node.

15: end if

16: end if

17: Rollback(n.child[i],v)

18: end for

end procedure

newly inserted entries by a transaction. However, reserv-

ing too much space for buffer will make node utiliza-

tion low and may entail more frequent node split creat-

ing larger amount of dirty pages. The size of the reserved

buffer space needs to be carefully determined consider-

ing the workload characteristics. In smartphone appli-

cations, most write transactions do not insert more than

one data item. Therefore, it is unlikely that an overflown

node (lazy node) is accessed multiple times by a single

write transaction.

In order to evaluate the effect of the reserved buffer

space size, we ran experiments varying the sizes of re-

served buffer space. Large reserved buffer space is only

beneficial when a single transaction inserts a large num-

ber of entries into the same B-tree node. However, a large

buffer space did not significantly reduce the number of

dirty nodes in our experiments, but it hurt tree node uti-

lization especially when the B-tree node size was small.

In smartphone applications, it is very common that a

transaction inserts just a single data item, hence we set

the size of the buffer space just large enough to hold only

one key-value item throughout the presented experiments

in this paper. Even if reserved buffer space for one key-

value item is used, a subsequent write transaction that

finds the dead entries in the lazy node will reclaim the

dead entries and create empty spaces.

4.4 Rollback with Lazy Node

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 279

Figure 5: Rollback of transaction version 5 deletes node

P2, reverts the end version of dead entries from 5 to ∞,

and merges the entries in the parent node.

The rollback algorithm for the LS-MVBT is intuitive

and simple. More importantly, as in the lazy split algo-

rithm, the number of dirty nodes touched by the rollback

algorithm of LS-MVBT is smaller than that of MVBT.

Algorithm 2 shows the pseudo code of the LS-MVBT

rollback algorithm. When a transaction aborts and rolls

back, the LS-MVBT reverts its B-tree structures back to

their previous states by reverting the end versions of the

lazy nodes back to ∞ and deleting entries whose start ver-

sions are the aborted transaction’s version. In the parent

node, the lazy node has two entries: one for live entries

and the other for dead entries. The parent entry of the

live entries should be deleted from the parent node and

the parent entry for the dead entries should be updated

with its previous end version, ∞, to become active.

Figure 5 shows a rollback example. Note that node

P2 was created by a transaction whose version is 5, thus

P2 should be deleted. Since all the live entries in P2 were

copied from the lazy node P1 by a transaction whose ver-

sion is 5 and P1 has historical entries, P2 can be safely

removed. The dead entries in P1 should be reverted back

to live entries by modifying the end versions. As the lazy

node has two parent entries, the rollback process merges

them and reverts back to the previous status by choos-

ing the larger key value and by merging the valid version

ranges.

5 Optimizing LS-MVBT for Android I/O

5.1 Lazy Garbage Collection

In multi-version B-trees, garbage collection mechanism

is needed as dead entries must be garbage-collected to

create empty spaces and to decrease the size of the trees.

While a periodic garbage collector that sweeps the entire

B-tree is commonly used in version-based B-trees [18,

15], we implemented lazy garbage collection scheme in

SQLite in order to avoid making extra B-tree nodes dirty

and to reduce the overhead of fsync().

When a B-tree node needs to be modified, lazy

garbage collection scheme checks if the node contains

any dead entries whose versions are not needed by an

active transaction. If so, the dead entries can be safely

deleted. The dead entries in a B-tree node will be re-

claimed only when a new live entry is modified or is

added to the node. Since the node will become dirty any-

way by the live entry, our lazy garbage collection does

not increase the number of dirty nodes at all.

5.2 Metadata Embedding

In SQLite, the first page of a database file (header page)

is used to store metadata about the database such as B-

tree node size, list of free pages, file change counter, etc.

The file change counter in header page is used for con-

currency control in SQLite.2 When multiple processes

are accessing a database file concurrently, each process

can detect if other processes have changed the database

file by monitoring the file change counter. However, this

concurrency control design of SQLite induces signifi-

cant overhead on I/O traffic since the header page must

be flushed just to update 4 bytes of file change counter

for every write transaction. This results in a large per-

formance gap between WAL mode and the other jour-

nal modes in SQLite (DELETE, TRUNCATE, and PER-

SIST) since WAL mode does not use the file change

counter.

In this work, we devised a method called “Meta-

data Embedding” to reduce the overhead of flushing

database header page. In metadata embedding, we main-

tain the database header page at the RAM disk so that

the most recent consistent and valid version (“file change

counter”) in the database header page is shared by trans-

actions and the database header page is exempt from be-

ing flushed to the storage in every fsync() call. Since

the RAM disk is volatile, the file change counter in

the RAM disk can be lost. Therefore, in metadata em-

bedding, we let the most recent file change counter be

flushed along with the last modified B-tree node. When

a transaction starts, it reads the database header page at

the RAM disk to access the file change counter. When a

write transaction modifies the database table, it increases

the file change counter and flushes it to the database

header page at the RAM disk and to the last modified

B-tree node. Since the last modified B-tree node has to

be flushed to the storage anyway, metadata embedding

makes the modified file change counter persistent with-

out extra overhead.

2The race condition is handled by file system lock (fcntl()) in

SQLite.

7

280 12th USENIX Conference on File and Storage Technologies USENIX Association

When a system recovers, the entire multi-version B-

tree has to be scanned by a recovery process. Therefore,

it is not a problem to find the largest valid consistent ver-

sion number in the database and use it to rollback some

changes made to the database file. If other parts of the

header page are changed, we flush the header page as

normal. Note that other parts of the header page are mod-

ified much less frequently than the file change counter.

5.3 Disabling Sibling Redistribution

Another optimization method used in LS-MVBT to re-

duce the I/O traffic is disabling redistribution of data en-

tries between sibling nodes. If a B-tree node overflows

in SQLite (and in many other server-based database en-

gines), it redistributes its data entries to left and right sib-

ling nodes. This is to avoid node split which requires

allocation of additional nodes and changes in the tree or-

ganization. This redistribution modifies four nodes - two

sibling nodes, the overflown node, and its parent node.

In general, it is well known in the database community

that sibling redistribution improves the node utilization,

keeps the tree height short, and makes search operation

faster, but we observed that it significantly hurt the write

performance in the Android I/O stack.

In flash memory, time to write a page (page program

latency) is 10 times longer than the time to read a page

(read latency)[19] and subsequently, from SQLite’s point

of view, database updates, e.g., insert, update, and delete,

take much longer than database search. Furthermore,

search operations in smartphones are not as dominant as

in client/server enterprise databases. Given these facts,

we devise an approach opposite to the conventional wis-

dom: we disable sibling redistribution. In LS-MVBT, if

a node overflows, we do not attempt to redistribute the

entries in the overflown node to its siblings. Instead, LS-

MVBT immediately triggers a lazy split operation.

6 Evaluation

We implemented the lazy split multi-version B-tree in

SQLite 3.7.12. In this section, we evaluate and analyze

the performance of the LS-MVBT compared to other

traditional journal modes and WAL mode. Our testbed

is Samsung Galaxy-S4 that runs Android OS 4.3 (Jelly

Bean) on Exynos 5 Octa Core 5410 1.6GHz CPU, 2GB

DDR2 memory, and 16GB eMMC flash memory format-

ted with EXT4 file systems.

Many latest smartphones, including Samsung Galaxy

S4, adjust the CPU frequency in order to save the power

consumption. We fixed the frequency to the maximum

1.6 GHz so as to reduce the standard deviation of the

experiments.

The evaluation section flows as follows. First, we ex-

amine the performance of SQLite transaction (insert)

under three different SQLite modes: LS-MVBT, WAL

mode, which is the default in Jelly Bean, and TRUN-

CATE mode, which is the default mode in Ice Cream

Sandwich. Second, we take a detailed look at the block

I/O behavior of SQLite transaction for LS-MVBT and

WAL. Third, we observe how the versioning nature of

LS-MVBT affects the search performance via examin-

ing the SQLite performance under varying mixture of

search and insert/delete transactions. Fourth, we

examine the recovery overhead of LS-MVBT and WAL.

The final segment of the evaluation section is dedicated

to quantifying the performance gain of each of the op-

timization techniques proposed in this paper, which are

lazy split, metadata embedding, and disabling sibling re-

distribution, in an itemized as well as in an aggregate

manner.

6.1 Workload Characteristics

To accurately capture the workload characteristics of the

smartphone apps, we extracted the database information

from Gmail, Facebook, and Dolphin web browser apps

in a testbed smartphone. Out of 136 tables in the de-

vice, the largest table contains about 4,500 records, and

only 15 tables have more than 1,000 records. It is very

common for smartphone apps to have such small num-

ber of records in a single database table unlike enter-

prise server/client databases. As most tables have less

than thousands of records, we focused on evaluating the

performance of LS-MVBT with rather small database ta-

bles. As for the reserved buffer space of LS-MVBT, we

fix it to one cell for all the presented experiments.

6.2 Analysis of insert Performance

In evaluating the SQLite transaction performance, we fo-

cus on insert since insert, update, and delete gen-

erate similar amount of I/O traffic and show similar per-

formances.

For the first set of experiments, we initialize a table

with 2,000 records and submit 1,000 transactions, each

of which inserts and deletes a random key value pair3. In

WAL mode, checkpoint interval directly affects the trans-

action performance as well as recovery latency: with

longer checkpoint interval, the transaction performance

improves but the recovery latency gets longer. In SQLite,

the default checkpoint interval is when 1,000 pages be-

come dirty. The default interval can be changed by a

pragma statement or a compile-time option. Checkpoint

also occurs when *.db file is closed. If an app opens

3The performance of sequential key insertion/deletion is not very

different from the presented results.

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 281

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

LS-MVBT

MVBT
WAL (CP=1000)

WAL (CP=500)

WAL (CP=250)

WAL (CP=125)

WAL (CP=63)

Ti
m

e
(m

se
c)

DB fsync()
WAL log
WAL CP

B-tree insert

(a) Insertion Time

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

LS-MVBT

MVBT
WAL (CP=1000)

WAL (CP=500)

WAL (CP=250)

WAL (CP=125)

WAL (CP=63)N
um

be
r o

f D
irt

y
B

-T
re

e
N

od
es

Checkpoint Interval

(b) Number of Dirty B-Tree Nodes per Transaction

Figure 6: Insertion Performance of LS-MVBT, MVBT,

and WAL with Varying Checkpointing Interval (Avg. of

5 runs)

and closes a database file often, WAL mode will perform

checkpointing operations frequently. For the comprehen-

siveness of the study, we vary the checkpoint intervals to

63, 125, 250, 500 and 1,000 pages. We first examine the

time for a single insert transaction. For a fair compar-

ison, the average insertion time in WAL mode includes

the amortized average checkpointing overhead.

Figure 6(a) illustrates the result. Insertion time of

MVBT and LS-MVBT consists of two elements: (i) the

time to manipulate the database which is essentially an

operation of updating the page content in memory, B-tree

insert, and (ii) the time to fsync() the dirty pages, DB

fsync(). Insertion time of WAL mode consists of three

elements: (i) the time to manipulate the database, B-tree

insert, (ii) the time to commit the log to storage, WAL

log, and (iii) the time for checkpointing, WAL CP.

The average insertion time of LS-MVBT (1.4 ms) is

up to 78% faster than that of WAL mode (2.0∼2.5 ms),

but the insertion time of the original MVBT is no better

than that of WAL mode. Throughout the various check-

pointing intervals, LS-MVBT consistently outperforms

WAL mode (even without including the checkpointing

overhead). There is another important benefit of using

LS-MVBT. In WAL mode, according to our measure-

ment, the average elapsed time for each checkpoint is

7.6∼9.2 msec which is ×3 the average insert latency.

Therefore, in WAL mode, the transactions that trigger

checkpointing suffer from sudden increases in the la-

tency. LS-MVBT outperforms WAL in terms of average

query response time as well as in terms of the worst case

bound.

We examine the number of dirty B-tree nodes per

insert in MVBT, LS-MVBT, and WAL mode (Fig-

ure 6(b)). The number of dirty B-tree nodes in LS-

MVBT is significantly lower than WAL mode. For an

insert, LS-MVBT makes just one B-tree node dirty

on average while WAL mode generates three or more

dirty B-tree nodes. In WAL mode, not all dirty B-tree

nodes are flushed to storage, but fsync() is called for

log file commit, and the dirty nodes are flushed by the

next checkpointing.

An interesting observation from Figure 6 is that the in-

sertion performance gap between LS-MVBT and WAL

is significant (40%) even when the checkpointing inter-

val is set to 1,000 pages. When the checkpoint interval is

63 pages, the average transaction response time of WAL

(2.5 msec) is 78% higher than that of LS-MVBT.

6.3 Analysis of Block I/O Behavior

For more detailed understanding, we delve into the block

I/O behaviors of SQLite transactions in LS-MVBT and

WAL mode. Figure 7 shows block I/O traces of an in-

sert operation in LS-MVBT and WAL mode. Let us first

examine the detailed block I/Os in LS-MVBT. When an

fsync() is called, the updated database file contents are

written to the disk. Then, the updated metadata for the

file is committed to EXT4 journal. For a single insert

transaction, one 4 KB block is written to the disk for file

update. Three 4 KB blocks are written to EXT4 journal,

which correspond to journal descriptor header, metadata,

and journal commit mark. In WAL mode, 8 KB blocks

are written to the disk for log file update. Eight 4 KB

blocks are written to EXT4 journal. If checkpointing oc-

curs, there will be more accesses to a block device.

Figure 7(a) and 7(b) show the number of accesses to

a block device when 10 insert transactions are submit-

ted. Interestingly, the total number of block device ac-

cesses for 10 insert transactions in WAL mode is 84%

higher than that in LS-MVBT. However, with 100 in-

sert transactions, the number of block device accesses in

WAL mode is only 46% higher than that in LS-MVBT

as shown in Figure 7(c) and 7(d). In LS-MVBT, the

number of block device accesses increases linearly with

the increased number of insertions whereas WAL mode

accesses block devices less frequently when the size of

batch insert transaction is larger.

Since WAL mode writes more data than LS-MVBT

per each block device access, we measure the amount of

I/O traffic caused in every 10 msec. Figure 8 shows the

block access I/O traffic for LS-MVBT and WAL mode.

For the experiment we submit 1,000 insert transactions

and measure how many blocks are accessed per every

9

282 12th USENIX Conference on File and Storage Technologies USENIX Association

 4.35
 4.4

 4.45
 4.5

 4.55
 4.6

 4.65

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08Bl
oc

k
Ad

dr
es

s(
x1

0^
3)

Time (sec)

EXT4 journal
.db

(a) Block I/O pattern of LS-MVBT (10 Transactions)

 4.25
 4.3

 4.35
 4.4

 4.45
 4.5

 4.55
 4.6

 4.65

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08Bl
oc

k
Ad

dr
es

s(
x1

0^
3)

Time (sec)

EXT4 journal
.db-wal

.db

(b) Block I/O pattern of WAL (10 Transactions)

 4.35
 4.4

 4.45
 4.5

 4.55
 4.6

 4.65

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Bl
oc

k
Ad

dr
es

s(
x1

0^
3)

Time (sec)

EXT4 journal
.db

(c) Block I/O pattern of LS-MVBT (100 Transactions)

 4.25
 4.3

 4.35
 4.4

 4.45
 4.5

 4.55
 4.6

 4.65
 4.7

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Bl
oc

k
Ad

dr
es

s(
x1

0^
3)

Time (sec)

EXT4 journal
.db-wal

.db

(d) Block I/O pattern of WAL (100 Transactions)

Figure 7: Block Trace of Insert SQLite Operation: LS-MVBT vs WAL

10 milliseconds. The block access I/O traffic per 10

milliseconds for LS-MVBT fluctuates between 24 KB

to 40 KB, and the EXT4 journal blocks are accessed

about 24∼44 KB per 10 milliseconds. In WAL mode, the

database file blocks are accessed only three times: when

the database file is opened, when checkpointing occurs

in 2.25 seconds, and when the database file is closed.

When the checkpointing occurs at 2.25 seconds, the

I/O traffic for WAL log file increases by approximately

20 KB, from 40 KB to 60 KB, but it decreases to 40 KB

when the checkpointing finishes at 2.6 seconds. In WAL

mode, the number of accesses to the EXT4 journal blocks

is consistently higher than any other block access types,

which explains why WAL mode shows poor insertion

performance. We are currently investigating what causes

this high number of EXT4 journal accesses in WAL

mode.

In summary, LS-MVBT accesses 9.9 MB (5 MB

EXT4 journal blocks and 4.9 MB database file blocks)

in just 1.8 seconds, while WAL accesses 31 MB blocks

(20.7 MB EXT4 journal blocks, 9.764 MB WAL log

blocks, and only 0.9 MB database file blocks) in 3 sec-

onds.

6.4 Search Overhead

LS-MVBT makes the insert/update/delete queries faster

at the cost of slow search performance. In LS-MVBT,

node access has to check its children’s version informa-

tion in addition to the key range. Moreover, LS-MVBT

does not perform sibling redistribution which results in

poor node utilization. Lee et al. [5] reported that write

operations are dominant in smartphone applications, and

the SQL traces that we extracted from our testbed device

confirm this. However, the search and the write ratio can

depend on individual user’s smartphone usage pattern,

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 3I/O
 T

ra
ff

ic
 p

er
 1

0
m

se
c

(K
B

)

Time (sec)

LS-MVBT .db
LS-MVBT EXT4 journal

(a) LS-MVBT

 0
 20
 40
 60
 80

 100
 120
 140
 160

0.01 1 2 3I/O
 T

ra
ff

ic
 p

er
 1

0
m

se
c

(K
B

)

Time (sec)

WAL EXT4 journal
WAL .db-wal

WAL .db

(b) WAL

Figure 8: I/O Traffic at Block Device Driver Level (1,000

insertions)

hence we examine the effectiveness of LS-MVBT with

varying the ratio of search and write transactions. We

initialize a database table with 1,000 records, and sub-

mit a total of 1,000 transactions with varying ratios be-

tween the number of insert/delete and search trans-

actions. Each insert/delete transaction inserts and

deletes a random data from the database table, and the

search transaction searches a random data from the ta-

ble. For notational simplicity, we term insert/delete

as write.

Figure 9 illustrates the result. We examine the

throughput under three different SQLite implementa-

tions: LS-MVBT, WAL mode, and TRUNCATE mode.

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 283

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

n/
se

c)

Ratio of Search to Insert/Delete Transactions (%)

LS-MVBT

WAL

TRUNCATE

Figure 9: Mixed Workload (Search:Insert) Performance

(Avg. of 5 runs)

 0
 10
 20
 30
 40
 50
 60

10 40 160 640 2560

T
im

e
 (

m
se

c
)

Aborted Transaction Size

LS-MVBT

WAL

TRUNCATE

Figure 10: Recovery Time with Varying Size of Aborted

Transaction

As we increase the ratio of search transactions, the over-

all throughput increases because a search operation is

much faster than a write operation. As long as at least

7% of the transactions are writes, LS-MVBT outper-

forms both WAL and TRUNCATE modes. In LS-MVBT,

the performance gain on write operations far outweighs

the performance penalty on search operations. This is

mainly due to asymmetry in latencies of writing and

reading a page in NAND flash memory: writing a page

may take up to 9 times longer than reading a page [19].

6.5 Recovery Overhead

Recovery latency is one of the key elements that

govern the effectiveness of a crash recovery scheme.

While WAL mode exhibits superior SQLite performance

against the other three journal modes, i.e., DELETE,

TRUNCATE, and PERSIST, it suffers from longer re-

covery latency. This is because in WAL mode, the log

records in the WAL file need to be replayed to recon-

struct the database. In this section, we examine the re-

covery latencies of TRUNCATE, WAL, and LS-MVBT

under varying number of outstanding (or aborted equiv-

alently) insert statements in an aborted transaction at the

time of crash: 10, 40, 160, 640, and 2560.

Figure 10 illustrates the recovery latencies of LS-

MVBT, WAL, and TRUNCATE. When the aborted trans-

 0

 0.5

 1

 1.5

 2

 2.5

 3

512 1K 2K 4K 8K

Ti
m

e
(m

se
c)

Page Size (KB)

Sibling Redistribution: fsync()
Sibling Redistribution: B-tree

Disabled Redistribution: fsync()
Disabled Redistribution: B-tree

(a) Insertion Time (With vs. Without Redistribution)

 0

 1

 2

 3

 4

 5

512 1K 2K 4K 8K

of

 F
lu

sh
ed

 D
irt

y
Pa

ge
s

Page Size (KB)

Sibling Redistribution
Disabled Redistribution

(b) Number of Dirty B-tree Nodes (With vs. Without Redistri-

bution)

Figure 11: The average elapsed time and the number of

flushed dirty nodes per insertion. (Average of 1,000 in-

sertions): Rebalancing data entries hurts write perfor-

mance when a node splits.

action inserts less than 10 records, WAL mode recovery

takes about 4∼5 times longer than LS-MVBT. As the

transaction size grows from 10 insertions to 2,560 inser-

tions, WAL recovery mode suffers from a larger number

of write I/Os and its recovery time increases by 20%. LS-

MVBT recovery mode also increases by 28% but from

much shorter recovery time. TRUNCATE mode recov-

ery time slightly increases, by only 3%, but its recovery

time is already 3.9 times longer than LS-MVBT when

the transaction size is just 10. LS-MVBT needs to read

the entire B-tree nodes for recovery but it only updates

the nodes that should rollback to a consistent version.

6.6 Performance Effect of Optimizations

In order to quantify the performance effect of the opti-

mizations made on MVBT, we first examine the effect

of sibling redistribution in SQLite B-tree implementation

by enabling and disabling the sibling redistribution. We

use the average insertion time and the average number of

dirty B-tree nodes for each insertion as performance met-

rics in Figure 11. We insert 1,000 records of 128 bytes

into an empty table, and vary the node sizes of B-tree in

SQLite from 512 bytes to 8 KB.

Figure 11(a) shows the average insertion time when

sibling redistribution is enabled and disabled. When sib-

11

284 12th USENIX Conference on File and Storage Technologies USENIX Association

 0

 200

 400

 600

 800

 1000

 1200
Th

ro
ug

hp
ut

 (T
ra

ns
ac

tio
n/

se
c)

Query Type

TRUNCATE
WAL

MVBT
MVBT + Lazy Split

MVBT + Metadata Embedding
LS-MVBT

DeleteUpdateInsert

Figure 12: Performance Improvement Quantification

(Avg. of 5 runs)

ling redistribution is disabled, insertion time decreases as

much as 20%. In the original B-tree, 70% of the insertion

time is spent on fsync() and most of the improvement

comes from the reduction in fsync() overhead. Fig-

ure 11(b) shows the average number of dirty B-tree nodes

per a single insert transaction. With 1 KB node size,

the number of dirty pages in an insert is reduced from

3.7 pages to 2.4 pages if sibling redistribution is disabled.

Since metadata embedding can save another dirty page,

with disabled sibling redistribution and metadata embed-

ding, the average number of dirty B-tree nodes per a sin-

gle insertion transaction can drop down to fewer than 2

nodes, i.e., approximately 50% of disk page flush can be

saved.

With a larger node size, the number of dirty B-tree

nodes decreases because node overflow occurs less of-

ten. However, we observe that the elapsed fsync() time

grows with larger node sizes (4 KB and 8 KB) since the

size of nodes that need to be flushed increases, and also

the time spent in B-tree insertion code increases because

more computation is required for larger tree entries. Af-

ter examining the effect of B-tree node size on insert per-

formance (Figure 11), we determine that 4 KB node size

yields the best performance. In all experiments in this

study, B-tree node size is set to 4 KB. 4

6.7 Putting Everything Together

It is time to put everything together and examine real

world implications. In Figure 12, we compare the perfor-

mance of the multi-version B-trees with different combi-

nations of the optimizations for three different types of

SQL queries. The performances are measured in terms

of transaction throughput (number of transactions/sec).

MVBT denotes the multi-version B-Tree with disabled

sibling redistribution. MVBT + Metadata Embedding de-

notes the multi-version B-tree with metadata embedding

4With 4 KB of node size, an internal tree page of SQLite can hold

at most 292 key-child cells when the key is integer type while the max-

imum number of entries in leaf node is dependent on the record size.

optimization and disabled sibling redistribution. MVBT

+ Lazy Split is the multi-version B-tree with lazy split al-

gorithm and disabled sibling redistribution. Finally, LS-

MVBT denotes the multi-version B-tree with metadata

embedding, lazy split algorithm, and disabled sibling re-

distribution. All three schemes employ lazy garbage col-

lection and use one reserved buffer cell for lazy split.

We compare these variants of multi-version B-trees with

TRUNCATE journal mode and WAL mode.

TRUNCATE mode yields the worst performance (60

ins/sec), which is well aligned with previously reported

results [4]. Via merely changing the SQLite jour-

nal mode to WAL, we increase the query processing

throughput (insertions/sec) to 416 ins/sec. Via weav-

ing the crash recovery information into the B-tree, which

eliminates the need for a separate journal (or log) file,

and via disabling sibling redistribution, we achieve 20%

performance gain against WAL mode. Via augmenting

metadata embedding in MVBT, we achieve 50% perfor-

mance gain against WAL mode.

Combining all the optimizations we propose together,

(metadata embedding, lazy split, and disabling sibling

redistribution), we are able to achieve 70% performance

gain in an existing smartphone without any hardware as-

sistance.

7 Conclusion

In this work, we show that lazy split multi-version B-

tree (LS-MVBT) can resolve the Journaling of Journal

anomaly by avoiding expensive external rollback journal

I/O. LS-MVBT minimizes the number of dirty pages and

reduces the Android I/O traffic via lazy split, reserved

buffer space, metadata embedding, disabling sibling re-

distribution, and lazy garbage collection schemes.

The optimizations we propose exploit the unique char-

acteristics of Android I/O subsystem: (i) write is much

slower than read in the Flash based storage, (ii) domi-

nant fraction of storage accesses are write, and (iii) there

are no concurrent write accesses to database.

By reducing the underlying I/O traffic of SQLite,

the lazy split multi-version B-trees (LS-MVBT) consis-

tently outperforms TRUNCATE rollback journal mode

and WAL mode in terms of write transaction throughput.

One future direction of this work is to improve LS-

MVBT in order to support multiple concurrent write

transactions. With the presented versioning scheme,

modifications to B-tree nodes should be made in commit

order. As multicore chipsets are widely used in recent

smartphones, the need for concurrent write transactions

would increase and multi-version B-tree should be im-

proved to fully support concurrent write transactions.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 285

Acknowledgement

We would like to thank our shepherd Raju Rangaswami

and the anonymous reviewers for their insight and sug-

gestions on early drafts of this paper. This research

was supported by MKE/KEIT (No.10041608, Embed-

ded System Software for New Memory based Smart De-

vices).

References

[1] M. Meeker, “KPCB Internet trends year-end up-

date, Kleiner Perkins Caufield & Byers,” Dec 2012.

[2] “Market share analysis: Mo-

bile phones, worldwide, 3q13,”

http://www.gartner.com/document/2622821.

[3] H. Kim, N. Agrawal, and C. Ungureanu, “Revisit-

ing storage for smartphones,” in Proceedings of the

11th USENIX conference on File and Storage Tech-

nologies (FAST), 2013.

[4] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O

stack optimization for smartphones,” in Proceed-

ings of the USENIX Annual Technical Conference

(ATC 2013), 2013.

[5] K. Lee and Y. Won, “Smart layers and dumb

result: Io characterization of an android-based

smartphone,” in Proceedings of the 12th Interna-

tional Conference on Embedded Software (EM-

SOFT 2012), 2012.

[6] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer, “An asymptotically optimal multiver-

sion B-tree,” VLDB Journal, vol. 5, no. 4, pp. 264–

275, Dec. 1996.

[7] “Sqlite,” http://www.sqlite.org/.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,

and P. Schwarz, “ARIES: A transaction recov-

ery method supporting fine-granularity locking and

partial rollbacks using write-ahead logging,” ACM

Transactions on Database Systems, vol. 17, no. 1,

1992.

[9] M. C. Easton, “Key-sequence data sets on indeli-

ble storage,” IBM Journal of Research and Devel-

opment, vol. 30, no. 3, pp. 230–241, May 1986.

[10] D. Lomet and B. Saltzberg, “Access methods for

multiversion data,” in Proceedings of 1989 ACM

SIGMOD International Conference on Manage-

ment of Data (SIGMOD), 1989.

[11] P. J. Varman and R. M. Verma, “An efficient mul-

tiversion access structure,” IEEE Transactions on

Knowledge and Data Engineering, vol. 9, no. 3, pp.

391–409, 1997.

[12] G. Kollios and V. Tsotras, “Hashing methods for

temporal data,” IEEE Transactions on Knowledge

and Data Engineering, vol. 14, no. 4, pp. 902–919,

2002.

[13] T. Haapasalo, I. Jaluta, B. Seeger, S. Sippu, and

E. Soisalon-Soininen, “Transactions on the multi-

version B+-tree,” in the 12th International Con-

ference on Extending Database Technology (EDBT

’09), 2009.

[14] C. A. N. Soules, G. R. Goodson, J. D. Strunk,

and G. R. Ganger, “Metadata efficiency in ver-

sioning file systems,” in Proceedings of the 2nd

USENIX conference on File and Storage Technolo-

gies (FAST), 2003, pp. 43–58.

[15] S. Venkataraman, N. Tolia, P. Ranganathan, and

R. H. Campbell, “Consistent and durable data

structures for non-volatile byte-addressable mem-

ory,” in Proceedings of the 9th USENIX conference

on File and Storage Technologies (FAST), 2011.

[16] Y. Li, B. He, Q. Luo, and K. Yi, “Tree indexing

on flash disks,” in Proceedings of the 25th Inter-

national Conference on Data Engineering (ICDE),

2009.

[17] G. Graefe, “A survey of B-tree logging and recov-

ery techniques,” ACM Transactions on Database

Systems, vol. 37, no. 1, Feb. 2012.

[18] B. Sowell, W. Golab, and M. A. Shah, “Minuet:

A scalable distributed multiversion b-tree,” in Pro-

ceedings of the VLDB Endowment, Vol. 5, No. 9,

2012.

[19] G. Wu and X. He, “Reducing ssd read latency via

nand flash program and erase suspension,” in Pro-

ceedings of the 10th USENIX conference on File

and Storage Technologies (FAST), 2012.

13

USENIX Association 12th USENIX Conference on File and Storage Technologies 287

Journaling of Journal Is (Almost) Free

Kai Shen Stan Park∗ Meng Zhu
University of Rochester

Abstract

Lightweight databases and key-value stores manage
the consistency and reliability of their own data, often
through rollback-recovery journaling or write-ahead log-
ging. They further rely on file system journaling to pro-
tect the file system structure and metadata. Such journal-
ing of journal appears to violate the classic end-to-end ar-
gument for optimal database design. In practice, we ob-
serve a significant cost (up to 73% slowdown) by adding
the Ext4 file system journaling to the SQLite database on
a Google Nexus 7 tablet running a Ubuntu Linux instal-
lation. The cost of file system journaling is up to 58% on
a conventional machine with an Intel 311 SSD.

In this paper, we argue that such cost is largely due to
implementation limitations of the existing system. We
apply two simple techniques—ensuring a single I/O op-
eration on the synchronous commit path, and adaptively
allowing each file to have a custom journaling mode (in
particular, whether to journal the file data in addition to
the metadata). Compared to SQLite without file system
journaling, our enhanced journaling improves the perfor-
mance or incurs minor (<6%) slowdown on all but one of
our 24 test cases (with 14% slowdown in the exceptional
case). On average, our enhanced journaling implementa-
tion improves the SQLite performance by 7%.

1 Introduction

Ensuring data consistency and durability despite sud-
den system crashes (due to power/battery outages and
software panics) is a critical aspect of computer system
dependability. Following such failures, the application
and system data should be recovered from durable stor-
age to a consistent state without unexpected data losses.
With data-driven applications spreading from servers and
desktops to resource-constrained devices and near-client
cloudlets [17], the overhead of such protection is also an
important concern. Many applications utilize lightweight
databases and key-value stores to manage their data. For
instance, the SQLite database [19] and Kyoto Cabinet [3]
protect the consistency of their data through techniques
such as rollback-recovery journaling or write-ahead log-
ging. Transactions are flushed to durable storage at com-
mit time to prevent the loss of data.

∗Park is currently affiliated with HP Labs.

These data management applications run on traditional
file systems. While file system journaling protects the
file system structure and metadata, it lacks knowledge
of the application’s semantics to protect application data.
Such journaling of journal appears to violate the classic
end-to-end argument that the low-level implementation
of a function (transactional data protection in this case)
is incomplete and it can hurt the overall system perfor-
mance [16, 21].

We argue that the cost of additional file system jour-
naling is largely due to implementation limitations of
the current system. Simple enhancements can be made
following two principles—1) the critical path of a syn-
chronous I/O commit should involve a single sequen-
tial I/O operation to the storage device, 2) different
application-level log files should be allowed to use cus-
tomized file system journaling modes that best match
their respective access patterns. This paper describes the
design and implementation of our techniques on the Ext4
file system, as well as a performance evaluation with the
SQLite database on a Google Nexus 7 tablet and a con-
ventional machine with a NAND Flash-based SSD.

We note that the journaling of journal can be avoided
if the operating system provides a richer interface that
allows application data protection semantics to be ex-
posed to the OS. The OS can then provide unified data
protection for both application data and the file system
metadata. Examples of such enhanced OS data manage-
ment interface include I/O transactions [13,18], software
persistent memory [4], and failure-atomic msync() [11].
In contrast to these approaches, we explore performance
enhancements of the existing file system journaling with
only minor addition to its semantics and usage, which
can be more easily deployed in practice.

The issue of journaling of journal has been raised be-
fore, notably in the context of Android’s employment of
the SQLite database on smartphones [6, 7]. While our
work was partially motivated by these studies, our own
observation in limited experimental setups suggest that
the performance of many typical Android smartphone
workloads is dominated by network (particularly wide-
area network) delay rather than storage I/O. Although
we make no argument on the importance of smartphone
storage I/O performance in this paper, we do caution that
the performance findings of our work only applies to I/O-
intensive workloads in server/cloud and client systems.

288 12th USENIX Conference on File and Storage Technologies USENIX Association

For clarity, we will call an application-level journal a
log file in the rest of this paper and the term journaling
will refer to the file system journaling by default.

2 Fast Journaling of Journal

When an application-level transaction commits, its
REDO or UNDO information is synchronously written
to a log file. The atomicity of such a commit is often en-
sured through a checksum code written together with the
committed transaction. A rollback-recovery log records
transaction UNDO information. Updates on the database
file(s) occur after the log write but before the transaction
completes. Alternatively, write-ahead logging records
transaction REDO information. Since the REDO record
contains sufficient information to keep the database up-
to-date, updates to the database file(s) do not need to hap-
pen before the transaction commits. In fact they can be
delayed until they are overwritten by future transactions
and therefore never written to durable storage.

Write operations are particularly expensive on NAND
Flash-based storage devices [1, 12]. File system jour-
naling protects the file system structure and metadata
which can incur additional I/O costs in two ways. First,
it may increase the number of I/O operations. For in-
stance, the Ext4 ordered-mode journaling only journals
the file system metadata but for consistency, it must write
the file data before journaling the metadata. Second, it
may increase the write size. For instance, the Ext4 data-
mode journaling may write twice as much as the appli-
cation does (once to the journal and a second time to
the main file system structure). Furthermore, the journal
data writes can be substantially larger than the original
data writes due to the minimal journal record granularity
(e.g., a 4 KB page).

However, we show that the cost of file system journal-
ing can be mitigated through simple implementation en-
hancements. Our techniques do not change the existing
journaling semantics of protecting the file system meta-
data and require very little application modification.

2.1 Single-I/O Data Journaling

Under journaling of journal, the data management ap-
plication protects the consistency of its own data while
file system journaling protects the file system integrity.
However, the journaling of both metadata and file data
(e.g., Ext4 data-mode journaling) allows a single sequen-
tial I/O operation on the critical path of a synchronous
I/O commit (a fsync(), fdatasync(), or msync())
and therefore may enhance performance.

To accomplish single-I/O data journaling, the oper-
ating system should avoid direct file data or metadata
writes on the synchronous I/O commit path. This prin-

/* writes to the SQLite log file */
write(log_fd, …);
… …
/* commit the log file to file system */
fsync(log_fd);

/* writes to the SQLite database file */
write(db_fd, …);
… …
/* commit the database to file system */
fsync(db_fd);

A
 tr

an
sa

ct
io

n
co

m
m

it

Application execution

Memory
buffer

Durable
storage

File writes to memory
buffer, delayed I/O

Single I/O write for
journaling file data & inode

Figure 1: A simplified illustration of the journaling of
journal during a transaction commit—file system jour-
naling of the SQLite database that employs rollback-
recovery logging.

ciple is compatible with data journaling semantics since
the journaled content contains sufficient information to
recover the committed data in the event of a crash. To en-
sure it on Linux/Ext4, we examined its I/O traces and in-
spected its file sync code paths which led us to identify a
violation in its current implementation. Specifically, the
ext4 sync file() function flushes the dirty file buffer
(through filemap write and wait range()) before
writing the journal. Such flushes skip buffers ready for
data journaling but still write previously journaled dirty
data buffers (resultant from earlier transactions). These
file buffer writes are unnecessary for the journaling se-
mantics and they slow down the synchronous commit.
We make corrections to avoid these writes under data
journaling.

The single I/O operation in the synchronous commit
path only writes the file data and metadata to the file sys-
tem journal. They would in theory still need to be asyn-
chronously checkpointed to the main file system struc-
ture. In practice, the asynchronous checkpoints may
never happen for data and log files when they are over-
written or deleted (for some UNDO logs) during contin-
uous transaction processing. For instance, Figure 1 pro-
vides a simplified segment of system call trace during a
transaction commit for the SQLite database that employs
rollback-recovery logging. For the log file, the fsync()
call would trigger a single I/O operation that commits the
file data and metadata to the file system journal. Check-
points to the SQLite log file itself are delayed and then
typically canceled when the log file is deleted after the
database transaction commits. Memory buffering and
journaling for the database file writes behave similarly, in
that the delayed checkpointing writes may be overwritten
by a later transaction that writes to the same database lo-
cation.

We also note that a traditional file system journaling
transaction commit involves two write operations—first
synchronously writing the transaction content and then
writing a transaction commit record—to ensure atom-

USENIX Association 12th USENIX Conference on File and Storage Technologies 289

icity. Alternatively, single-I/O atomic transaction com-
mit can be accomplished by adding a checksum in the
transaction block. In Ext4, this is supported by the
journal async commit option. This option is not
used widely in production systems due to a challenge of
handling corrupted checksums in journal recovery [22].
There is also a concern in the case of ordered journal-
ing that, with journal async commit’s removal of the
I/O flush before writing the transaction commit record,
the ordering between data writes and metadata journal-
ing commits may not be enforced [23].

2.2 File-Adaptive Journaling

While single-I/O journaling of both file data and meta-
data minimizes the number of I/O operations during a
synchronous commit, it may write a larger volume of
data than the original write. This is primarily due to the
typical journaling implementation’s use of whole pages
for journaling records (including Ext4/JBD2). Under
such an implementation, a small write of a few bytes
still requires a 4 KB journal record. This presents an ef-
ficiency dilemma between the single-I/O full data/meta-
data journaling and ordered metadata-only journaling—
the former allows a single I/O operation on the commit
path but may write significantly more data. Note that the
single-I/O data journaling described in Section 2.1 is an
important foundation for this dilemma because otherwise
the ordered journaling would almost always outperform
the standard data journaling.

In earlier work, Prabhakaran et al. [14] have proposed
an adaptive journaling approach that selects the best jour-
naling mode for each transaction according to its I/O
access pattern. Specifically, a transaction that would
perform sequential I/O under ordered journaling mode
should utilize ordered journaling. Such a transaction typ-
ically writes a contiguous set of data blocks without mak-
ing any file metadata change. On the other hand, a trans-
action that contains multiple I/O segments or performs
both data and metadata writes should use full data/meta-
data journaling to gain the efficiency of a single, sequen-
tial I/O operation.

However, per-transaction adaptive journaling may not
be safe in the case of overwrites. Specifically, consider
two transactions T1 and T2 (in that order) that overlap
in their file data writes. Assume that the adaptive jour-
naling system chooses the full data/metadata journaling
for T1 while it selects the ordered journaling for T2. A
crash-induced journal replay will apply the metadata and
file data for T1 but only the metadata for T2, and thus
incorrectly leaving T1’s file data write as the final state.
This effectively reorders writes in the two transactions
that would not have happened under the standard (non-
adaptive) full data journaling or ordered journaling. This

problem may be resolved by a recent technique [2, Sec-
tion 4.3.6] that journals data buffer overwrites for trans-
actions which utilize ordered journaling.

Another concern for per-transaction adaptive journal-
ing is its implementation challenge. Specifically, since
the relevant transaction characteristics for adaptive jour-
naling decision (e.g., sequential I/O or not) is not known
at the beginning of a transaction, writes at the early stage
of a transaction would have to be done in a way that per-
mits either data or ordered journaling. This presents new
challenges to a typical journaling implementation that
performs a write differently depending on the journaling
mode. For instance, a write under data journaling must
prohibit dirty data flushes until the transaction is commit-
ted to the journal while a write under ordered journaling
flushes dirty data earlier. Furthermore, a write under data
journaling records data writes in the journal while a write
under ordered journaling does not.

To avoid these safety and implementation complica-
tions, we propose a coarse-grained (per-file) adaptive
journaling approach. As long as all journal transactions
to a given file follow a single journaling mode (either
full data/metadata journaling or ordered metadata-only
journaling), a crash-induced journal replay should al-
ways result in the correct final state for the file data.
Furthermore, we let the application to set the journal-
ing mode for a file according to its access characteris-
tics. This approach works well for practical journaling
of journal circumstances. Specifically, write-ahead log
files are generally written sequentially with little meta-
data change and therefore more suitable for the ordered
file system journaling. In contrast, a rollback-recovery
log file deletes or truncates the transaction record at the
end of each transaction and therefore triggers substantial
metadata changes. Consequently it is more suitable for
full data/metadata file system journaling.

The proposed file-adaptive journaling can be easily
implemented in practice. Changes to Linux/Ext4 primar-
ily include new file and inode flags set through ioctl()
that indicate the desired journaling mode for each file.
The journaling code will preform appropriate actions for
a file according to its inode flag. For safety, changing
the journaling mode for a file requires the flushing of
all pending journal transactions. In practice, such flush-
ing incurs little overhead if the journaling modes are set
once at database open time for files that persist through
a long work session (e.g., the write-ahead log files). Our
changes to the SQLite database involve adding about 20
lines of C code right after each log file open.

There is one additional correctness concern for per-file
adaptive journaling in the case of data reuses between
files. Specifically, if a data block is freed from a data-
journaled file (after transaction T1) and then reused by
an ordered-journaled file (followed with transaction T2),

290 12th USENIX Conference on File and Storage Technologies USENIX Association

then the block may be journaled in T1 but not in T2.
Therefore our earlier example of journal replay-induced
write re-ordering may again appear. In fact, similar block
reuse problems already exist in the standard ordered jour-
naling, when a metadata block is freed from a file and
then reused by another file as a data block [24]. The stan-
dard solution to such a problem is to use journal revoke
records that instruct the journaling replay mechanism to
avoid replaying the concerned blocks. This has not yet
been implemented in our current prototype system.

3 Experimental Evaluation

We implemented our journaling enhancements in the
Linux 3.1.10 kernel and its Ext4 file system. We per-
formed experiments on a Google Nexus 7 tablet with in-
ternal eMMC NAND storage. The Nexus 7 has a quad-
core dynamic-frequency Tegra3/ARM processor, which
was fixed to run at 1.0 GHz during our experiments. Our
Nexus 7 is installed with the Ubuntu 12.10 Linux distri-
bution. We also experimented with a conventional ma-
chine with an Intel 311 Flash-based SSD and two dual-
core 2.0 GHz Intel processors. In each platform, we mea-
sured the transaction performance of the SQLite database
(version 3.8.0.2).

We configured the system and application software
to optimal-performance settings to establish a strong
baseline. The Ext4 file system is mounted with
noatime,nodiratime,journal async commit op-
tions. We also enable the barrier=1 option to ensure
the journal write ordering. We configured SQLite to use
fdatasync() (instead of fsync()) for I/O commits.
Note that fdatasync() will still write the dirty inode
if the inode change affects the file system structural in-
tegrity (e.g., file size change).

3.1 Performance of File System Journaling

We compare the performance of different file system
journaling approaches. Note that our file-adaptive jour-
naling builds on our single I/O data journaling as de-
scribed at the beginning of Section 2.2.

Our workloads run insert, update, and delete opera-
tions on a SQLite database table. Each record has an
integer key and a 100-character value field. We test
two transaction sizes—small, one-operation transactions
and large, 1000-operation transactions. We also ex-
periment with two application-level logging approaches
in SQLite—write-ahead logging (WAL) and rollback-
recovery logging. WAL is faster at transaction commits
by issuing fewer fdatasync()’s (once vs. four times
under the rollback-recovery logging), but it also has a
number of practical disadvantages including poor sup-
port for reads and requiring periodic checkpoints [20].

Our test runs in rounds. Each round starts with an
empty database table, inserts 10,000 records (10,000
one-operation transactions or ten 1000-operation trans-
actions), updates the 10,000 records (in a random order
that is likely different from the insert order), and deletes
the 10,000 records (again in a random order). For each
test case we run at least five rounds and report the aver-
age transaction response time.

Figures 2 and 3 illustrate performance results on our
two platforms. Compared to no file system journaling,
Ext4 ordered journaling has a worst-case slowdown of
about 20%. Ext4 data journaling has a worst-case slow-
down of about 73%. These indicate substantial costs of
journaling of journal systems. Our single-I/O data jour-
naling has enhanced the performance from the original
Ext4 data journaling but it still suffers from a worst-case
slowdown of 38%.

Our file-adaptive journaling has no more than 6%
transaction slowdown compared to no file system jour-
naling in all but one of our 24 test cases. It experi-
ences 14% slowdown under the exceptional case of small
(1 op/txn) update transactions with SQLite rollback-
recovery logging on Nexus 7. A closer inspection finds
that the overhead is due to page-granularity file system
journal records and resultant larger write volume under
full data/metadata journaling for the SQLite rollback-
recovery log file. In one representative journal commit,
nine small writes of a total 2,576 bytes turned into nine
4 KB pages (along with inode journaling and commit
block, totaling 45,056 bytes) on the file system journal
in Ext4/JBD2. We note that the page-granularity record
is not a necessary design choice for file system journal-
ing and previous work has shown that fractional-page
journaling record is possible [5]. We expect that such
an enhancement, if robustly incorporated into file system
journaling, should further strengthen our argument that
the journaling of journal is (almost) free.

We also find that our single-I/O data journaling and
file-adaptive journaling achieve faster transaction re-
sponses than no file system journaling in some cases.
This is most pronounced for large (1000 ops/txn) insert
transactions with SQLite rollback-recovery logging on
both machines. This is due to the substantial benefit of
coalescing multiple piecemeal writes into a single I/O
operation on the synchronous commit path. On aver-
age of all our test cases over different workload patterns
and SQLite logging modes, our file-adaptive journaling
in fact improves the performance of no file system jour-
naling by 4% on Nexus 7, and by 9% on Intel 311.

Error bars in Figures 2 and 3 show the standard de-
viations of results from multi-round tests in each case.
Most tests show stable results. The most deviating per-
formance results do not always reoccur under a given test
condition, which hints at the possible effect of occasional

USENIX Association 12th USENIX Conference on File and Storage Technologies 291

Insert Update Delete
0

1

2

3

4

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1op/txn, SQLite write−ahead logging on Nexus7

No journaling

Ext4 ordered

Ext4 data

Data single−I/O

File−adaptive

Insert Update Delete
0

5

10

15

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1op/txn, SQLite rollback logging on Nexus7

Insert Update Delete
0

100

200

300
Tx

n
re

sp
. t

im
e

(in
 m

se
cs

)
1000ops/txn, SQLite write−ahead logging on Nexus7

Insert Update Delete
0

100

200

300

400

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1000ops/txn, SQLite rollback logging on Nexus7

Figure 2: SQLite transaction response time under different file system journaling approaches on Nexus 7. The error
bars show the standard deviations of results from multi-round tests in each case. The two columns show results for
two SQLite logging modes (write-ahead logging and rollback-recovery logging). The two rows show results on two
transaction sizes (1 operation per transaction and 1000 operations per transaction).

Insert Update Delete
0

0.2

0.4

0.6

0.8

1

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1op/txn, SQLite write−ahead logging on Intel311

No journaling

Ext4 ordered

Ext4 data

Data single−I/O

File−adaptive

Insert Update Delete
0

1

2

3

4
Tx

n
re

sp
. t

im
e

(in
 m

se
cs

)

1op/txn, SQLite rollback logging on Intel311

Insert Update Delete
0

20

40

60

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1000ops/txn, SQLite write−ahead logging on Intel311

Insert Update Delete
0

20

40

60

80

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1000ops/txn, SQLite rollback logging on Intel311

Figure 3: Performance results on a conventional machine with an Intel 311 SSD.

background Flash tasks such as garbage collection.

3.2 Cost of Transactional Data Protection

While we argue that properly adding file system jour-
naling to applications that protect their own data incurs
little additional cost, we are not suggesting that trans-
actional data protection (ensuring data consistency and
durability) over system failures is free. To reveal the cost
of transactional data protection, we compare three sys-

tem conditions on our experimental platforms—

• Full protection: SQLite write-ahead logging
(application-level protection) combined with Ext4
file-adaptive journaling (file system protection).

• Application-level protection: SQLite write-ahead
logging without any file system journaling.

• No protection: no SQLite logging or file system
journaling; all writes are asynchronous and almost
all operations are performed entirely in memory.

292 12th USENIX Conference on File and Storage Technologies USENIX Association

Insert Update Delete
0

0.5

1

1.5

2

2.5

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1op/txn on Nexus7

No transaction, async writes SQLite WAL without FS journaling SQLite WAL with file−adaptive journaling

Insert Update Delete
0

50

100

150

200

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1000ops/txn on Nexus7

Insert Update Delete
0

0.2

0.4

0.6

0.8

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1op/txn on Intel311

Insert Update Delete
0

10

20

30

40

50

Tx
n

re
sp

. t
im

e
(in

 m
se

cs
)

1000ops/txn on Intel311

Figure 4: Cost of transactional data protection—performance comparison of application/system-level data protection
mechanisms against the situation of no protection (effectively in-memory operations).

Results in Figure 4 show that in all cases, the full
data protection with file system journaling adds almost
no cost beyond application-level protection. Compared
to no data protection with effectively in-memory oper-
ations, the transactional data protection and associated
atomic, synchronous I/O adds substantial costs for small
transactions (almost an order of magnitude slowdown).
However, the costs are not excessive for large transac-
tions (less than a factor of two). Larger transactions
can be accomplished through careful application devel-
opment and tuning, or system approaches that intelli-
gently commit only when necessary [10].

4 Conclusion and Discussions

This paper argues that properly adding file system
journaling to applications that protect their own data in-
curs minor additional cost. The large costs for journaling
of journal on existing systems are primarily attributable
to implementation limitations. We applied simple tech-
niques that ensure a single I/O operation on the syn-
chronous commit path and adaptively allow each file to
have its custom file system journaling mode. We per-
formed experiments for SQLite transactions on a Google
Nexus 7 tablet and a conventional machine with an In-
tel 311 SSD. Compared to no file system journaling, our
enhanced journaling implementation improves the per-
formance or incurs minor (<6%) slowdown on all but
one of our 24 test cases (with 14% slowdown in the ex-
ceptional case). On average, our enhanced journaling im-
plementation improves the SQLite performance by 7%.

Our work contributes to the debate between using tra-
ditional vs. log-structured file systems [15] on NAND
Flash-based systems. While a number of log-structured
file systems (including NILFS [9] and F2FS [8]) have
emerged recently and promise high performance on
NAND storage, many systems have still chosen the Ext4
file system due to the concern of system maturity and
robustness for production use. Our work suggests that
such a choice does not necessarily carry significant per-

formance costs.
Our proposed file-adaptive journaling is just one form

of possible adaptive journaling approaches [14]. It has
limited adaptation granularity (all transactions on a file
must use a single journaling mode) but is effective for
application-level log files that exhibit clear I/O patterns
and journaling preferences. A broader use of adaptive
journaling may require intelligent learning of the file ac-
cess pattern and finer-grained control. Beyond adaptive
journaling, journaling performance can be further en-
hanced by relaxing its ordering constraints [2].

Our cost evaluation has targeted the application re-
sponse time. At the same time, we recognize that the
employment of full data and metadata journaling tends
to write more to a NAND Flash device and increase its
wear. We explained in the paper that such increase of
the write volume is primarily due to the page-granularity
records in the journaling file system implementation.
This can be potentially mitigated by a fractional-page
journaling implementation [5].

Experimental work in this paper has focused on sys-
tems with NAND Flash-based storage. While much of
our design rationale should also apply to mechanical
disks, the resulted quantitative benefits might be differ-
ent. In particular, since seek time dominates the perfor-
mance of a mechanical disk, our single-I/O data journal-
ing (Section 2.1) may produce larger performance gains
than on Flash storage. On the other hand, the benefit of
write size reduction under file-adaptive journaling (Sec-
tion 2.2) might be much smaller on mechanical disks.

Acknowledgments This work was supported in part
by the National Science Foundation grants CCF-
0937571, CNS-1217372, CNS-1239423, and CCF-
1255729, and by a Google Research Award. We thank
Ted Ts’o for clarifying relevant issues in the Ext4 file
system and its journaling support. We also thank the
anonymous FAST reviewers and our shepherd Florentina
Popovici for comments that helped improve this paper.

USENIX Association 12th USENIX Conference on File and Storage Technologies 293

References

[1] F. Chen, D. A. Koufaty, and X. Zhang. Understand-
ing intrinsic characteristics and system implications
of Flash memory based solid state drives. In ACM
SIGMETRICS, pages 181–192, Seattle, WA, June
2009.

[2] V. Chidambaram, T. S. Pillai, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Optimistic
crash consistency. In SOSP’13: 24th ACM Symp.
on Operating Systems Principles, pages 228–243,
Farmington, PA, Nov. 2013.

[3] FAL Labs. Kyoto Cabinet: a straightforward imple-
mentation of DBM. http://fallabs.com/
kyotocabinet/.

[4] J. Guerra, L. Mármol, D. Campello, C. Crespo,
R. Rangaswami, and J. Wei. Software persis-
tent memory. In USENIX Annual Technical Conf.,
Boston, MA, June 2012.

[5] A. Hatzieleftheriou and S. V. Anastasiadis.
Okeanos: Wasteless journaling for fast and reliable
multistream storage. In USENIX Annual Technical
Conf., Portland, OR, June 2011.

[6] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O
stack optimization for smartphones. In USENIX
Annual Technical Conf., San Jose, CA, June 2013.

[7] H. Kim, N. Agrawal, and C. Ungureanu. Revis-
iting storage for smartphones. In FAST’12: 10th
USENIX Conf. on File and Storage Technologies,
San Jose, CA, Feb. 2012.

[8] J. Kim. F2FS: Introduce Flash-friendly file system,
Oct. 2012. https://lwn.net/Articles/
518718/.

[9] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Ki-
hara, and S. Moriai. The Linux implementation of
a log-structured file system. ACM SIGOPS Operat-
ing Systems Review, 40(3):102–107, July 2006.

[10] E. B. Nightingale, K. Veeraraghavan, P. M. Chen,
and J. Flinn. Rethink the sync. ACM Trans. on
Computer Systems, 26(3), Sept. 2008.

[11] S. Park, T. Kelly, and K. Shen. Failure-atomic
msync(): A simple and efficient mechanism for pre-
serving the integrity of durable data. In EuroSys’13
Conf., Prague, Czech Republic, Apr. 2013.

[12] M. Polte, J. Simsa, and G. Gibson. Comparing
performance of solid state devices and mechanical
disks. In 3rd Petascale Data Storage Workshop,
Austin, TX, Nov. 2008.

[13] D. E. Porter, O. S. Hofmann, C. J. Rossbach,
A. Benn, and E. Witchel. Operating system transac-
tions. In SOSP’09: 22th ACM Symp. on Operating
Systems Principles, pages 161–176, Big Sky, MT,
Oct. 2009.

[14] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Analysis and evolution of jour-
naling file systems. In USENIX Annual Technical
Conf., Anaheim, CA, Apr. 2005.

[15] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Trans. on Computer Systems, 10(1):26–52,
Feb. 1992.

[16] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Trans. on
Computer Systems, 2(4):277–288, Nov. 1984.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct. 2009.

[18] R. Sears and E. Brewer. Stasis: Flexible transac-
tional storage. In OSDI’06: 7th USENIX Symp.
on Operating Systems Design and Implementation,
Seattle, WA, Nov. 2006.

[19] SQLite. http://www.sqlite.org/.

[20] SQLite Write-Ahead Logging. http://www.
sqlite.org/wal.html.

[21] M. Stonebraker. Operating system support for
database management. Communications of the
ACM, 24(7):412–418, July 1981.

[22] T. Ts’o. What to do when the journal check-
sum is incorrect, May 2008. http://lwn.net/
Articles/284038/.

[23] T. Ts’o. Personal communication, Jan. 2014.

[24] S. Tweedie. EXT3, journaling filesystem. In
Ottawa Linux Symposium, July 2000. http://
olstrans.sourceforge.net/release/
OLS2000-ext3/OLS2000-ext3.html.

USENIX Association 12th USENIX Conference on File and Storage Technologies 295

Checking the Integrity of Transactional Mechanisms

Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, Ashvin Goel
University of Toronto

Abstract
Data corruption is the most common consequence of file-
system bugs, as shown by a recent study. When such cor-
ruption occurs, the file system’s offline check and recov-
ery tools need to be used, but they are error prone and
cause significant downtime. Previous work has shown
that a runtime checker for the Ext3 journaling file system
can verify that metadata updates within a transaction are
mutually consistent, helping detect corruption in meta-
data blocks at commit time. However, corruption can
still be caused when a bug in the file system’s transac-
tional mechanism loses, misdirects, or corrupts writes.
We show that a runtime checker needs to enforce the
atomicity and durability properties of the file system on
every write, in addition to checking transactions at com-
mit time, to provide the strong guarantee that every block
write will maintain file system consistency.

In this paper, we identify the invariants that need to be
enforced on journaling and shadow paging file systems
to preserve the integrity of committed transactions. We
also describe the key properties that make it feasible to
check these invariants for a file system. Based on this
characterization, we have implemented runtime check-
ers for a modified version of the Ext3 file system and
for the Btrfs file system. Our evaluation shows that both
checkers detect data corruption effectively, and they can
be used during normal operation with low overhead.

1 Introduction

File systems contain bugs that are hard to detect even un-
der heavy testing, as shown by researchers [25, 35] and
painful real-world experiences [24]. These bugs can re-
sult in data corruption, data loss, or persistent applica-
tion crashes. Today, most techniques that enhance the
reliability of storage systems focus on recovery from
crash failures, and a variety of storage hardware fail-
ures [12]. However, none of these methods address cor-
ruption caused by file system or operating system bugs,
or random memory corruption [36]. For example, a mir-

ror RAID offers no protection against a buggy file sys-
tem write, which would be reliably replicated on multi-
ple disks.

A comprehensive study recently showed that 40% of
file system bugs have severe consequences, because they
lead to in-memory or on-disk data corruption [18]. When
a file system bug corrupts file-system metadata, the dam-
age can propagate and thus the entire file system must be
checked for possible corruption. This consistency check
is typically performed offline, causing significant down-
time for large storage systems [14]. Furthermore, repair
is an error-prone process [13, 2].

To avoid downtime and data loss, file system corrup-
tion must be detected before it propagates to disk. To
do so, the file system’s write operations must be checked
at runtime. Unlike a typical offline file system checker,
such as fsck, that checks the consistency of the metadata
already on disk, the Recon system [10] checks that meta-
data updates preserve the consistency semantics of the
file system at runtime. These semantics are expressed
as a set of invariants that are derived from the proper-
ties checked by the offline checker. When kernel bugs or
memory corruption lead to metadata updates that violate
these consistency invariants, a corruption is detected and
the updates are prevented from reaching the disk.

Recon takes advantage of transactional methods, such
as journaling [34, 7, 32] and shadow paging [15, 5, 26],
used by modern file systems for providing crash con-
sistency. In particular, it checks that metadata updates
within a transaction are mutually consistent at transac-
tion commit time. This approach is still vulnerable to
file system corruption when the transactional mechanism
is used incorrectly or has bugs. For example, the Recon
checker for the Ext3 journaling file system verifies writes
to the journal blocks, but it assumes that 1) all metadata
writes first go to the journal, and 2) these writes are then
checkpointed correctly. Any bugs that violate these as-
sumptions, e.g., a lost or failed checkpointing write, will
cause undetected corruption. In Section 2.2, we show
that these bugs manifest in many different ways, such
as lost, misdirected, out-of-order and corrupting writes,

1

Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, Ashvin Goel
University of Toronto

296 12th USENIX Conference on File and Storage Technologies USENIX Association

making it difficult to detect them. Unfortunately, these
types of bugs occur regularly [10], are hard to diag-
nose [11, 27], and can have serious impact [33].

In this paper, we describe the design and implemen-
tation of a runtime checking system that enforces cor-
rect usage and implementation of the crash consistency
method used by the file system. Our system enforces the
atomicity and durability properties of the file system at
each block write, in addition to checking consistency at
commit time, providing the strong guarantee that every
block write will maintain file system consistency.

We express the atomicity and durability properties as
invariants, called location invariants because they govern
which blocks are written to given locations. We describe
the location invariants that need to be enforced to pre-
serve the integrity of committed transactions for journal-
ing and shadow paging file systems, and the file system
properties that make it feasible to check these invariants
efficiently at the block layer.

We have implemented runtime checkers for the Btrfs
file system and a slightly modified version of the Linux
Ext3 file system by augmenting the Recon system. Our
evaluation shows that the runtime checkers for both the
file systems detect file-system corruption effectively, pre-
venting any file system metadata inconsistency. We show
that the Ext3 checker has low performance overhead,
while the Btrfs checker overhead is higher due to in-
creased metadata load. Checking location invariants in
both checkers has negligible overheads.

2 Motivation

Our aim is to design a runtime checking system that
can reliably detect file system and other operating sys-
tem software bugs, and memory corruption errors, be-
fore they cause on-disk data corruption. Unlike an offline
file system checker, a runtime checker does not detect
file system corruption caused by I/O hardware failures,
such as device controller failures or latent sector errors
on disks. Instead, the runtime checker depends on hard-
ware redundancy mechanisms, such as checksums and
replication [25], implemented either in the storage sys-
tem or in the file system [5, 9], to detect and recover from
such failures when data is read from disk.

A runtime checking system can be deployed in either
a development or a production setting. During develop-
ment, a runtime checker can serve as a testing tool, catch-
ing subtle errors before the file system image becomes
inconsistent, making it easier to determine the root cause
of a bug. In production, the checker could trigger mea-
sures to preserve existing data, recover from the fail-
ure [31], or alert administrators to the problem. Our run-
time checking system builds on the Recon system [10],
and so this section starts by providing an overview of Re-

con. Then we motivate this work by discussing the types
of bugs that Recon will fail to detect, leading to unde-
tected data corruption.

2.1 The Recon System

The Recon system takes advantage of transactional meth-
ods, such as journaling and shadow paging, used by mod-
ern file systems for providing crash consistency. These
transactional methods group writes to disk blocks from
one or more operations (such as the creation of a direc-
tory and a file write) into transactions. When transactions
are committed, the file system believes itself to be consis-
tent. At this point, Recon checks that the contents of the
blocks involved in the transaction are mutually consis-
tent, thus detecting the effects of software bugs (or mem-
ory errors) that corrupt blocks within the transaction.

The consistency checks in Recon are derived from the
consistency properties of the file system. These proper-
ties constrain the set of valid file system states that can
be generated by an arbitrary sequence of file system op-
erations. Typically, these properties are checked by the
offline file system checker. For example, a consistency
property in the Btrfs file system is that extents must not
overlap. Checking this property requires a full scan of
the extent tree, making it infeasible to perform at run-
time. Instead, each consistency property is transformed
into a local consistency invariant, which is an assertion
that must hold for the transaction blocks to preserve con-
sistency. In the Btrfs example, the consistency invariant
is that when a new extent item is added to a tree, then the
extent must not overlap with the previous or next extents
in the extent tree. A runtime checker can enforce this
consistency invariant by examining all updated extents
and their adjacent extents.

The Recon system interposes at the block layer, and
can be implemented in the host operating system, a hy-
pervisor or a storage controller. The benefit of this ap-
proach is that the checker only depends on the the format
and the consistency properties of the file system, rather
than depending on the implementation of the file system,
which may be buggy and cannot be trusted. File sys-
tem formats and their consistency properties tend to be
stable over time, even when the implementation changes
significantly over time, or there are multiple different im-
plementations of a particular file system.

The consistency invariants are expressed in terms of
logical file-system data structures, such as the extent in-
formation in the Btrfs example. Since Recon interposes
at the block layer, it uses an introspection approach, sim-
ilar to semantically smart disks [30], to infer the types of
blocks as they are accessed, and then interprets the block
contents to derive the logical file-system data structures.

2

USENIX Association 12th USENIX Conference on File and Storage Technologies 297

2.2 Problematic Bugs
Recon ensures that the blocks in a transaction are con-
sistent, but it depends on the transaction mechanism be-
ing both implemented and used correctly. Below, we de-
scribe four classes of bugs that break these assumptions,
and provide some examples of recent bugs in the Ext3,
Ext4 and the Btrfs file system code deployed in “stable”
Linux kernel releases.

Overwrite bugs: A write occurs to a location when it
shouldn’t have happened at all, either due to improper
writing or flushing of buffers, or some other failure that
causes a misdirected write. For example, Ext4 stores
file system quota information as data in special quota
files. The contents of these files are metadata, similar
to directories, but they were overwritten in place with-
out first writing to the journal, when the file system was
used with certain mount options [16]. Recon’s consis-
tency invariants would not detect this problem because
the journal would appear to be consistent. Similarly, a
high profile bug was recently introduced in the Ext4 file
system, in which the inode bitmap was modified with-
out updating the journal, which could lead to occasional
corruption [27]. Interestingly, after the corruption issue
was reported, the developers at first mistakenly thought
that the root cause was an incorrect update to the jour-
nal superblock [33]. This suggests that understanding,
using and implementing the transactional mechanism is
challenging and bug prone. In this case, if the file sys-
tem is allowed to continue running, the transaction that
was missing the inode bitmap update in the journal would
commit, and the checkpoint of that transaction would
bring everything back to a consistent state, with no one
the wiser. Consistency problems only occur when an ill-
timed crash forces recovery from the incomplete journal
entries. When Recon is used in production, things ac-
tually become worse. Recon would detect that the jour-
nal contents are inconsistent, because the inode bitmap
updates are missing (e.g., unallocated inodes would ap-
pear to change), and then discard the transaction and stop
the file system. The inode bitmap, overwritten in place,
would cause the file system to become inconsistent.

Lost write bugs: A write that should happen doesn’t
occur. For example, in a journaling file system, a lost
checkpointing or recovery write will cause file system
inconsistency even though the journal is consistent [12].

Write ordering bugs: The file system needs to enforce
ordering of writes to disk at certain times. While the
block layer may observe writes in the correct order, un-
less the correct disk barrier commands are sent, the disk
or its controller may reorder writes, causing inconsis-
tency of the on-disk state on a power loss. For example,
Linux JBD2 journaling code maintains a pointer to the
journal tail in a journal superblock. When the tail was

updated, the journal superblock was not being flushed
to disk before new transactions could reuse the newly
freed journal space. On a power loss, the recovery code
could replay old transactions containing blocks poten-
tially overwritten in the journal by new transactions [17],
including blocks from uncommitted transactions. Sim-
ilarly, the Btrfs file system in multi-device setups (e.g.,
mirroring) would send barriers in the wrong order and
not wait for all the barriers before writing the commit
block [21]. These write ordering bugs would not be de-
tected by Recon but they can cause serious file system
inconsistencies.

Corrupting Write bugs: A write occurs to the correct
location but its contents are corrupt. For example, the
Ext3 journaling code modifies (escapes) its data blocks
when they start with a magic code that identifies journal
metadata blocks, to distinguish between the two types
of blocks, similar to bit stuffing [1]. When Ext3 was
used in data journaling mode, the recovery code had a
bug that would unescape the wrong buffers, causing cor-
ruption of both the block that remains escaped, and the
block that is wrongly unescaped [11]. This bug would
not be caught by Recon’s consistency invariants because
the journal itself is not corrupt. However, blocks from
committed transactions would be corrupt on disk follow-
ing recovery.

3 Location Invariants

File systems that use transactional mechanisms for crash
consistency provide atomicity and durability properties.
Atomicity properties ensure that the file system will be
able to roll back to a consistent state on a crash. Dura-
bility properties ensure that if a new version of a block
is committed, it does not get rolled back or overwritten,
except atomically as part of a subsequent transaction.

The problematic bugs described in Section 2.2 can
cause corruption because they lead to violations of these
properties. For example, a metadata overwrite that is not
first committed to the journal violates atomicity, since
we cannot roll back to the previous correct version of the
block. Durability can be violated by either an omitted
checkpoint write, or a write that corrupts a committed
transaction in the journal, since updates that were suc-
cessfully committed to the journal never reach the file
system. Finally, in both journaling or shadow paging
systems, a misdirected write that overwrites an allocated
metadata block (e.g., a data block write that overwrites a
metadata block) violates both atomicity and durability.

In this section, we first describe what is needed to
detect violations of these properties, and then present
the location invariants for journaling and shadow paging
transactional mechanisms.

3

298 12th USENIX Conference on File and Storage Technologies USENIX Association

3.1 Enforcing Atomicity and Durability

The Recon runtime checker depends on the correctness
of the file system’s transactional mechanism to properly
enforce the atomicity and durability of the metadata up-
dates that it is checking. Unfortunately, in spite of Re-
con’s distrust of buggy file systems, it assumes that the
transactions themselves are implemented and used cor-
rectly. This assumption can be violated by several classes
of bugs, as shown in Section 2.2. To detect these bugs,
a runtime checker needs to enforce atomicity and dura-
bility invariants, in addition to consistency invariants.
Consistency invariants apply to the contents of updated
blocks; they need to be checked at transaction commit
points because the file system does not guarantee that the
updates are consistent until the commit. In contrast, the
atomicity and durability invariants need to be checked on
each block write, because they govern whether the write
is permitted to the given location. Hence, we call them
location invariants collectively. Rather than being de-
rived from the offline checking tool, the location invari-
ants are derived from the semantics of the transactional
mechanism itself. In particular, they concern overwrites
to the blocks, and the ordering of block write operations.

It is possible to enforce both atomicity and durability
invariants on each write because they only depend on the
correctness of committed metadata, which has already
been checked using consistency invariants. Transactional
techniques like journaling or shadow paging must first
write metadata to unallocated blocks – for journaling,
these are free blocks in the journal area, which must
later be checkpointed back to the file system, while for
shadow paging these may be any free blocks, which be-
come part of the file system atomically at the commit
point. To check that these properties are maintained, lo-
cation invariants depend on information about block allo-
cation and block type (data vs. metadata). The block al-
location information must be based on committed meta-
data, since uncommitted changes to the allocation state
may be rolled back following a crash. In particular, we
must not permit a write to a block that has been freed in
an uncommitted transaction, since we would not be able
to recover the previous version of the block if the deallo-
cation operation were rolled back.

As can be seen, correct checking of consistency and
location invariants is interdependent. We begin from the
assumption that the file system state on disk is consistent.
Initially, this is the result of correct file system initializa-
tion, as is done by mkfs. Thereafter, each block write
prior to a transaction commit is checked by the location
invariants using the old, consistent, committed allocation
and block type information. These checks ensure that the
committed state is not corrupted. At the transaction com-
mit point, the contents of the transaction are checked by

the consistency invariants to ensure that the new file sys-
tem state will be consistent. The location invariants then
govern the write of the commit block itself, and the sub-
sequent checkpoint writes to the file system, as well as
the writes of blocks in the next transaction. By enforc-
ing both consistency and location invariants, the runtime
checker can provide the strong guarantee that the file sys-
tem meets its consistency specification on every block
write.1

As we will see in the next subsection, there are signif-
icant differences between the specific location invariants
that apply to journaling and shadow paging mechanisms.
However, both require the ability to infer block alloca-
tion information and the ability to distinguish between
metadata and data blocks at the block layer.

3.2 Journaling Invariants
Journaling file systems use write-ahead logging to sup-
port failure atomicity. First, they write a consistent set
of blocks and their final location information to a des-
ignated journal area. When all these blocks are durable
in the journal, an atomic journal write signals a commit.
After commit, the contents of the journal are flushed to
their final locations. This flush to the final file system
locations is called checkpointing in the Linux ext3/jbd
terminology.

The journal area must be known to the runtime checker
so that, on each write, it can distinguish between jour-
nal and non-journal writes. This distinction is neces-
sary so that the correctness of both the journal writes and
the checkpointing writes can be verified. Checkpointing
of committed transactions occurs concurrently with new
journal writes, but checkpointing writes must be directed
to the non-journal area. Note that although we expect the
journal to be a circular buffer, with writes occurring se-
quentially, at the block layer there is no guarantee of any
particular ordering within a transaction.

The following four location invariants ensure that the
journaling and checkpointing operations of the file sys-
tem are correct:

1. Log invariant: A write to the journal area must be
to a free block in the journal. A free journal block
becomes allocated when it is written and free again
when it has been checkpointed (see Checkpoint in-
variant below). This invariant checks that the allo-
cated journal blocks are not overwritten.

2. Commit invariant: A write of a commit block,
which marks a transaction as committed, is allowed
to the journal area only after (1) all the blocks in

1While the checker implementation may have bugs that generate
false alarms, it is unlikely that the checker will fail to detect file system
corruption, unless its bugs are correlated with file system bugs [10].

4

USENIX Association 12th USENIX Conference on File and Storage Technologies 299

the transaction are allocated in the journal, and (2) a
barrier is issued to flush these transaction blocks to
the disk. The transaction is considered to be com-
mitted (and hence, to be durable) only after the com-
mit block is flushed to disk. When journal check-
sums are included in the commit block, as in IRON
file systems [25], the write of the commit block
can be concurrent with the writes of the transaction
blocks, but a barrier is still needed to ensure that
all these blocks are on disk before the transaction is
deemed to be committed.

3. Flush invariant: A write to an allocated, non-journal
location is permitted only when (1) the committed
part of the journal contains a block that is destined
for the same final location, and (2) the contents of
this block in the journal matches the contents of the
block being written. In other words, overwrites of
allocated non-journal blocks are disallowed if the
new content was not first committed to the journal.
If the block exists only in the uncommitted portion
of the journal, or the block does not appear in the
journal at all, both atomicity and durability viola-
tions can occur. Atomicity is violated by writing
new content into the file system ahead of the commit
of the transaction that should contain it. Durability
is violated by the loss of previously committed con-
tent that has been overwritten.

4. Checkpoint invariant: A write of a checkpoint
record (e.g., in the journal superblock), which indi-
cates that a set of blocks in the journal area are now
free, is permitted only after all the journal blocks
for the associated transaction have been either (1)
flushed (see Flush invariant), or (2) superseded by a
newer version of the corresponding block in a later
committed transaction. If a newer version of a block
exists in a later committed transaction in the journal,
then this version does not need to be flushed before
being freed. The affected journal blocks can only
be considered free after the checkpoint record has
been flushed to disk.

Metadata-only Journaling Since writing to the jour-
nal potentially doubles the total write traffic to disk,
many file systems allow journaling only metadata blocks
to reduce write traffic. The main complication with
metadata-only journaling is that data writes are non-
atomic, and while these writes must be allowed at any
time, they must not overwrite metadata blocks. To ac-
commodate non-journaled data writes, we refine the jour-
naling flush invariant with an exception:

1. Data-flush exception: Any non-journal write that
violates the flush invariant must be to a non-

metadata (data or free) block location. The type
of a block (metadata or not) is determined by the
committed file-system state. The consequence of
this exception is that data writes can overwrite data
blocks unimpeded. Unfortunately, there is no way
to tell if data writes are misdirected among each
other.

The challenge with allowing this exception is that it must
be possible to distinguish metadata blocks from non-
metadata blocks on each write, but a file system may
not provide this information easily. For example, the
Ext3 file system uses allocation bitmaps that allow distin-
guishing between allocated blocks (which may be data or
metadata) and free blocks. However, the file system does
not provide an easy way to distinguish between dynam-
ically allocated metadata (e.g., for directories and indi-
rect blocks) and data blocks, other than by traversing the
entire file system. We discuss this issue further in Sec-
tion 4.3.

3.3 Shadow Paging Invariants

Compared to journaling, it is simpler to enforce location
invariants for shadow paging systems because blocks are
updated once per transaction and all these updates occur
before commit. In a file system that uses shadow paging
for all blocks, there are two atomicity invariants:

1. Flush invariant: All writes, other than to special
non-shadow paged blocks, such as the super block,
must be to unallocated blocks. This invariant fol-
lows from the basic copy-on-write properties of
shadow paging systems. To enforce this invariant,
the file system must provide an efficient method for
determining the allocation status of a block. For ex-
ample, the Btrfs file system maintains an extent al-
location tree.

2. Commit invariant: The write of the commit block
(usually a tree root) is flushed to disk only after both
(1) all blocks referenced by the new tree have been
updated, and (2) a barrier is issued to flush these
blocks to disk. That is, there must be no dangling
pointers to potentially uninitialized blocks, before
the commit block is flushed.

Durability (e.g., a lost or corrupting update) is checked in
modern shadow paging file systems using methods such
as block checksums (ZFS) or generation numbers (Btrfs).
This information is embedded in metadata blocks, and
hence our Btrfs runtime checker uses consistency invari-
ants to check the consistency of block headers and gen-
eration numbers for ensuring durability.

5

300 12th USENIX Conference on File and Storage Technologies USENIX Association

Metadata-only Shadow Paging Shadow paging can
lead to fragmentation because the updated blocks are
placed in new, possibly distant, physical locations. Frag-
mentation can be reduced with metadata-only shadow
paging, with data writes being performed in place. To
accommodate non-atomic data writes, we refine the flush
invariant with an exception:

1. Data-flush exception: Any write that violates the
flush invariant must be to a non-metadata (data or
free) block location.

This exception requires being able to distinguish meta-
data and non-metadata blocks. Btrfs tracks whether an
extent has metadata or data in its allocation tree, making
it easy to enforce this invariant. Also, the default be-
havior of Btrfs is to separate metadata and data regions,
making this identification even easier and more efficient.

4 Implementation

As explained in Section 3.1, location and consistency in-
variants are interdependent, and they need to be checked
together. Hence, we have implemented location invari-
ant checking for the Linux Ext3 (journal invariants) and
Btrfs (shadow paging invariants) file systems by aug-
menting the Recon consistency checking system. Recon
uses the block-layer Linux device mapper framework to
interpose on block I/O, allowing location invariants to be
checked on all writes. The block-layer approach ensures
the independence of the checker and the file-system im-
plementations. Next, we describe the requirements for
implementing a runtime checker, and then discuss how
these requirements are met in our implementation.

4.1 Runtime Checker Requirements
File system design impacts the capabilities and perfor-
mance of a runtime checking system. In this section,
we present the four types of information needed by a
checker. The challenge is to obtain this information cor-
rectly and efficiently at the block layer. The more file
system state that must be examined to do so, the higher
the overhead of the checker.

Consistency Points: Runtime checking at the block
layer requires being able to get a consistent picture of
the file system state from outside the file system. Consis-
tency points provide both a point in time to check consis-
tency invariants and a consistent view of the file system
when checking location invariants on each write.

Allocation Information: A checker needs to distinguish
between allocated and unallocated blocks, particularly
on the write path, to protect against accidental over-
writes. Overwriting an unallocated block is harmless,

but location invariants constrain when allocated metadata
blocks can be overwritten.

Separate Metadata: The checker also needs to distin-
guish between metadata and data blocks on both the
read and the write paths. Metadata blocks are cached
to improve checker performance, since recently accessed
metadata is likely to be relevant to invariant checking,
while data blocks are ignored because they are not inter-
preted. Additionally, the location invariants may permit
or forbid a write depending on whether the destination is
a data or metadata block.

Block Identity: Finally, interpreting a metadata block
requires knowing the identity of the block. The block
identity determines the logical contents of the block in
the file system. For example, suppose that the checker
knows that some block is an inode block, and it identi-
fies the block as the fourth inode block in the file system.
If it knows that inode blocks contain 32 inodes, then it
can determine that this block contains inodes with num-
bers 97-128. A runtime checker can then correlate these
inodes with directory entries that reference them, with
inode bitmaps that allocate them, and with the indirect
blocks to which they point. Without knowing their spe-
cific identities, it would not be possible to make the as-
sociations between the data structures that are needed for
enforcement of invariants.

4.2 Block-Layer Metadata Interpretation

In this section, we discuss two complementary ap-
proaches for determining block identity. The following
sections describe how we apply them to interpret meta-
data in the Ext3 and Btrfs checkers.

Forward Pointers: File systems are tree structures or di-
rected acyclic graph structures, with parent blocks con-
taining some form of a pointer to child blocks. Thus,
the easiest way to identify a block is if we are already
traversing the parent block. For example, if the checker
(or the file system) is looking up some specific metadata,
starting from the root of the tree, it can traverse interme-
diate blocks to locate the desired block.

Back References: A back reference for a block is meta-
data that maps the block’s physical location to blocks that
reference the block [20], providing an efficient method
for locating parent blocks. Back references are used for
various tasks such as defragmentation and bad block re-
placement, in which the parent block containing the ref-
erence must be efficiently located and updated. The par-
ent block has information to help type and identify the
child block, and hence back references greatly simplify
metadata interpretation. However, looking up a back ref-
erence may incur additional I/O operations.

6

USENIX Association 12th USENIX Conference on File and Storage Technologies 301

4.3 Ext3 Implementation
Ext3 uses static block allocation bitmaps, making it easy
for the checker to determine the allocation status of
blocks. However, Ext3 does not provide any efficient
method for distinguishing metadata blocks from other
blocks, either on block writes or on block reads that vi-
olate pointer-before-block traversal. One option is for
the checker to also create in-memory back references for
all data blocks when the parent metadata blocks are tra-
versed. This approach would greatly inflate the mem-
ory overhead of the checker. Instead, we have retrofitted
the Ext3 file system with a metadata allocation bitmap
which records whether a given block is metadata. The
new metadata bitmap is stored alongside the block allo-
cation bitmap. Using the metadata bitmap,2 the checker
can ensure that data blocks are never cached on either a
read or a write, and the data flush exception, described in
Section 3.2, can be implemented easily.

4.3.1 Interpreting Metadata

The Ext3 file system does not provide back references.
Instead, we use the file system’s forward pointer traversal
to create in-memory back references dynamically. The
file system needs to read the parent of a block at least
once before it accesses the child block, which we call
pointer-before-block traversal. When the parent block is
read the first time, we create a back reference for each of
the child blocks to which it points. For example, when
an inode block is read by Ext3, we copy the block into
the read cache, parse the inodes in the block, and then
create back references for all child metadata blocks (e.g.,
indirect blocks) directly pointed to by the inodes. The
back reference contains the block type, and for an in-
direct block, it contains the inode number and an off-
set that locates the indirect block. When the indirect
block is read, its back reference will exist, and hence the
block can be typed and identified. These back references
are bootstrapped using the superblock, which exists at a
known location.

The main drawback of in-memory back references is
that they cannot be evicted because the file system may
cache information from the parent block indefinitely, al-
lowing it to access the child block directly at any time
in the future. However, the in-memory references could
be persisted by leveraging the backpointer-based consis-
tency techniques developed in NoFS [6] and ffsck [19].

4.3.2 Location Invariants

The Ext3 location invariants require tracking the state
of the journal. The checker maintains three data struc-

2Note that the consistency checker implements additional invariants
for checking metadata bitmap consistency.

tures: a list of transactions currently present in the jour-
nal, an array containing information about the status of
each block in the journal, including block checksums,
and a hash table mapping from physical block numbers
to versions of that block in the journal. A block in the
journal can be in one of four states: logged, committed,
flushed, and free. These four states correspond to the
four journaling invariants described in Section 3.2. Note
that a block stays allocated (as explained in the Log in-
variant) during the logged, committed, and flushed states.

Based on writes to different types of journal blocks
(i.e., the descriptor blocks, metadata blocks, commit
blocks, and the journal superblock) and non-journal
blocks, the checker updates its data structures and the
block states, and enforces the journaling invariants de-
scribed in Section 3.2.

During a commit, if a new metadata pointer is found
without a corresponding new metadata block in the jour-
nal, we detect a violation of the commit invariant (that
all blocks should have been written before commit).

One complication with metadata-only journaling is
that Ext3 uses revoke records to indicate that a metadata
block has been freed, and could be reused as a data block
that is updated non-atomically. As a result, any versions
of this block in previous transactions should no longer be
checkpointed or else the data block could be overwritten.
The checker handles such revoked blocks by marking
their status as checkpointed, so that the Checkpoint In-
variant does not fail if the containing transaction is freed
without seeing a write to that block.

4.4 Btrfs Implementation

Btrfs provides various features such as extent-based allo-
cation (which allows a single allocation record to cover
multiple blocks), back references (which help tasks like
online defragmentation) and writable snapshots (which
are isolated from the original version using copy-on-
write semantics). Btrfs uses shadow paging for ensuring
crash consistency, similar to the WAFL file system [15].

Btrfs uses multiple B-trees to store its metadata. A
root B-tree contains pointers to the roots of other B-
trees, including the main file system tree, snapshot trees,
and an extent tree that records allocation information.
Each B-tree consists of internal nodes and leaves. In-
ternal nodes contain an array of key/block-pointer pairs,
with the key representing the smallest key stored in the
pointed-to node or leaf, and the block pointer helping lo-
cate the child node or leaf on disk. All Btrfs metadata
blocks begin with a header that has a block checksum, a
generation number, and the id of the tree containing the
block.

We found that Btrfs can issue writes from concurrent
transactions. For example, blocks from the next transac-

7

302 12th USENIX Conference on File and Storage Technologies USENIX Association

tion can be written to disk before the current transaction
commit, but as expected, the next transaction blocks are
unreachable from the current transaction. As a result, the
Btrfs checker assumes that unreachable blocks belong to
a future transaction and delays processing them.

4.4.1 Interpreting Metadata

Btrfs uses shadow paging, so that when a leaf node is up-
dated, all its ancestor nodes are also updated. Because of
this property, the checker can use forward pointer traver-
sal on commit, starting from the superblock.

Btrfs uses an extent B-tree to store allocation infor-
mation, which the checker also uses to determine the al-
location status of blocks. Similarly, separating data and
metadata blocks on both the read and write paths is rel-
atively easy because Btrfs allocates separate large con-
tiguous regions for data and metadata. However, if Btrfs
is operating in a “mixed” region mode (not a common
configuration), data extents can be distinguished from
metadata extents by traversing the extent allocation tree
and examining the per-extent flags.

Btrfs uses typed and self-identifying metadata blocks.
Each metadata block has a header that stores the type
(node or leaf) and level of the block in the tree, and the
first key in the block is its identity, helping locate the
block in the tree. Btrfs also supports back references to
multiple snapshots, storing them with the allocation in-
formation in the extent tree.

Both back references and self-identifying metadata
blocks can be used independently to type and identify
blocks. We initially decided to implement a Btrfs run-
time checker because we thought that both of these prop-
erties would be useful for the runtime checker. However,
neither are necessary due to the forward pointer traversal
enabled by shadow paging.

4.4.2 Location Invariants

The checker ensures atomicity and durability by check-
ing that allocated blocks are never overwritten, which re-
quires looking up the extent allocation tree on each write.
For metadata-only shadow paging, a metadata flag in the
extent record is checked to implement the data-flush ex-
ception. While checking a transaction for consistency,
an invariant is tripped if a pointer to an unwritten block
is encountered within the updated tree.

5 Evaluation

We evaluate our runtime checker in terms of its ability to
detect violations of the location invariants, listed in Sec-
tion 3, and the performance impact of checking location
invariants in addition to consistency invariants for the

Ext3 and Btrfs file systems. We have implemented the
runtime checkers within the Linux kernel using the Re-
con framework, based on the approach described in the
previous sections. Our Btrfs implementation is based on
the Linux 2.6.35 kernel, which does not support passing
disk barrier and flush requests through the device map-
per, and so we cannot check for them. Recon for Ext3 is
implemented and tested on Linux 3.8.11.

5.1 Correctness

We evaluate the ability of our runtime checker to detect
the types of bugs described in Section 2.2. Specifically,
we inject errors into write operations issued to the block
layer that result in lost, misdirected, or corrupted writes.
We refer to these injected errors as corruptions. If writes
are correctly ordered, and no writes are lost, misdirected,
or corrupt, then the transaction mechanism is working
correctly. By deliberately altering writes to violate these
properties, we can evaluate whether the location invari-
ants can successfully protect the file system.

Our corruptor sits between the file system and the
checking system, and has the opportunity to act before
each write is visible to the checker. The actions the cor-
ruptor can take are: 1) discard a write (lost), 2) alter the
destination of the write (misdirect), or 3) alter a range of
bytes within the block being written (content). Because
the location invariants distinguish between several dif-
ferent types of blocks, we perform corruption in a type-
specific manner to increase our coverage of possible sce-
narios and to help explain any uncaught corruption. The
type of a block is determined by its destination, and in
the case of certain journal blocks, by the journal header
stored at the beginning of the block.

5.1.1 Corrupting Ext3

The corruptor can target one of four types of journal
blocks (journal metadata such as a descriptor block,
revoke, and commit blocks, and journaled file system
metadata block), or the two types of non-journal blocks
(file system metadata and data). To misdirect writes,
it must distinguish between free and allocated journal
space, and data and metadata locations outside the jour-
nal. When the corruptor targets a non-journal metadata
block write, it is emulating a bug that corrupts the check-
point write of that metadata block. When the corruptor
targets a data block write, it always misdirects the write
to a non-journal metadata block. Lost write and content
corruption types are not applied to data block writes.

Some corruptions may not violate location invariants
immediately. Instead, they may lead to a future operation
causing metadata corruption. For example, a lost write
to the journal cannot be detected when it is dropped, and

8

USENIX Association 12th USENIX Conference on File and Storage Technologies 303

Target Block Type Corruption Type
Journal Blocks Lost Misdirect Content

Descriptor 10 10 8
Commit 10 10 4
Revoke 10 10 4
Metadata 10 10 2

Non-Journal Blocks
Metadata 3 10 10
Data N/A 10 N/A

Table 1: Corruptions detected by location invariants.

the resulting transaction may still be consistent, but the
problem should be detected when the checkpoint write
targets a metadata location that has not been committed
to the journal. There are four distinct points in time when
a corruption may be detected: during the corrupted write,
at the next commit point, during the checkpoint of a cor-
rupted transaction, and during transaction free. Any cor-
ruption that occurred in the past must be caught before
a write harms the atomicity, durability, or consistency of
metadata on disk.

There are a total of 16 combinations of target block
types and corruption types, as shown in Table 1. We
perform 10 corruptions per combination. Out of 160
corruptions, 131 were detected by the location invari-
ants and 7 were detected by the consistency invariants
(all were content corruptions of metadata blocks in the
journal). We analyzed the remaining 22 corruptions that
did not trigger any invariant violations. There are two
situations in which we miss corruption events, but the
“corruptions” do not affect file system integrity. In the
case of random content corruptions to journal metadata,
much of the space in the block is unused and corruptions
to the unused area have no effect on the block seman-
tics. Together, these cases account for 14 of the missed
corruptions. Similarly, when unused space in a journaled
metadata block is corrupted, which occurred in one case,
no invariants are violated. We verified that the corrupted
space was unused by logging the range of bytes corrupted
and examining the target blocks. The final 7 missed cor-
ruptions were all lost checkpoint writes. In each case, we
verified that these writes were safe to omit because there
was already a newer version of the block committed to
the journal. In all the 22 cases where we didn’t catch the
corruption, the e2fsck offline checker also reported that
the file system was consistent.

5.1.2 Corrupting Btrfs

Testing the Btrfs location invariants is less involved,
since the invariants are simpler, as described in Sec-
tion 3.3. A buggy write in Btrfs can be redirected to
overwrite an existing data or metadata block, lost, or

redirected to the wrong free block. We simulated a meta-
data block being misdirected by the file system by chang-
ing the block’s header to match the new, incorrect loca-
tion, and updating the block checksum accordingly. Our
checker always detected misdirections that cause over-
writes of allocated data or metadata. Lost writes or writes
that are misdirected to an incorrect free block are always
detected by Recon during transaction processing, when a
new pointer is found to a block that is missing from its
write cache [10].

5.2 Performance

For benchmarking, we select three workload profiles
with different behaviors from the Filebench workload
generator. The varmail profile performs many small, syn-
chronous writes. The webserver profile reads many small
files concurrently (100 threads) in a large directory hi-
erarchy (250,000 files), while appending to a log. The
ms_nfs profile simulates a network file server, operating
on a file system with a file size distribution from a study
of Windows desktops [23].

All benchmarks were run on a dual-core 3.0 Ghz Xeon
server with 4GB of RAM. The target disk for the bench-
marks was a 250GB 7200rpm SATA drive. We allocated
256 MB of memory to the Recon caches [10]. The per-
formance results account for Recon’s memory usage be-
cause Linux implements a shared page cache, and so with
Recon, this memory is not available to the file system
cache.

Figures 1 and 2 show the benchmark throughput, and
the time to initialize the benchmark’s file system tree
(setup time), averaged over 5 runs, for the Ext3 and the
Btrfs file systems. Each graph shows the performance of
the native file system, the file system with consistency
checking enabled, and the file system with consistency
and location checking enabled. These figures show that
the overhead of checking location invariants is minimal
compared to the existing overhead of checking consis-
tency invariants in Recon. Even though the location in-
variants require a check on every write, this check is usu-
ally quick and takes advantage of the cached metadata.

Figure 1 shows that runtime consistency checking has
relatively low overhead for the Ext3 file system. Fig-
ure 2 shows that the checking overhead is slightly higher
for the Btrfs file system. The total amount of metadata
is higher in Btrfs, due to its increased internal redun-
dancy and larger data structures, putting more pressure
on the Recon caches. The rapid reallocation of metadata
blocks in a copy-on-write system makes it important to
promptly evict blocks in the Recon caches that are no
longer referenced.

The varmail and ms_nfs profiles show minimal over-
heads. Surprisingly, the most significant impact on per-

9

304 12th USENIX Conference on File and Storage Technologies USENIX Association

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

O
pe

ra
tio

ns
/s

ec
on

d
Throughput

varmail webserver ms_nfs

Native Ext3
Consistency

Consistency + Location

 0

 100

 200

 300

 400

 500

Ti
m

e
(s

ec
on

ds
)

Setup Time

varmail webserver ms_nfs

Native Ext3
Consistency

Consistency + Location

Figure 1: Performance on FileBench workloads for Ext3

formance occurs for the webserver profile, which is a
read-heavy benchmark. On closer analysis, we found
that it generates significant metadata write traffic due
to timestamp updates, which affects read performance.
With the noatime mount option enabled, performance
reaches roughly 90% of native performance.

6 Designing Checkable File Systems

Section 4.1 describes the four requirements of a runtime
checker that make it feasible to check invariants effi-
ciently at the block layer: 1) well-defined consistency
points, 2) easily accessible allocation information, 3)
easily distinguishable data versus metadata blocks, and
4) easily available block identity information. In this
section, we describe how well various file systems meet
these requirements. Table 2 provides a summary of our
analysis. Then we recommend features that make file
systems easily checkable at runtime.

6.1 Analysis of File System Design

No-Ordering FS: NoFS [6] aims to provide file system
consistency in the face of poorly-behaved hardware that
ignores ordering constraints and flush commands. They
propose a novel commit-less approach to providing crash
consistency by adding a backpointer to every block by
using the out-of-band bytes provided by some devices,
enabling atomic write of the block and its backpointer
together. The backpointer makes it possible to identify
the contents of blocks. NoFS performs block allocation

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

O
pe

ra
tio

ns
/s

ec
on

d

Throughput

varmail webserver ms_nfs

Native Btrfs
Consistency

Consistency + Location

 0

 50

 100

 150

 200

 250

Ti
m

e
(s

ec
on

ds
)

Setup Time

varmail webserver ms_nfs

Native Btrfs
Consistency

Consistency + Location

Figure 2: Performance on FileBench workloads for Btrfs

based on an in-memory bitmap, thus avoiding any con-
sistency issues between pointers and a persistent bitmap.
Determining the allocation status at the block layer is
expensive because it requires reading the block and its
parent block to determine if a bidirectional pointer rela-
tionship exists between them. Unfortunately, NoFS does
not provide any ordering guarantees by design, and thus
lacks consistency points, and any consistency or location
invariants. As a result, it is not possible to check any in-
variants in NoFS. Bugs in NoFS that cause data corrup-
tion would not be easily detectable by an offline checker
as well.

FFS with Soft Updates: The soft updates mechanism
provides crash consistency in an update-in-place file sys-
tem without requiring journaling. Soft updates impose a
partial order on writes and prevent cyclic dependencies
between blocks by using a temporary in-memory roll-
back mechanism. Blocks and inodes can “leak” after a
crash, but this problem is much less severe than blocks or
inodes being overwritten while still in use. The ordering
of writes allows some invariants to be checked (for exam-
ple, you can’t write a pointer to a newly-allocated block
before you initialize the block). However, soft updates
are not transactional and thus lack consistency points,
and so most file system invariants cannot be checked be-
cause data might always be in flight.

Ext3: We have described the Ext3 file system properties
in detail in Section 4.3. Ext3 provides consistency points
and allocation information, but it mixes dynamically
allocated metadata (directory data and indirect blocks)
with data, thus requiring a full file system scan to distin-

10

USENIX Association 12th USENIX Conference on File and Storage Technologies 305

Consistency Points Allocation Information Separate Metadata Block Identity
NoFS X
Soft Updates X
Ext3 X X
RExt3 X X X X
Btrfs X X X X

Table 2: Designing Checkable File Systems

guish data from metadata at the block layer. Instead, we
distinguish the two types of blocks by retrofitting Ext3
with a metadata bitmap, as described in Section 4.3. In
addition, the dynamically allocated metadata blocks can-
not be easily identified, because they do not contain type
information or information about the inode that points to
them. We solve this problem by using in-memory back
references in the checker.

RExt3: RExt3 [19] is a variant of ext3 that is optimized
for a fast, offline file system checker called ffsck. Speed-
ing up offline fsck involved two changes to the file sys-
tem format, the co-location of metadata within metadata
regions, and the addition of backpointers associating dy-
namically allocated metadata with their corresponding
inodes. The separation of metadata and data into two re-
gions makes it possible to distinguish between them with
low overhead. With the addition of backpointers, the run-
time checker for RExt3 will not need to use in-memory
back references, thus reducing the memory overhead of
the checker.
Btrfs: We have described the Btrfs properties in detail
in Section 4.4. Btrfs provides consistency points, and it
uses a separate extent tree to store allocation informa-
tion. The extent records specify whether an allocated
extent is data or metadata, and also record backpointers
for the extent. Since Btrfs allows snapshots, some ex-
tents (both data and metadata) may have multiple parent
blocks which point to them. A runtime checking system
can identify metadata by its placement in a designated
area, or by looking up the metadata flag in the extent
tree. Furthermore, the contents of a metadata block can
be identified based on the header structure shared by all
metadata blocks. The shadow paging location invariants
are easier to verify than their journaling equivalents be-
cause there is less state that needs to be tracked.

6.2 Design Recommendations
Based on our analysis of these file systems, we now sug-
gest design features that enable efficient runtime check-
ing of file systems. We expect that these same features
will help implementing other file-system aware storage
applications, such as differentiated storage services [22].

Consistency points are essential for runtime checking.
While new file systems, possibly running on new hard-
ware, may avoid providing consistency points, the result-
ing loss in protection is a serious issue. Easily acces-
sible allocation information at the block layer, such as
in bitmaps in fixed locations, allows enforcing location
invariants efficiently. Other applications, like scrubbers
and secure delete utilities, can also benefit from knowing
the allocation status of a block. Separating data from
metadata in well-defined regions allows distinguishing
between them with low overhead because there is no
need to lookup this information in bitmaps or trees. This
approach also allows other policies, such as replication
and placement, to be applied to contiguous metadata re-
gions with ease. Fortunately, the mixing of metadata
and data for performance reasons has been obsoleted by
large disk caches [19]. Finally, backpointer informa-
tion helps identify blocks at the block layer efficiently.
This information is especially useful for dynamically al-
located metadata in update-in-place file systems, because
the checker may need to interpret an arbitrary block with-
out knowing its position in the file system tree.

7 Related Work

We describe closely related work in the areas of runtime
and offline file system consistency checking, and smart
disk interfaces. Static bug finding tools [35] can reveal
scores of bugs in file systems, but they can suffer from
typical scalability issues, necessitating runtime check-
ing. ZFS [5] uses a checksum-based runtime consistency
checker for detecting and repairing file system corrup-
tion caused by storage hardware, e.g., latent sector errors,
but it may not detect corruption caused by software bugs.
Based on several requests, a check for location and some
consistency invariants was added to Btrfs as a debugging
tool [4]. These checks catch common errors, but they
are embedded within the file system code itself, and so,
for example, a file system bug could disable them. En-
vyFS [3] uses N-version programming for detecting file
system bugs at runtime. It uses the common VFS inter-
face to pass each VFS-layer file system request to three
child file systems and uses voting when returning results.
The runtime overheads of this approach are high and sub-
tle differences in file system semantics can make it hard

11

306 12th USENIX Conference on File and Storage Technologies USENIX Association

to compare results. HARDFS [8] detects software bugs
in the Hadoop distributed file system (HDFS) at run-
time by interposing on network messages and I/O, and
verifies that the HDFS implementation behaves accord-
ing to its operational specification. The verification state
is compressed using bloom filters, significantly reducing
the memory overhead. HARDFS can check certain end-
to-end properties that a consistency checker cannot, such
as whether a request was performed, but HARDFS does
not attempt to catch all failures or guarantee that it will
not raise false alarms.

Once a bug is detected at runtime, Membrane [31] pro-
poses tolerating bugs by transparently restarting a failed
file system. It assumes that file system bugs will lead to
detectable, fail-stop crash failures. However, inconsis-
tencies may have propagated to the on-disk metadata by
the time the crash occurs. Our approach is complemen-
tary to Membrane, rather than waiting for the file sys-
tem to crash, a restart could be initiated when a runtime
checker detects an invariant violation.

Recently, there has been significant interest in improv-
ing the performance and robustness of offline consis-
tency checkers. The rext3 file system [19] uses back-
pointers and collocates its metadata blocks, allowing its
ffsck checker to scan the file system at rates close to the
sequential bandwidth of the drive. Chunkfs [14] reduces
the time to check consistency by breaking the file sys-
tem into chunks that can be checked independent of each
other. The SQCK offline consistency checker [13] ex-
presses file system consistency properties declaratively,
demonstrating that file system checks and repairs are
more easily understood when expressed as SQL queries.
It improves upon the repairs made by e2fsck by correct-
ing the order in which certain repairs are performed and
by using redundant information already provided by the
file system. The SWIFT tool [2] tests the correctness of
offline file system checker recovery code by leveraging
the file system checker itself or by comparing the out-
puts of multiple checkers.

Our checker leverages ideas from semantically-smart
disks [30], which use probing to gather detailed knowl-
edge of file system behavior, allowing functionality or
performance to be enhanced transparently at the block
layer. Sivathanu et al. [29] provide a logic of file sys-
tems that helps reason about the correctness of smart
disks. I/O shepherding [12] builds on smart disks, al-
lows a file system developer to write reliability policies
to detect and recover from a wide range of storage sys-
tem failures. Unlike smart disks, a type-safe disk extends
the disk interface by exposing primitives for block allo-
cation [28], which helps enforce invariants such as pre-
venting accesses to unallocated blocks.

8 Conclusion

We have presented the design of runtime file system
checkers that can reliably detect file system bugs before
they cause file system inconsistency. We show that the
runtime checker needs to check location invariants on
every write. These invariants enforce the atomicity and
durability properties of the file system, helping preserve
the integrity of committed transactions. Together with
checking consistency properties on commit, the checker
can provide the strong guarantee that every block write
will preserve file system consistency.

We have implemented runtime checkers for the Ext3
journaling file system and the Btrfs copy-on-write file
system. Our experimental results show that while con-
sistency checking imposes some performance overhead,
checking location invariants has almost no additional
overhead. The Ext3 file system checker has low overhead
but the Btrfs checker has higher overhead due to a higher
metadata load. We are currently working on improving
the Btrfs checker performance with better caching poli-
cies. Btrfs keeps a log to enable fast sync operations. We
plan to implement our journaling invariants for this log.
We expect that the checker overhead will be higher on
faster storage devices, such as flash. We plan to evaluate
this overhead in detail in the future.

We have shown that four file system features ease the
design of runtime checkers, and enable checking invari-
ants efficiently: 1) consistency points at which the file
system is expected to be consistent on disk, 2) easily
accessible allocation information at the block level, 3)
distinguishable data versus metadata blocks at the block
layer, and 4) backpointers for block typing and identifi-
cation. We expect that these file system features will be-
nefit other file-system aware storage applications as well.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Remzi Arpaci-Dusseau, for their detailed comments on
this work. We also thank Andrei Soltan for designing
and implementing the metadata bitmap for the Ext3 file
system. We had many discussions and received feedback
about this work from several members of the Computer
Systems and Networking group and the SSRG group at
the University of Toronto. Ali Hashemi provided invalu-
able system administration support. This research was
supported by NSERC through the Discovery Grants and
Graduate Scholarships programs.

12

USENIX Association 12th USENIX Conference on File and Storage Technologies 307

References

[1] Bit stuffing. http://en.wikipedia.org/wiki/
Bit_stuffing.

[2] Jo ao Carlos Menezes Carreira, Rodrigo Rodrigues,
George Candea, and Rupak Majumdar. Scalable
testing of file system checkers. In Proceedings of
the ACM SIGOPS European Conference on Com-
puter Systems (Eurosys), pages 239–252, 2012.

[3] Lakshmi N. Bairavasundaram, Swaminathan
Sundararaman, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Tolerating file-system
mistakes with envyfs. In Proceedings of the
USENIX Technical Conference, June 2009.

[4] Stephen Behrens. Btrfs: runtime integrity
check tool, November 2011. http://lwn.net/
Articles/466493.

[5] J. Bonwick and B. Moore. ZFS - The Last Word
in File Systems. http://opensolaris.org/os/
community/zfs/docs/zfs_last.pdf.

[6] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency without ordering. In Proceedings of
the USENIX Conference on File and Storage Tech-
nologies (FAST), February 2012.

[7] Helen Custer. Inside the Windows NT File System.
Microsoft Press, 1994.

[8] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. HARDFS: Hardening HDFS with
selective and lightweight versioning. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (FAST), February 2013.

[9] Chris Mason et al. Btrfs. http://btrfs.wiki.
kernel.org.

[10] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao
Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying file system
consistency at runtime. ACM Transactions on Stor-
age, 8(4):15:1–15:29, December 2012.

[11] Duane Griffin. jbd: correctly unescape journal
data blocks, March 2008. http://kerneltrap.
org/mailarchive/git-commits-head/2008/
3/20/1206404/thread.

[12] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha
Krishnan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Improving file system

reliability with I/O shepherding. In Proceedings of
the Symposium on Operating Systems Principles
(SOSP), pages 293–306, 2007.

[13] Haryadi S. Gunawi, Abhishek Rajimwale, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. SQCK: A declarative file system checker.
In Proceedings of the Operating Systems Design
and Implementation (OSDI), December 2008.

[14] Val Henson, Arjan van de Ven, Amit Gud, and Zach
Brown. Chunkfs: Using divide-and-conquer to im-
prove file system reliability and repair. In Proceed-
ings of the Workshop on Hot Topics in System De-
pendability (HotDep), 2006.

[15] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance. In
Proceedings of the USENIX Technical Conference,
1994.

[16] Jan Kara. ext4: Always journal quota
file modifications, June 2010. http:
//www.kerneltrap.org/mailarchive/
linux-ext4/2010/6/2/6884775.

[17] Jan Kara. jbd: Write journal superblock with
WRITE_FUA after checkpointing, April 2012.
https://git.kernel.org/cgit/linux/
kernel/git/tytso/ext4.git/commit/?id=
fd2cbd4dfa3db477dd6226d387d3f1911d36a6a9.

[18] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of Linux file
system evolution. In Proceedings of the USENIX
Conference on File and Storage Technolo-gies
(FAST), February 2013.

[19] Ao Ma, Charlotte Dragga, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. ffsck: The
fast file system checker. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST), February 2013.

[20] Peter Macko, Margo Seltzer, and Keith A. Smith.
Tracking back references in a write-anywhere file
system. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), 2010.

[21] Chris Mason, November 2011. https:
//git.kernel.org/cgit/linux/kernel/
git/tytso/ext4.git/commit/?id=
387125fc722a8ed432066b85a552917343bdafca.

[22] Michael Mesnier, Feng Chen, Tian Luo, and Ja-
son B. Akers. Differentiated storage services. In
Proceedings of the Symposium on Operating Sys-
tems Principles (SOSP), pages 57–70, 2011.

13

308 12th USENIX Conference on File and Storage Technologies USENIX Association

[23] Dutch T. Meyer and William J. Bolosky. A study
of practical deduplication. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST), 2011.

[24] Rich Miller. Joyent Services Back
After 8 Day Outage, January 2008.
http://www.datacenterknowledge.
com/archives/2008/01/21/
joyent-services-back-after-8-day-outage/.

[25] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON file systems. In Proceedings of
the Symposium on Operating Systems Principles
(SOSP), pages 206–220, 2005.

[26] Ohad Rodeh, Josef Bacik, and Chris Mason.
Btrfs: The linux b-tree filesystem. Trans. Storage,
9(3):9:1–9:32, August 2013.

[27] Eric Sandeen. ext4: fix unjournaled inode bitmap
modification, October 2012. https://lwn.net/
Articles/521819/.

[28] Gopalan Sivathanu, Swaminathan Sundararaman,
and Erez Zadok. Type-safe disks. In Proceedings of
the Operating Systems Design and Implementation
(OSDI), pages 15–28, 2006.

[29] Muthian Sivathanu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Somesh Jha. A
logic of file systems. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST), 2005.

[30] Muthian Sivathanu, Vijayan Prabhakaran, Flo-
rentina I. Popovici, Timothy E. Denehy, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Semantically-smart disk systems. In USENIX Con-
ference on File and Storage Technologies (FAST),
pages 73–88, 2003.

[31] Swaminathan Sundararaman, Sriram Subramanian,
Abhishek Rajimwale, Andrea C. Arpaci-dusseau,
Remzi H. Arpaci-dusseau, and Michael M.
Swift. Membrane: Operating system support for
restartable file systems. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST), 2010.

[32] Adam Sweeney, Doug Doucette, Wei Hu, Curtis
Anderson, Mike Nishimoto, and Geoff Peck. Scal-
ability in the XFS file system. In Proceedings of the
USENIX Technical Conference, pages 1–14, 1996.

[33] Theodore Ts’o. Re: Apparent serious progressive
ext4 data corruption bug in 3.6.3, October 2012.
https://lkml.org/lkml/2012/10/23/690.

[34] Stephen C. Tweedie. Journalling the ext2fs filesys-
tem. In Proceedings of the 4th Annual Linux Expo,
May 1998.

[35] Junfeng Yang, Paul Twohey, Dawson Engler, and
Madanlal Musuvathi. Using model checking to find
serious file system errors. ACM Transactions on
Computer Systems, 24(4):393–423, 2006.

[36] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end data integrity for file systems: a ZFS
case study. In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST),
2010.

14

USENIX Association 12th USENIX Conference on File and Storage Technologies 309

DC Express: Shortest Latency Protocol for Reading Phase Change
Memory over PCI Express

Dejan Vučinić,1 Qingbo Wang,1 Cyril Guyot,1 Robert Mateescu,1 Filip Blagojević,1 Luiz Franca-
Neto,1 Damien Le Moal,1 Trevor Bunker,2 Jian Xu,2 Steven Swanson2 and Zvonimir Bandić1

1HGST San Jose Research Center, 2University of California, San Diego

Abstract
Phase Change Memory (PCM) presents an architec-

tural challenge: writing to it is slow enough to make
attaching it to a CPU’s main memory controller imprac-
tical, yet reading from it is so fast that using it in a pe-
ripheral storage device would leave much of its per-
formance potential untapped at low command queue
depths, throttled by the high latencies of the common
peripheral buses and existing device protocols.

Here we explore the limits of communication la-
tency with a PCM-based storage device over PCI Ex-
press. We devised a communication protocol, dubbed
DC Express, where the device continuously polls read
command queues in host memory without waiting for
host-driven initiation, and completion signals are elimi-
nated in favor of a novel completion detection proce-
dure that marks receive buffers in host memory with
incomplete tags and monitors their disappearance. By
eliminating superfluous PCI Express packets and con-
text switches in this manner we are able to exceed
700,000 IOPS on small random reads at queue depth 1.

1 Introduction
The development of NAND flash and the market

adoption of flash-based storage peripherals has exposed
the limitations of a prior generation of device interfaces
(SATA, SAS), prompting the creation of NVM Express
[1] (NVMe), a simplified protocol for Non-Volatile
Memory (NVM) storage attached to PCI Express. In the
course of researching the capabilities of several novel
memory technologies vying to displace flash, we set out
to build NVMe-compliant prototypes as technology
demonstrators. We found, however, that the maximal
performance permitted by NVMe throttles the potential
of many emerging memory cell technologies.

Phase Change Memory, one of the most promising
contenders, achieves non-volatility by re-melting a ma-
terial with two distinguishable solid phases to store two
or more different bit values. Discovered in 1968 [2],
this effect is today widely used in DVD-RW media, and
is now making inroads into lithographed memory de-
vices thanks to its favorable device size and scaling
properties [3], high endurance [4] and very fast readout.

The most dramatic advantage PCM has over NAND
flash is that its readout latency is shorter by more than
two orders of magnitude. While its write latency is
about fifty times longer than reads at current litho-
graphic limits, it is already comparable with NAND
flash and is expected to improve further with advances
in lithography [5]. This makes PCM a very attractive
alternative in the settings where the workload is domi-
nated by reads.

The main motivation for the work we present in this
paper is the desire to build a block storage device that
takes advantage of the fast readout of PCM to achieve
the greatest number of input-output operations per sec-
ond (IOPS) permitted by the low physical latency of the
memory medium. While spectacular numbers [6] of
IOPS are touted for flash-based devices, such perform-
ance is only possible at impractically high queue
depths. The fact remains that most practical data center
usage patterns revolve around low queue depths [7, 8],
especially under completion latency bounds [9]. The
most critical metric of device performance in many
settings is the round-trip latency to the storage device as
opposed to the total bandwidth achievable: the latter
scales easily with device bus width and speed, unlike
the former. Under this more stringent criterion, modern
flash-based SSDs top out around 13 kIOPS for small
random reads at queue depth 1, limited by over 70 µs of
readout latency of the memory medium (our measure-
ments).

Here we describe how, starting from NVMe as the
state of the art, we proceeded to slim down the read-
side protocol by eliminating unnecessary packet ex-
changes over PCI Express and by avoiding mode and
context switching. In this manner we were able to re-
duce the average round-trip protocol latency to just over
1 µs, a tenfold improvement over our current imple-
mentation of NVMe-compliant interface protocol. The
resulting protocol, DC Express, exceeds 700 kIOPS at
queue depth 1 on a simple benchmark with 512 B reads
from PCM across a 4-lane 5 GT/s PCI Express inter-
face, with modest impact on the total power consump-
tion of the system.

We believe one cannot go much faster without re-
tooling the physical link to the storage device.

310 12th USENIX Conference on File and Storage Technologies USENIX Association

2 Endpoint-initiated queue processing
Prompted by the observation that the latency of one

PCI Express packet exchange exceeds the time required
to transfer a kilobyte of data, the approach we took to
try to maximize the performance of a small read opera-
tion was to eliminate all unnecessary packet exchanges.
At a minimum, even the leanest protocol requires a way
to initiate and complete a transaction. In this section we
describe endpoint-driven queue polling as an alternative
to “doorbell” signals traditionally used for initiation; in
the next section we discuss a minimalist way of signal-
ing completion.

A rough outline of one NVMe-compliant read op-
eration is shown in Figure 1a. The protocol for reading
one block from the storage device begins with the host
CPU preparing a read command in host DRAM and
initiating the transaction by sending a “doorbell” packet
over PCI Express. This is a signal to the device that
there is a new read command waiting, hence it is to
initiate a direct memory access (DMA) request—
another PCI Express packet—to pick up that command
from the queue in host DRAM.

Since every round trip over PCI Express incurs well
over 0.6 µs latency on today’s fastest hardware, with
such a protocol we waste a microsecond of back-and-
forth over the bus before the device can even com-

mence the actual reading of data from the non-volatile
storage medium. In the past, with the fundamental read
latency of NAND flash between 25 and 80 µs, this extra
request latency was but a small fraction of total transac-
tion time and so was deemed negligible. In contrast, the
fundamental latency to first byte read from a modern
PCM chip is 110 ns, so now the protocol becomes se-
verely limiting when trying to maximize the overall
performance of the storage device for small random
reads at queue depth 1.

 The most important regime we strive to optimize
for is at high load. In this case there will almost always
be a new command waiting in the queue should the
device ask for one, making the sending of a doorbell
signal for every small read superfluous. In the quest for
best performance under these conditions latency be-
comes the key factor, and a given fraction of “no news”
transfers we treat as an acceptable overhead.

With this scenario in mind, and taking advantage of
the full-duplex nature of PCI Express, we present the
first key ingredient of DC Express in Figures 1b and 1c.
The device keeps sending out requests for one or more
commands in the read queue in host DRAM without
waiting for doorbell signals, so that there is almost al-
ways a request “in flight.” Further, since we can probe
the actual round-trip latency for one DMA request to
complete on given hardware, we can send anticipatory

Figure 1: Timing diagrams illustrating the NVM Express and DC Express protocols. Time flows down, drawings are not
to scale. a) NVMe: host CPU enqueues (enq) a command and rings doorbell; the device sends DMA request for the queue
entry; the DMA response arrives; the command is parsed and data packets sent to the host DRAM, followed by comple-
tion queue entry and interrupt assertion; the host CPU thread handles interrupt. Red bars at right mark irreducible protocol
latencies; rectangle illustrates the time when PCM is actually read. b) DC Express protocol at queue depth 1. There are no
distinct doorbell nor completion signals. Device sends out DMA requests for new commands continuously. c) DC Express
at higher queue depths. Subsequent DMA requests (blue) for new commands are launched prior to completing data trans-
mission for the previous command (black) to take advantage of full-duplex nature of PCI Express and allow for seamless
transmission. d) DC Express checks completion by marking each TLP-sized chunk of the receive buffer with an incom-
plete tag (mark) then monitoring for their disappearance. In case of out-of-order arrival the incomplete tag is found in one
of the chunks (oops) prompting a longer wait for all the data to settle.

USENIX Association 12th USENIX Conference on File and Storage Technologies 311

queue read requests prior to sending all data packets for
a previous request so that the next commands, if avail-
able, arrive at the device just in time when the device is
able to service another command (Figure 1c).

3 Tagging receive buffers as incomplete
To notify the host process that a read operation from

NVM has completed, an NVMe-compliant PCI Express
endpoint writes an entry into a “completion” queue in
host DRAM with a DMA transaction, followed by the
assertion of an interrupt signal to wake up the sleeping
thread (cf. Figure 1a). This protocol has two adverse
performance implications in addition to the bandwidth
consumed by the completion signal itself.

First, PCI Express allows for out-of-order arrival of
transaction-level packets (TLPs), meaning that the pos-
sibility exists for the completion packet to settle into
DRAM prior to all its data having arrived—which
would open a window for data corruption of random
duration (cf. Figure 1d). To ensure that all the data
packets have reached host DRAM prior to issuing the
completion signal, the endpoint must declare “strict
packet ordering” for that traffic class by setting a par-
ticular bit in the TLP header. Since PCI Express flow
control works by prior exchange of “transaction cred-
its,” one subtle negative effect of strict ordering is that
any delayed data packet and all its successors, including
the corresponding completion packet, will be holding
up the credits available until all the transactions com-
plete in turn, which can slow down the rest of PCI Ex-
press traffic.

Second, the context switching [10] and mode
switching overhead of interrupt-based completion sig-
naling can easily exceed the latency of a small PCM
read operation by two orders of magnitude. On a mod-
ern x86 processor running Linux, two context switches
between processes on the same core take no less than
1.1 µs, so it is imprudent to relinquish the time slice if
the read from the storage device is likely to complete in
less time. Even if the interrupt signal is ignored by a
polling host CPU, the act of asserting it entails transmit-
ting a packet over the PCI Express link—which again
results in a small penalty on the maximal payload
bandwidth remaining.

To avoid these performance penalties, we reasoned
that the lowest latency test of payload’s arrival into
DRAM would be to simply poll the content of the trail-
ing bits in the receive buffer from a CPU thread: seeing
them change would be the signal that the read operation
has completed. This spin-wait would not necessarily
increase CPU utilization since the cycles spent waiting
for request completions would otherwise be spent on
context switching and interrupt handling.

There are two obstacles to implementing this simple
protocol. As already mentioned, the individual TLPs
that comprise one read operation may arrive into
DRAM out of order, so the last word does not guaran-
tee the arrival of the entire buffer. And, the CPU does
not know what final bits to look for until they have al-
ready been read from the device.

The solution, and the second key ingredient of DC
Express, we elaborate in Figures 1d and 2. Since the
granularity of TLPs on a given PCI Express link is
known, in addition to checking the trailing bits of the
entire receive buffer the protocol also checks the trail-
ing bits of every TLP-sized chunk of host DRAM. In
the event of out-of-order packet reception, such check-
ing will reveal a chunk that has not yet settled, as
shown in the bottom panel of Figure 2.

Instead of looking for particular bit patterns to ar-
rive into the trailing bits of every atomic transfer, we
choose an “incomplete tag,” a pre-selected bit pattern
that does not appear in the data that is about to arrive
from the device. The protocol then writes this known
tag to the receive buffer prior to initiating the read op-
eration, and looks for its disappearance from the loca-
tion of every packet’s trailing bits as the robust comple-
tion signal. In this way we are using the fast link from
CPU to DRAM to avoid sending any extraneous bits or
packets over the much slower PCI Express link.

Figure 2: Detecting completion by pre-populating loca-
tions of packet trailing bits in the receive buffer with
incomplete tags. The disappearance of all incomplete
tags is a robust signal that the entire data transfer has
completed.

312 12th USENIX Conference on File and Storage Technologies USENIX Association

3.1 Strategy for choosing incomplete tag value
Obviously, the bit pattern used for the incomplete

tag in our scheme must be different from the trailing
bits of every TLP arriving. If we choose a pattern of
length greater than log2(C/P) bits (cf. Figure 2), where
C is the total capacity of the storage device and P the
size of one TLP, then in principle we can always select
a pattern such that no TLP arriving from that particular
storage device at that time will have trailing bits that
match our choice of pattern. Note that this characteristic
of storage device interfaces is different from, for in-
stance, network interface protocols, where we are not
privy to the content of arriving data even in principle.

One very simple strategy for choosing the pattern
for the incomplete tag is to pick it at random. Although
probabilistic, this method is adequate for the vast ma-
jority of computing applications that have no hard real
time latency bounds.

Let’s illustrate for the case of a device with 128 GiB
of PCM and 128 B size of TLP payload. Dividing de-
vice capacity by the TLP size,1 there are 230 possible
values at the trailing end of any one TLP-sized transfer.
If we set the size for the incomplete tag at 32 bits, a
randomly generated 32-bit pattern will then have at
most 230/232 = 25% chance of being repeated some-
where on the storage device—the worst case scenario
where every one of the 230 possible patterns is present
on the device. If the random choice was unlucky and
the generated pattern is present on the device, that read
operation will get stuck since the arrival of that packet
will go unnoticed, i.e. there will be a “collision.”

The strategy, then, is to pick the length of the tag
such that we can declare the probability of collision to
be low enough. If it encounters a collision, the protocol
simply times out the stuck read operation and chooses a
new tag at random before retrying. The time to timeout
we set to the product of maximum queue depth and
maximum latency to complete one read operation.

For applications that do have hard real time latency
bounds it is possible to devise more complex strategies
such that the incomplete tag value is always chosen so
no collision is possible. This would be done at the stor-
age device at first power-up and whenever a write to the
device invalidates the existing choice of pattern. One
such strategy would be for the device to pick values at
random and compare internally with the current con-
tents of the device. This would incur no communication
overhead as the storage medium accesses would be
confined to the PCM controller on the device. If even

1 We assume only block-aligned reads are allowed.

that much latency cannot be tolerated, additional com-
puting resources can be provided in the device to moni-
tor writes to keep track of intervals of values not pre-
sent in the currently stored data so that the selection of
a new tag can always complete in constant time.

4 Performance
To implement DC Express we built a prototype

NVM storage device (Figure 3) using a BEE4 FPGA
platform (BEEcube, Inc., Fremont, CA) equipped with
a custom-built DIMM card containing 5 Gib of Phase
Change Memory (Micron NFR0A2B0D125C50). The
NVM device exposed a 4-lane 5 GT/s (“gen2”) PCI
Express link from a Virtex6 FPGA running a custom
memory controller that communicated with the PCM
chips over the LPDDR2-NVM bus. The host systems
used for testing included a Dell R720 server with an
Intel Xeon E5-2690 CPU (Sandy Bridge-EP, Tur-
boBoost to 3.8 GHz) and a Z77 Extreme4-M mother-
board with an Intel i7-2600 CPU (Sandy Bridge, Tur-
boBoost to 3.4 GHz). The NVM device was normally
connected to the PCI Express lanes on the CPU dies.
Alternatively, on the Z77 host we could use the lanes
connecting to the Z77 chipset to measure the impact of
the retransmission. All measurements were done on

Figure 3: Diagram of our prototype system.

Figure 4: Average latency of a small random read opera-
tion when using the DC Express protocol at queue depth 1.

USENIX Association 12th USENIX Conference on File and Storage Technologies 313

Linux kernel version 3.5 (Ubuntu and Fedora distribu-
tions).

We first exercised the bare protocol from a user
space process by mmap()-ing a kernel buffer where the
queues and receive buffer locations were pre-allocated.
This allowed measurement of raw performance without
mode or context switching overhead. The results are
shown in Figure 4 for different transfer sizes. We de-
signed the NVM device so that the bandwidth of data
retrieval from PCM matches that of PCI Express trans-
mission. Therefore, only the initial PCM row activation
and local LPDDR2-NVM memory bus overhead (red)
contribute to the irreducible protocol latency; the re-
mainder is pipelined with PCI Express transfer (green).
The remaining (cyan) component consists of PCI Ex-
press packet handling and command parsing, in addi-
tion to the polling from both ends of the link.

When we exercise the protocol in a tight loop, or
with predictable timing in general, we can adjust the
endpoint polling to anticipate the times of arrival of
new commands into the read queue so that a new com-
mand gets picked up by the queue DMA request soon
after its arrival into the queue. The total round-trip la-
tency for this use case (shown by the solid black line in
Figure 4) we measured as the inverse of the total num-
ber of read operations executed in a tight loop. For tra-
ditional 512 B blocks (arrow in Figure 4) the total la-
tency seen by a user-space process averages 1.4 µs,
over 700,000 IOPS.

If we fully randomize read command arrival times
so that no predictive optimization of endpoint-driven
queue polling is possible, there is additional latency
incurred by the average delay between the arrival of a
read command into the queue and the time when the
next queue DMA hits. For this use case we measured
the completion latencies using Intel CPU’s time stamp
counter (dashed blue line in Figure 4).

Next we constructed a lightweight block device
driver to measure the impact of kernel entry and exit.
We derived our driver from the Linux ramdisk device
example. The read block size was limited to 4 kiB. We
list the additional latencies in Table 5. One memory-to-
memory copy of the retrieved block accounts for a
small fraction of the time spent inside the block driver.
Note that the tool used for measuring the latency of the
block device, fio, contributes a significant amount of its
own latency to these measurements. For comparison,
our current implementation of NVMe-compliant device
accessed through the Linux NVMe device driver under
similar conditions reaches 78 kIOPS at queue depth 1,
nearly 13 µs per 4 kiB read operation.

The latencies measured on the i7 system were com-
parable to those on the E5 server system when our de-
vice was connected to CPU lanes. Routing the packets
through the Z77 chipset resulted in about two micro-
seconds of additional latency per PCI Express round
trip.

4.1 Power and congestion considerations
One concern with a protocol that continuously que-

ries the host DRAM for new commands is the waste of
resources at idle. To better understand the magnitude of
this component relative to the baseline idle consump-
tion of a modern server configuration, for this exercise
we disabled all but one core on the single socket popu-
lated by the E5-2690 on the Dell R720 server equipped
with 16 GiB of DDR3-1600 DRAM.

In Figure 6 we show the dependence of DC Express
protocol performance and system power usage on the
clock frequency of the CPU core doing the spin-wait.
As expected, higher polling frequency reduces the aver-
age round-trip latency. Surprisingly, the optimal operat-
ing point, as defined by the Joules-per-IOP measure, is
not at the lowest core frequency. Dominated by the

component latency [µs] kIOPS
data transfer (4 kiB) 2.432

PCM read 0.368
protocol + command parsing 0.863 273(1)

block driver 0.99
read() call (kernel entry/exit) 1.17

fio 0.506 158(2)

Table 5: Breakdown of contributions to average round-
trip latency of DC Express for 4 kiB random reads at
queue depth 1. IOPS were measured from a user space
process (1) or linux block device driver (2). The total
latency to a given layer is the sum of all latencies above it.

Figure 6: DC Express protocol performance for 512 B
packets and total server power consumption as a function
of the E5-2690 CPU core frequency.

314 12th USENIX Conference on File and Storage Technologies USENIX Association

significant idle power consumption of the entire server,
the energy cost of one read operation stays relatively
flat at low clock settings, suggesting a cost-optimal
operating point near 2 GHz for this configuration (ar-
row in Figure 6) before hardware depreciation is taken
into account.

Note that the overall impact of constant polling
from the PCI Express endpoint is modest, about six
percent of idle power consumption of the server. This is
the worst case scenario where there is always a DMA
request in flight, i.e. at queue depth 1 every other read
of the command queue is guaranteed to be wasted. In
this regime, fetching one 64 B command at a time
would tie up less than six percent of the upstream PCI
Express bandwidth.

5 Discussion
In this paper we described our attempts to wring the

last drop of performance out of the widely adopted PCI
Express interface, driven by the possibility of much
higher performance frontiers uncovered by Phase
Change Memory and other emerging non-volatile stor-
age technologies. By eliminating unnecessary packet
exchanges and avoiding context and mode switching
we were able to surpass 700,000 IOPS at queue depth 1
when reading from a PCM storage device on commod-
ity hardware. The performance increases further for
smaller transfers to just under a million reads per sec-
ond, the hard limit set by bus and protocol latency. By
increasing the number of PCI Express lanes or the per-
lane bandwidth it will be possible in the future to as-
ymptotically approach this limit with larger transfers,
but going even faster will require a fundamental change
to the bus.

The unsolicited polling of DRAM from the endpoint
to check for presence of new read commands results in
a reduction in average protocol latency, but at the ex-
pense of slightly higher idle power consumption. We
have shown that the worst-case impact is modest, both
on power consumption and on the remaining PCI Ex-
press bandwidth. In settings with high load variability
this component of overall power usage can be greatly
mitigated ever further by, for instance, making the
switch to DC Express at a given load threshold while
reverting to the traditional “doorbell” mode of opera-
tion at times of low load.

Our focus was exclusively on small random reads,
as that is the most interesting regime where PCM
greatly outperforms the cheaper NAND flash. Write
latency of the current generation of PCM is 55 times
higher than read latency, so we did not attempt to mod-

ify the write-side protocol as the performance benefit
would be small. For new memory technologies with
much lower write latencies, e.g. STT-MRAM [11], a
similar treatment of the write-side protocol could result
in similarly large round-trip latency improvements, and
will be the subject of future work.

Prior work on accessing low-latency NVMs over
PCI Express has elaborated the advantages of polling
over interrupts [12]. Our work goes two steps further:
we introduce polling from both ends of the latency-
limiting link, and we do away with the separate comple-
tion signal in favor of low-latency polling on all atomic
components of a compound transfer.

While the advance in read performance we report is
quite dramatic, it is important to note the high cost of
using our protocol through kernel facilities. To maxi-
mize the read performance of PCM storage we resorted
to a user-space library which did not provide security.
To take advantage of the low latency while still enjoy-
ing safety guarantees from the operating system one
must implement an additional protocol layer of negotia-
tion through the kernel, such as Moneta Direct [13].

Our work casts PCM-based peripheral storage in a
new light. Rather than using it in the traditional fashion,
just like spinning disk of yore, we envision a new stor-
age tier that fills a niche between DRAM and NAND
flash. Using our FAST protocol will enable exposing
very large non-volatile memory spaces that can still be
read in-context with intermediate read latencies but
without the several Watts per gigabyte penalty of
DRAM refresh. On the other hand, treating PCM as
block storage alleviates the need to rethink the cache
hierarchy of contemporary CPUs, which would be nec-
essary to achieve reasonable write performance in ar-
chitectures where PCM is the main and only memory.

Beyond our work, almost an order of magnitude of
further improvement in small random read latency is
possible in principle before we hit the limits of the un-
derlying physics of phase change materials. At this
time, such advances would require either the use of
parallel main memory buses together with deep changes
to the cache hierarchy, or the use of fundamentally dif-
ferent high speed serial buses, such as HMCC [14],
with shorter minimal transaction latencies. The latter,
while promising, is still in the future, and is geared to-
ward devices soldered onto motherboards as opposed to
field-replaceable peripheral cards. It therefore appears
that the niche for low read latency PCI Express periph-
eral storage based on Phase Change Memory is likely to
persist until the arrival of future generations of periph-
eral buses and CPUs.

USENIX Association 12th USENIX Conference on File and Storage Technologies 315

References
[1] http://nvmexpress.org/wp-

content/uploads/2013/05/NVM_Express_1_1.pdf
[2] Ovshinsky, Stanford R. "Reversible electrical

switching phenomena in disordered structures."
Physical Review Letters 20: 1450–1453, 1968.

[3] Servalli, G. "A 45nm generation phase change
memory technology." Electron Devices Meeting
(IEDM), 2009 IEEE International. IEEE, 2009.

[4] Goux, L. et al., "Degradation of the Reset Switching
During Endurance Testing of a Phase-Change Line
Cell." IEEE Transactions on Electron Devices
vol.56(2), pp.354–358, 2009.

[5] Loke, D., et al. "Breaking the speed limits of phase-
change memory." Science 336.6088: 1566–1569,
2012.

[6] Fusion-io: http://www.fusionio.com/overviews/9m-
iops-technology-showcase/

[7] Seltzer, M., Chen, P. and Ousterhout, J. "Disk
scheduling revisited." Proceedings of the Winter
1990 USENIX Technical Conference. USENIX As-
sociation, 1990.

[8] Personal communications with customers.
[9] Stanovich, Mark J., Baker, Theodore P., and Wang,

An-I A. "Throttling on-disk schedulers to meet soft-
real-time requirements." Real-Time and Embedded
Technology and Applications Symposium. IEEE,
2008.

[10] Li, C., Ding, C., and Shen, K. “Quantifying the
cost of context switch.” ACM Workshop on Experi-
mental Computer Science. ACM, 2007.

[11] Huai, Yiming, et al. "Observation of spin-transfer
switching in deep submicron-sized and low-
resistance magnetic tunnel junctions." Applied Phys-
ics Letters 84.16: 3118-3120, 2004.

[12] Yang, J., Minturn, D. B., and Hady, F. "When poll
is better than interrupt." Proceedings of the 10th
USENIX conference on File and Storage Technolo-
gies. USENIX Association, 2012.

[13] Caulfield, Adrian M., et al. "Providing safe, user
space access to fast, solid state disks." Proceedings
of the seventeenth international conference on Ar-
chitectural Support for Programming Languages
and Operating Systems. ACM, 2012.

[14] http://www.hybridmemorycube.org/

USENIX Association 12th USENIX Conference on File and Storage Technologies 317

MultiLanes: Providing Virtualized Storage for OS-level Virtualization on
Many Cores

Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai

Beihang University, Beijing, China

{kangjb, woty, hucm}@act.buaa.edu.cn, zblgeqian@gmail.com, huaijp@buaa.edu.cn

Abstract

OS-level virtualization is an efficient method for server
consolidation. However, the sharing of kernel services
among the co-located virtualized environments (VEs) in-
curs performance interference between each other. Es-
pecially, interference effects within the shared I/O stack
would lead to severe performance degradations on many-
core platforms incorporating fast storage technologies
(e.g., non-volatile memories).

This paper presents MultiLanes, a virtualized storage
system for OS-level virtualization on many cores. Multi-
Lanes builds an isolated I/O stack on top of a virtualized
storage device for each VE to eliminate contention on
kernel data structures and locks between them, thus scal-
ing them to many cores. Moreover, the overhead of stor-
age device virtualization is tuned to be negligible so that
MultiLanes can deliver competitive performance against
Linux. Apart from scalability, MultiLanes also delivers
flexibility and security to all the VEs, as the virtualized
storage device allows each VE to run its own guest file
system.

The evaluation of our prototype system built for Linux
container (LXC) on a 16-core machine with a RAM disk
demonstrates MultiLanes outperforms Linux by up to
11.32X and 11.75X in micro- and macro-benchmarks,
and exhibits nearly linear scalability.

1 Introduction

As many-core architectures exhibit powerful computing
capacity, independent workloads can be consolidated in a
single node of data centers for high efficiency. Operating
system level virtualization (e.g., VServer [32], OpenVZ
[6], Zap [29], and LXC [4]) is an efficient method to run
multiple virtualized environments (VEs) for server con-
solidation, as it comes with significantly lower overhead
than hypervisors [32, 29]. Thus, each independent work-
load can be hosted in a VE for both good isolation and

high efficiency [32]. Previous work on OS-level virtual-
ization mainly focuses on how to efficiently space parti-
tion or time multiplex the hardware resources (e.g., CPU,
memory and disk).

However, the advent of non-volatile memory tech-
nologies (e.g., NAND flash, phase change memories
and memristors) creates challenges for system software.
Specially, emerging fast storage devices built with non-
volatile memories deliver low access latency and enor-
mous data bandwidth, thus enabling high degree of
application-level parallelism [16, 31]. This advance has
shifted the performance bottleneck of the storage sys-
tem from poor hardware performance to system software
inefficiencies. Especially, the sharing of the I/O stack
would incur performance interference between the co-
located VEs on many cores, as the legacy storage stack
scales poorly on many-core platforms [13]. A few scala-
bility bottlenecks exist in the Virtual File System (VFS)
[23] and the underlying file systems. As a consequence,
the overall performance of the storage system suffers sig-
nificant degradations when running multiple VEs with
I/O intensive workloads. The number of concurrently
running VEs may be limited by the software bottlenecks
instead of the capacity of hardware resources, thus de-
grading the utilization of the hardware.

This paper presents MultiLanes, a storage system for
operating system level virtualization on many cores.
MultiLanes eliminates contention on shared kernel data
structures and locks between co-located VEs by provid-
ing an isolated I/O stack for each VE. As a consequence,
it effectively eliminates the interference between the VEs
and scales them well to many cores. The isolated I/O
stack design consists of two components: the virtualized
block device and the partitioned VFS.

The virtualized block device. MultiLanes creates a
file-based virtualized block device for each VE to run a
guest file system instance atop it. This approach avoids
contention on shared data structures within the file sys-
tem layer by providing an isolated file system stack for

318 12th USENIX Conference on File and Storage Technologies USENIX Association

5.0k

10k

15k

20k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

openvz
vserver

lxc

(a) Ext3

5.0k

10.0k

15.0k

20.k

25.0k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(b) Ext4

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

70.0k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(c) XFS

5.0k

10.0k

15.0k

20.k

 0 2 4 6 8 10 12 14 16
of containers

openvz
vserver

lxc

(d) Btrfs

Figure 1: VE Scalability Evaluation. This figure shows the average throughput of each container performing sequential buffered writes

on different file systems. We choose the latest OpenVZ, Linux-VServer and LXC that are based on Linux kernel 2.6.32, 3.7.10, and 3.8.2 respectively.

The details of experimental setup is to be presented in Section 5.

Ext3 Ext4
lock contention bounces total wait time # lock contention bounces total wait time
1 zone->wait table 5216186 36574149.95 1 journal->j list lock 2085109 138146411.03
2 journal->j state lock 1581931 56979588.44 2 zone->wait table 147386 384074.06
3 journal->j list lock 382055 20804351.46 3 journal->j state lock 46138 541419.08

XFS Btrfs
lock contention bounces total wait time # lock contention bounces total wait time
1 zone->wait table 22185 36190.48 1 found->lock 778055 44325371.60
2 rq->lock 6798 9382.04 2 btrfs-log-02 387846 1124781.19
3 key#3 4869 13463.40 3 btrfs-log-01 230158 1050066.24

Table 1: The Top 3 Hottest Locks. This table shows the contention bounces and total wait time of the top 3 hottest locks when running

16 LXC containers with buffered writes. The total wait time is in us.

each VE. The key challenges to the design of the vir-
tualized block device are (1) how to tune the overhead
induced by the virtualized block device to be negligible,
and (2) how to achieve good scalability with the number
of virtualized block devices on the host file system which
itself scales poorly on many cores.

Hence, we propose a set of techniques to address these
challenges. First, MultiLanes uses a synchronous bypass
strategy to complete block I/O requests of the virtualized
block device. In particular, it translates a block I/O re-
quest from the guest file system into a list of requests
of the host block device using block mapping informa-
tion got from the host file system. Then the new re-
quests will be directly delivered to the host device driver
without the involvement of the host file system. Second,
MultiLanes constrains the work threads interacting with
the host file system for block mapping to a small set of
cores to avoid severe contention on the host, as well as
adopts a prefetching mechanism to reduce the communi-
cation costs between the virtualized devices and the work
threads.

Another alternative for block device virtualization is
to give VEs direct accesses to physical devices or log-
ical volumes for native performance. However, there
are several benefits in adopting plain files on the host
as the back-end storage for virtualization environments
[24]. First, using files allows storage space overcommit-
ment as most modern file systems support sparse files
(e.g., Ext3/4 and XFS). Second, it also eases the man-

agement of VE images as we can leverage many existing
file-based storage management tools. Third, snapshot-
ting an image using copy-on-write is simpler at the file
level than the block device level.

The partitioned VFS. In Unix-like operating sys-
tems, VFS provides a standard file system interface for
applications to access different types of concrete file sys-
tems. As it needs to maintain a consistent file system
view, the inevitable use of global data structures (e.g.,
the inode cache and dentry cache) as well as the cor-
responding locks might result in scalability bottlenecks
on many cores. Rather than iteratively eliminating or
mitigating the scalability bottlenecks of the VFS [13],
MultiLanes in turn adopts a straightforward strategy that
partitions the VFS data structures to completely elimi-
nate contention between co-located VEs, as well as to
achieve improved locality of the VFS data structures on
many cores. The partitioned VFS is referred to as the
pVFS in the rest of the paper.

The remainder of the paper is organized as follows.
Section 2 highlights the storage stack bottlenecks in ex-
isting OS-level virtualization approaches for further mo-
tivation. Then we present the design and implementation
of MultiLanes in Section 3 and Section 4 respectively.
Section 5 evaluates its performance and scalability with
micro- and macro-benchmarks. We discuss the related
works in Section 6 and conclude in Section 7. A vir-
tualized environment is referred to as a container in the
following sections also.

USENIX Association 12th USENIX Conference on File and Storage Technologies 319

2 Motivation

In this section, we create a simple microbenchmark to
highlight the storage stack bottlenecks of existing OS-
level virtualization approaches on many-core platforms
incorporating fast storage technologies. The benchmark
performs 4KB sequential writes to a 256MB file. We run
the benchmark program inside each container in paral-
lel and vary the number of containers. Figure 1 shows
the average throughput of containers running the bench-
mark on a variety of file systems (i.e., Ext3/4, XFS and
Btrfs). The results show that the throughput on all the
file systems except XFS decreases dramatically with the
increasing number of containers in the three OS-level
virtualization environments (i.e., OpenVZ, VServer and
LXC). The kernel lock usage statistics in Table 1 presents
the lock bounces and total wait time during the bench-
marking, which results in the decreased performance.
XFS delivers much better scalability than the other three
as much less contention occurred for buffered writes.
Nevertheless it would also suffer from scalability bottle-
necks under other workloads, which will be described in
Section 5.

The poor scalability of the storage system is mainly
caused by the concurrent accesses to shared data struc-
tures and the use of synchronization primitives. The
use of shared data structures modified by multiple cores
would cause frequent transfers of the data structures and
the protecting locks among the cores. As the access la-
tency of remote caches is much larger than that of local
caches on modern shared-memory multicore processors
[12], the overhead of frequent remote accesses would
significantly decrease the overall system performance,
leading to severe scalability bottlenecks. Especially, the
large traffic of non-scalable locks generated by cache
coherence protocols on the interconnect will exacerbate
system performance. Previous studies show that the time
taken to acquire a lock will be proportional to the number
of contending cores [13, 12].

3 MultiLanes Design

MultiLanes is a storage system for OS level virtualiza-
tion that addresses the I/O performance interference be-
tween the co-located VEs on many cores. In this sec-
tion, we present the designing goals, concepts and com-
ponents of MultiLanes.

3.1 Design Goals

Existing OS-level virtualization approaches simply
leverage chroot to realize file system virtualization [32,
6, 29]. The containers co-located share the same I/O

I/O stack

container containercontainer

Host Block Driver

vDrivervDrivervDriver

FS

vDriver

FS FS FS

pVFSpVFS pVFS pVFS

I/O stack I/O stack I/O stack

container

Host File System

Host Block Device

Bypass

Figure 2: MultiLanes Architecture. This figure depicts

the architecture of MultiLanes. The virtualized storage is mapped as a

plain file on the host file system and is left out in the figure.

stack, which not only leads to severe performance inter-
ference between them but also suppresses flexibility.

MultiLanes is designed to eliminate storage system in-
terference between containers to provide good scalabil-
ity on many cores. We aim to meet three design goals:
(1) it should be conceptually simple, self-contained, and
transparent to applications and to various file systems;
(2) it should achieve good scalability with the number
of containers on the host; (3) it should minimize the vir-
tulization overhead on fast storage media so as to offer
near-native performance.

3.2 Architectural Overview
MultiLanes is composed of two key design modules: the
virtualized storage device and the pVFS. Figure 2 illus-
trates the architecture and the overall primary abstrac-
tions of the design. We have left out other kernel compo-
nents to better focus on the I/O subsystem.

At the top of the architecture we host multiple contain-
ers. A container is actually a group of processes which
are completely constrained to execute inside it. Each
container accesses its guest file system through the par-
titioned VFS that provides POSIX APIs. The partitioned
VFS offers a private kernel abstraction to each container
to eliminate contention within the VFS layer. Under each
pVFS there lies the specific guest file system of the con-
tainer. The pVFS remains transparent to the underly-
ing file system by providing the same standard interfaces
with the VFS.

Between the guest file system and the host are the vir-
tualized block device and the corresponding customized

320 12th USENIX Conference on File and Storage Technologies USENIX Association

block device driver. MultiLanes maps regular files in the
host file system as virtualized storage devices to contain-
ers, which provides the fundamental basis for running
multiple guest file systems. This storage virtualization
approach not only eliminates performance interference
between containers in the file system layer, but also al-
lows each container to use a different file system from
each other, which enables flexibility both between the
host and a single guest, and between the guests. The
virtualized device driver is customized for each virtual-
ized device, which provides the standard interfaces to
the Linux generic block layer. Meanwhile, MultiLanes
adopts a proposed synchronous bypass mechanism to
avoid most of the overhead induced by the virtualization
layer.

3.3 Design Components

MultiLanes provides an isolated I/O stack to each con-
tainer to eliminate performance interference between
containers, which consists of the virtualized storage de-
vice, the virtualized block device driver, and the parti-
tioned VFS.

3.3.1 Virtualized Storage

Compared to full virtualization and para-virtualization
that provide virtualized storage devices for virtual ma-
chines (VMs), OS-level virtualization stores the VMs’
data directly on the host file system for I/O efficiency.
However, the virtualized storage has inborn advantage
over shared storage in performance isolation because
each VM has an isolated I/O stack.

As described in Section 2, the throughput of each LXC
container will fall dramatically with the increasing num-
ber of containers due to the severe contention on shared
data structures and locks within the shared I/O stack. The
interference is masked by the high latency of the sluggish
mechanical disk in traditional disk-based storage. But it
has to be reconsidered in the context of next generation
storage technologies due to the shift that system software
becomes the main bottleneck on fast storage devices.

In order to eliminate storage system performance in-
terference between containers on many cores, we provide
lightweight virtualized storage for each container. We
map a regular file as a virtualized block device for each
container, and then build the guest file system on top of
it. Note that as most modern file systems support sparse
files for disk space efficiency, the host doesn’t preallo-
cate all blocks in accordance with the file size when the
file system is built on the back-end file. The challenge
is to balance performance gain achieved by performance
isolation against the overhead incurred by storage virtu-
alization. However, scalability and competitive perfor-

mance can both be achieved when the virtualized storage
architecture is efficiently devised.

3.3.2 Driver Model

Like any other virtualization approaches adopted in other
fields, the most important work for virtualization is to
establish the mapping between the virtualized resources
and the physical ones. This is done by the virtualized
block device driver in MultiLanes. As shown in Fig-
ure 2, each virtualized block device driver receives block
I/O requests from the guest file system through the Linux
generic block layer and maps them to requests of the host
block device.

A block I/O request is composed of several segments,
which are contiguous on the block device, but are not
necessarily contiguous in physical memory, depicting a
mapping between a block device sector region and a list
of individual memory segments. On the block device
side, it specifies the data transfer start sector and the
block I/O size. On the buffer side, the segments are or-
ganized as a group of I/O vectors. Each I/O vector is
an abstraction of a segment that is in a memory page,
which specifies the physical page on which it lies, off-
set relative to the start of the page, and the length of the
segment starting from the offset. The data residing in the
block device sector region would be transmitted to/from
the buffer in sequence according to the data transfer di-
rection given in the request.

For the virtualized block device of MultiLanes, the
sector region specified in the request is actually a data
section of the back-end file. The virtualized driver should
translate logical blocks of the back-end file to physical
blocks on the host, and then map each I/O request to the
requests of the host block device according to the transla-
tion. It is composed of two major components: the block
translation and block handling.

Block Translation. Almost all modern file systems
have devised a mapping routine to map a logical block
of a file to the physical block on the host device, which
returns the physical block information to the caller at
last. If the block is not mapped, the mapping process
involves the block allocation of the file system. Mul-
tiLanes achieves block translation with the help of this
routine.

As shown in Figure 3, the block translation unit of
each virtualized driver consists of a cache table, a job
queue and a translation thread. The cache table maintains
the mapping between logical blocks and physical blocks.
The virtulized driver will first look up the table with the
logical block number of the back-end file for block trans-
lation when a container thread submits an I/O request to
it. Note that the driver actually executes in the context
of the container thread as we adopt a synchronous model

USENIX Association 12th USENIX Conference on File and Storage Technologies 321

make request

HOST DRIVER

call back

HIT

JOB QUEUE

THREAD

req req req req

call back

LAST
SLICE

req

BIO LIST

head slice slice slice slice

noyes

submit

BLOCK TRANSLATIONCACHE TABLE

map

GUEST BLOCK LAYER

Figure 3: Driver Structure. This figure presents the structure

of the virtualized storage driver, which comprises the block translation

unit and the request handling unit.

of I/O request processing. If the target block is hit in
the cache table the driver directly gets the target map-
ping physical block number. Otherwise it starts a cache
miss event and then puts the container thread to sleep.
A cache miss event delivers a translation job to the job
queue and wakes up the translation thread. The trans-
lation thread then invokes the interface of the mapping
routine exported by the host file system to get the tar-
get physical block number, stores a new mapping entry
in the cache table, and wakes up the container thread at
last. The cache table is initialized as empty when the
virtualized device is mounted.

Block translation will be extremely inefficient if the
translation thread is woken up to only map a single cache
miss block every time. The driver will suffer from fre-
quent cache misses and thread context switches, which
would waste CPU cycles and cause considerable com-
munication overhead. Hence we adopt a prefetching ap-
proach similar to that of handling CPU cache misses.
The translation thread maps a predefined number of con-
tinuous block region starting from the missed block for
each request in the job queue.

On the other hand, as the block mapping of the host file
system usually involves file system journaling, the map-
ping process may cause severe contention within the host
on many cores when cache misses of multiple virtulized
drivers occur concurrently, thus scaling poorly with the
number of virtualized devices on many cores. We ad-
dress this issue by constraining all translation threads to
work on a small set of cores to reduce contention [18]
and improve data locality on the host file system. Our
current prototype binds all translation threads to a set of
cores inside a processor, due to the observation that shar-
ing data within a processor is much less expensive than
that crossing processors [12].

Request Handling. Since the continuous data region

of the back-end file may not be necessarily continuous
on the host block device, a single block I/O request of
the virtualized block device may be remapped to several
new requests according to the continuity of the requested
blocks on the host block device.

There are two mapping involved when handling the
block I/O requests of the virtualized block device. The
mapping between the memory segments and the virtual-
ized block device sector region is specified in a scatter-
gather manner. The mapping between the virtualized
block device and the host block device gives the phys-
ical block number of a logical block of the back-end file.
For simplicity, the block size of the virtualized block de-
vice should be the same with that of the host block device
in our current prototype. For each segment of the block
I/O request, the virtulized device driver first gets the log-
ical block number of it, then translates the logical block
number to the physical block number with the support
of the block translation unit. When all the segments of
a request are remapped, we have to check whether they
are contiguous on the host block device. The virtualized
device driver combines the segments which are contigu-
ous on the host block device as a whole and allocates a
new block I/O request of the host block device for them.
Then it creates a new block I/O request for each of the re-
maining segments. Thus a single block I/O request of the
virtualized block device might be remapped to several re-
quests of the host block device. Figure 4 illustrates such
an example, which will be described in Section 4.1.

A new block I/O request is referred to as a slice of
the original request. We organize the slices in a doubly-
linked list and allocate a head to keep track of them.
When the list is prepared, each slice would be submit-
ted to the host block device driver in sequence. The host
driver will handle the data transmission requirements of
each slice in the same manner with regular I/O requests.

I/O completion should be carefully handled for the vir-
tualized device driver. As the original request is split into
several slices, the host block device driver will initiate a
completion procedure for each slice. But the original re-
quest should not be terminated until all the slices have
been finished. Hence we offer an I/O completion call-
back, in which we keep track of the finished slices, to the
host driver to invoke when it tries to terminate each slice.
The host driver will terminate the original block I/O re-
quest of the virtualized block device driver only when it
finds out that it has completed the last slice.

Thus a block I/O request of MultiLanes is remapped to
multiple slices of the host block device and is completed
by the host device driver. The most important feature
of the virtualized driver is that it stays transparent to the
guest file system and the host block device driver, and
only requires minor modification to the host file system
to export the mapping routine interface.

322 12th USENIX Conference on File and Storage Technologies USENIX Association

3.3.3 Partitioned VFS

The virtual file system in Linux provides a generic file
system interface for applications to access different types
of concrete file systems in a uniform way. Although Mul-
tiLanes allows each container to run its own guest file
system independently, there still exists performance in-
terference within the VFS layer. Hence, we propose the
partitioned VFS that provides a private VFS abstraction
to each container, eliminating the contention for shared
data structures within the VFS layer between containers.

Hot VFS Locks Hot Invoking Functions
1 inode hash lock insert inode locked()

remove inode hash()
2 dcache lru lock dput()

dentry lru prune()
3 inode sb list lock evict()

inode sb list add()
4 rename lock write seqlock()

Table 2: Hot VFS Locks. The table shows the hot locks and the

corresponding invoking functions in VFS when running the metadata

intensive microbenchmark ocrd in Linux kernel 3.8.2.

Table 2 shows the top four hottest locks in VFS
when conducting the metadata-intensive microbench-
mark ocrd, which will be described in Section 5. VFS
maintains an inode hash table to speed up inode lookup
and uses the inode hash lock to protect the list. Inodes
that belong to different super blocks are hashed together
into the hash table. Meanwhile, each super block has a
list that links all the inodes that belong to it. Although
this list is independently managed by each super block,
the kernel uses the global inode sb list lock to protect
accesses to all lists, which would introduce unnecessary
contention between multiple file system instances.

For the purpose of path resolution speedup, VFS uses
a hash table to cache directory entries, which allows con-
current read accesses to it without serialization by using
Read-Copy-Update (RCU) locks [27]. The rename lock
is a sequence lock that is indispensable for the hash table
in this context because a rename operation may involve
the edition of two hash buckets which might cause false
lookup results. It is also inappropriate that the VFS pro-
tects the LRU dentry lists of all file system instances with
the global dcache lru lock.

Rather than iteratively fixing or mitigating the lock
bottlenecks in the VFS, we in turn adopts a straight-
forward approach that partitions the VFS data structures
and corresponding locks to eliminate contention, as well
as to improve locality of the VFS data structures. In
particular, MultiLanes allocates an inode hash table and
a dentry hash table for each container to eliminate the
performance interference within the VFS layer. Along
with the separation of the two hash tables from each
other, inode hash lock and rename lock are also sepa-

rated. Meanwhile, each guest file system has its own
inode sb list lock and dcache lru lock also.

By partitioning the resources that would cause con-
tention in the VFS, the VFS data structures and locks
become localized within each partitioned domain. Sup-
posing there are n virtualized block devices built on the
host file system, the original VFS domain now is split
into n+1 independent domains: each guest file system
domain and the host domain that serves the host file sys-
tem along with special file systems (e.g., procfs and de-
bugfs). We refer the partitioned VFS to as the pVFS. The
pVFS is an important complementary part of the isolated
I/O stack.

4 Implementation

We choose to implement the prototype of MultiLanes
for Linux Container (LXC) out of OpenVZ and Linux-
VServer due to that both OpenVZ and Linux-VServer
need customized kernel adaptations while LXC is always
supported by the latest Linux kernel. We implemented
MultiLanes in the Linux 3.8.2 kernel, which consists of
a virtualized block device driver module and adaptations
to the VFS.

4.1 Driver Implementation
We realize the virtualized block device driver based on
the Linux loop device driver that provides the basic func-
tionality of mapping a plain file as a storage device on the
host.

Different from traditional block device drivers that
usually adopt a request queue based asynchronous
model, the virtualized device driver of MultiLanes
adopts a synchronous bypass strategy. In the routine
make request fn, which is the standard interface for de-
livering block I/O requests, our driver finishes request
mapping and redirects the slices to the host driver via the
standard submit bio interface.

When a virtualized block device is mounted, Multi-
Lanes creates a translation thread for it. And we ex-
port the xxx get block function into the inode operations
structure for Ext3, Ext4, Btrfs, Reiserfs and JFS so that
the translation thread can invoke it for block mapping via
the inode of the back-end file.

The multilanes bio end function is implemented for
I/O completion notification, which will be called each
time the host block device driver completes a slice. We
store global information such as the total slice number,
finished slice count and error flags in the list head, and
update the statistics every time it is called. The original
request will be terminated by the host driver by calling
the bi end io method of the original bio when the last
slice is completed.

USENIX Association 12th USENIX Conference on File and Storage Technologies 323

22 1906

21 1688

20 1674PAGE

PAGE

PAGE

start sector

head bio bio bio

New Bio List

1673

1674

...

1688

...

1906

...

...

Back-end File

Host Device
PAGE 19 1673

Figure 4: Request Mapping. This figure shows the mapping

from a single block I/O request of the virtualized block device to a re-

quest list on the host block device.

Figure 4 shows an example of block request mapping.
We assume the page size is 4096 bytes and the block size
of the host block device and the virtualized storage de-
vice are both 4096 bytes. As shown in the figure, a block
I/O request delivered to the virtualized driver consists of
four segments. The start sector of the request is 152 and
the block I/O size is 16KB. The bio contains four individ-
ual memory segments, which lie in four physical pages.
After all the logical blocks of the request are mapped by
the block translation unit, we can see that only the log-
ical block 19 and 20 are contiguous on the host. Mul-
tiLanes allocates a new bio structure for the two con-
tiguous blocks and two new ones for the remaining two
blocks, and then delivers the new bios to the host driver
in sequence.

4.2 pVFS Implementation

The partitioned VFS data structures and locks are orga-
nized in the super block of the file system. We allocate
SLAB caches ihtable cachep and dhtable cachep for in-
ode and dentry hash table allocation when initializing the
VFS at boot time. MultiLanes adds the dentry hashtable
pointer, the inode hashtable pointer, and the correspond-
ing locks (i.e., inode hash lock and rename lock) to the
super block. Meanwhile, each super block has its own
LRU dentry list, and inode list along with the separated
dcache lru lock and inode sb list lock. We also add a
flag field to the superblock structure to distinguish guest
file systems on virtualized storage devices from other

host file systems. For each guest file system, MultiLanes
will allocate a dentry hash table and an inode hash table
from the corresponding SLAB cache when the virtual-
ized block device is mounted, both of which are prede-
fined to have 65536 buckets.

Then we modify the kernel control flows that access
the hash tables, lists and corresponding locks to allow
each container to access its private VFS abstraction. We
first find out all the code spots where the hash tables,
lists and locks are accessed. Then, a multiplexer is em-
bedded in each code spot to do the branching. Accesses
to each guest file system are redirected to its private VFS
data structures and locks while other accesses keep going
through the original VFS. This work takes much efforts
to finish all the code spots. But this is non-complicated
work since the idea behind all modifications is the same.

5 Evaluation

Fast storage devices mainly include prevailing NAND
flash-based SSDs, and SSDs based on next-generation
technologies (e.g., Phase Change Memory), which
promise to further boost the performance. Unfortunately
when the evaluation was conducted we did not have a
high performance SSD at hand. So we used a RAM disk
to emulate a PCM-based SSD since phase change mem-
ory is expected to have bandwidth and latency character-
istics similar to DRAM [25]. The emulation is appropri-
ate as Multilanes does not concern about the underlying
specific storage media, as long as it is fast enough. More-
over, using a RAM disk could rule out any effect from
SSDs (e.g., global locks adopted in their corresponding
drivers) so as to measure the maximum scalability bene-
fits of MultiLanes.

In this section, we experimentally answer the follow-
ing questions: (1) Does MultiLanes achieve good scala-
bility with the number of containers on many cores ? (2)
Are all of MultiLanes’s design components necessary to
achieve such good scalability? (3) Does the overhead
induced by MultiLanes contribute marginally to the per-
formance under most workloads?

5.1 Experimental Setup

All experiments were carried out on an Intel 16-core
machine with four Intel Xeon(R) E7520 processors and
64GB memory. Each processor has four physical cores
clocked at 1.87GHZ. Each core has 32KB of L1 data
cache, 32KB of L1 instruction cache and 256KB of L2
cache. Each processor has a shared 18MB L3 cache. The
hyperthreading capability is turned off.

We turn on RAM block device support as a kernel
module and set the RAM disk size to 40GB. Lock usage

324 12th USENIX Conference on File and Storage Technologies USENIX Association

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

linux
without pvfs

multilanes

(a) Ocrd on Ext3

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(b) Ocrd on Ext4

1.0k

2.0k

3.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(c) Ocrd on XFS

1.0k

2.0k

 0 2 4 6 8 10 12 14 16
of containers

linux
without pvfs

multilanes

(d) Ocrd on Btrfs

Figure 5: Scalability Evaluation with the Metadata-intensive Benchmark Ocrd. The figure shows the average throughput

of the containers on different file systems when varying the number of LXC containers with ocrd. Inside each container we run a single instance of

the benchmark program.

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(a) Buffered write on Ext3

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(b) Buffered write on Ext4

 60

 120

 180

 240

 300

 360

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(c) Buffered write on XFS

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(d) Buffered write on Btrfs

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(e) Direct write on Ext3

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(f) Direct write on Ext4

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(g) Direct write on XFS

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(h) Direct write on Btrfs

Figure 6: Scalability Evaluation with IOzone (Sequential Workloads). The figure shows the container average throughput

on different file systems when varying the number of LXC containers with IOzone. Inside each container we run an IOzone process performing

sequential writes in buffered mode and direct I/O mode respectively.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

of containers

multilanes
baseline

(a) Buffered write on Ext3

 30

 60

 90

 120

 150

 180

 0 2 4 6 8 10 12 14 16

of containers

multilanes

baseline

(b) Buffered write on Ext4

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(c) Buffered write on XFS

 30

 60

 90

 120

 150

 0 2 4 6 8 10 12 14 16
of containers

multilanes
baseline

(d) Buffered write on Btrfs

Figure 7: Scalability Evaluation with IOzone (Random Workloads). The figure shows the container average throughput on

different file systems when varying the number of LXC containers with IOzone. Inside each container we run an IOzone process performing random

writes in buffered mode.

statistics is enabled to identify the heavily contended ker-
nel locks during the evaluation. In this section, we eval-
uate MuliLanes against canonical Linux as the baseline.
For the baseline groups, we have a RAM disk formatted
with each target file system in turn and build 16 LXC
containers atop it. For MultiLanes, we have the host

RAM disk formatted with Ext3 and mounted in ordered
mode, then build 16 LXC containers over 16 virtualized
devices which are mapped as sixteen 2500MB regular
files formatted with each target file system in turn. In all
the experiments, the guest file system Ext3 and Ext4 are
all mounted in journal mode unless otherwise specified.

USENIX Association 12th USENIX Conference on File and Storage Technologies 325

5.2 Performance Results

The performance evaluation consists of both a collection
of micro-benchmarks and a set of application-level mac-
robenchmarks.

5.2.1 Microbenckmarks

The purpose of the microbenchmarks is two-fold. First,
these microbenchmarks give us the opportunity to mea-
sure an upper-bound on performance, as they effectively
rule out any complex effects from application-specific
behaviors. Second, microbenchmarks allow us to ver-
ify the effectiveness of each design component of Mul-
tiLanes as they stress differently. The benchmarks con-
sist of the metadata-intensive benchmark ocrd developed
from scratch, and IOzone [3] which is a representative
storage system benchmark.

Ocrd. The ocrd benchmark runs 65536 transactions,
and each transaction creates a new file, renames the file
and at last deletes the file. It is set up for the purpose of
illuminating the performance contributions of each in-
dividual design component of MultiLanes because the
metadata-intensive workload could cause heavy con-
tention on both the hot locks in the VFS, as mentioned
in Table 2, and those in the underlying file systems.

Figure 5 presents the average throughput of each con-
tainer running the ocrd benchmark for three situations:
Linux, MultiLanes disabling pVFS and complete Multi-
Lanes. As shown in the figure, the average throughput
suffers severe degradation with the increasing number of
containers on all four file systems in Linux. Lock us-
age statistics show it is caused by severe lock contention
within both the underlying file system and the VFS. Con-
tention bounces between cores can reach as many as sev-
eral million times for the hot locks. MultiLanes without
pVFS achieves great performance gains and much bet-
ter scalability as the isolation via virtualized devices has
eliminated contention in the file system layer. The av-
erage throughput on complete MultiLanes is further im-
proved owing to the pVFS, exhibits marginal degradation
with the increasing number of containers, and achieves
nearly linear scalability. The results have demonstrated
that each design component of MultiLanes is essential
for scaling containers on many cores. Table 3 presents
the contention details on the hot locks of the VFS that
rise during the benchmark on MultiLanes without the
pVFS. These locks are all eliminated by the pVFS.

It is interesting to note that the throughput of complete
MultiLanes marginally outperforms that of Linux at one
container on Ext3 and Ext4. This phenomenon is also
observed in the below Varmail benchmark on Ext3, Ext4
and XFS. This might be because that the use of private
VFS data structures provided by the pVFS speeds up the

lookup in the dentry hash table as there are much less
directory entries in each pVFS than in the global VFS.

IOzone. We use the IOzone benchmark to evaluate
the performance and scalability of MultiLanes for data-
intensive workloads, including sequential and random
workloads. Figure 6 shows the average throughput of
each container performing sequential writes in buffered
mode and direct I/O mode respectively. We run a sin-
gle IOzone process inside each container in parallel and
vary the number of containers. Sequential writes with
4KB I/O size are to a file that ends up with 256MB size.
Note that Ext3 and Ext4 are mounted in ordered jour-
naling mode for direct I/O writes as the data journaling
mode does not support direct I/O.

Lock Ext3 Ext4 XFS Btrfs
inode hash lock 1092k 960k 114k 228k
dcache lru lock 1023k 797k 583k 5k
inode sb list lock 239k 237k 144k 106k
rename lock 541k 618k 446k 252k

Table 3: Contention Bounces. The table shows the contention

bounces using MultiLanes without pVFS.

As shown in the figure, the average throughput of Mul-
tiLanes outperforms that of Linux in all cases except for
buffered writes on XFS. MultiLanes outperforms Linux
by 9.78X, 6.17X and 2.07X on Ext3, Ext4 and Btrfs
for buffered writes respectively. For direct writes, the
throughput improvement of MultiLanes over Linux is
7.98X, 8.67X, 6.29X and 10.32X on the four file systems
respectively. XFS scales well for buffered writes owing
to its own performance optimizations. Specially, XFS
delays block allocation and associated metadata journal-
ing until the dirty pages are to be flushed to disk. De-
layed allocation avoids the contention induced by meta-
data journaling so as to scale well for buffered writes.

Figure 7 presents the results of random writes in
buffered mode. Random writes with 4KB I/O size are
to a 256MB file except for Btrfs. For Btrfs, we set
each file size to 24MB due to the observation that when
the writing data files occupy a certain proportion of the
storage space Btrfs generates many work threads during
the benchmark even for single-threaded random writes,
which causes heavy contention and leads to sharply
dropped throughput. Nevertheless, MultiLanes exhibits
much better scalability and significantly outperforms the
baseline at 16 containers for random writes to a 256MB
file. However, in order to fairly evaluate the normal
performance of both MultiLanes and Linux, we exper-
imentally set a proper data file size for Btrfs. As shown
in the figure, the throughput of MultiLanes outperforms
that of Linux by 10.04X, 11.32X and 39% on Ext3,
Ext4 and Btrfs respectively. As XFS scales well for
buffered writes, MultiLanes exhibits competitive perfor-
mance with it.

326 12th USENIX Conference on File and Storage Technologies USENIX Association

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B/
se

c)

of containers

baseline
multilanes

(a) Mail server on Ext3

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(b) Mail server on Ext4

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(c) Mail server on XFS

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(d) Mail server on Btrfs

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (M

B/
se

c)

of containers

baseline
multilanes

(e) File server on Ext3

 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(f) File server on Ext4

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(g) File server on XFS

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(h) File server on Btrfs

Figure 8: Scalability Evaluation with Filebench Fileserver and Varmail. The figure shows the average throughput of the

containers on different file systems when varying the number of LXC containers, with Filebench mail server and file server workload respectively.

5.2.2 Macrobenchmarks

We choose Filebench [2] and MySQL [5] to evalu-
ation performance and scalability of MultiLanes for
application-level workloads.

Filebench. Filebench is a file system and storage
benchmark that allows to generate a variety of work-
loads. Of all the workloads it supports, we choose the
Varmail and Fileserver benchmarks as they are write-
intensive workloads that would cause severe contention
within the I/O stack.

The Varmail workload emulates a mail server, per-
forming a sequence of create-append-sync, read-append-
sync, reads and deletes. The Fileserver workload per-
forms a sequence of creates, deletes, appends, reads, and
writes. The specific parameters of the two workloads are
listed in Table 4. We run a single instance of Filebench
inside each container. The thread number of each in-
stance is configured as 1 to avoid CPU overload when
increasing the number of containers from 1 to 16. Each
workload was run for 60 seconds.

Workload # of Files File Size I/O Size Append Size
Varmail 1000 16KB 1MB 16KB
Fileserver 2000 128KB 1MB 16KB

Table 4: Workload Specification. This table specifies the pa-

rameters configured for Filebench Varmail and Fileserver workloads.

Figure 8 shows the average throughput of multiple
concurrent Filebench instances on MultiLanes compared
to Linux. For the Varmail workload, the average through-
put degrades significantly with the increasing number of
containers on the four file systems in Linux. MultiLanes
exhibits little overhead when there is only one container,

and marginal performance loss when the number of con-
tainers increases. The throughput of MultiLanes outper-
forms that of Linux by 2.83X, 2.68X, 56% and 11.75X
on Ext3, Ext4, XFS and Btrfs respectively.

For the Fileserver workload, although the throughput
of MultiLanes is worse than that of Linux at one single
container, especially for Ext3 and Ext4, it scales well to
16 containers and outperforms that of Linux when the
number of containers exceeds 2. In particular, Multi-
Lanes achieves a speedup of 4.75X, 4.11X, 1.10X and
3.99X over the baseline Linux on the four file systems
at 16 containers respectively. It is impressive that the
throughput of MultiLanes at 16 containers even exceeds
that at one single container on Btrfs. The phenomenon
might relate to the design of Btrfs which is under actively
development and does not become mature.

MySQL. MySQL is an open source relational
database management system that runs as a server pro-
viding multi-user accesses to databases. It is widely used
for data storage and management in web applications.

We install mysql-server-5.1 for each container and
start the service for each of them. The virtualized
MySQL servers are configured to allow remote accesses
and we generate requests with Sysbench [7] on another
identical machine that resides in the same LAN with the
experimental server. The evaluation is conducted in non-
transaction mode that specializes update key operations
as the transaction mode provided by Sysbench is domi-
nated by read operations. Each table is initialized with
10k records at the prepare stage. We use 1 thread to gen-
erate 20k requests for each MySQL server.

As Figure 9 shows, MultiLanes improves the through-
put by 87%, 1.34X and 1.03X on Ext3, Ext4, and Btrfs

USENIX Association 12th USENIX Conference on File and Storage Technologies 327

0.3k

0.7k

1.1k

1.5k

1.9k

2.3k

 0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

of containers

baseline
multilanes

(a) MySQL on Ext3

0.3k

0.7k

1.1k

1.5k

1.9k

2.3k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(b) MySQL on Ext4

0.3k
0.7k
1.1k
1.5k
1.9k
2.3k
2.7k
3.1k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(c) MySQL on XFS

0.3k
0.4k
0.5k
0.6k
0.7k
0.8k
0.9k

 0 2 4 6 8 10 12 14 16
of containers

baseline
multilanes

(d) MySQL on Btrfs

Figure 9: Scalability Evaluation with MySQL. This figure shows the average throughput of the containers when varying the number

of LXC containers on different file systems with MySQL. The requests are generated with Sysbench on another identical machine in the same LAN.

 10
 20
 30
 40
 50
 60
 70
 80
 90

Ext3 Ext4 XFS Btrfs

Ti
m

e
(s

)

baseline multilanes

(a) Apache Build

 2

 4

 6

 8

 10

 12

 14

Ext3 Ext4 XFS Btrfs

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

baseline multilanes

(b) Webserver

 100
 200
 300
 400
 500
 600
 700
 800

Ext3 Ext4 XFS Btrfs

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

baseline multilanes

(c) Streamwrite

Figure 10: Overhead Evaluation. This figure shows the overhead of MultiLanes relative to Linux, running Apache build, Filebench

Webserver and Filebench single-stream write inside a single container respectively.

respectively. And once again we have come to see that
XFS scales well on many cores, and MultiLanes shows
competitive performance with it. The throughput of Mul-
tiLanes exhibits nearly linear scalability with the increas-
ing number of containers on the four file systems.

5.3 Overhead Analysis

We also measure the potential overhead of MultiLanes’s
approach to eliminating contention in OS-level virtual-
ization by using an extensive set of benchmarks: Apache
Build, Webserver and Streamwrite, which is file I/O less
intensive, read intensive and write intensive respectively.

Apache Build. The Apache Build benchmark, which
overlaps computation with file I/O, unzips the Apache
source tree, does a complete build in parallel with 16
threads, and then removes all files. Figure 10a shows
the execution time of the benchmark on MultiLanes
over Linux. We can see that MultiLanes exhibits al-
most equivalent performance against Linux. The result
demonstrates that the overhead of MultiLanes would not
affect the performance of workloads which are not dom-
inated by file I/O.

Webserver. We choose the Filebench Webserver
workload to evaluate the overhead of MultiLanes un-
der read-intensive workloads. The parameters of the
benchmark is configured as default. Figure 10b presents
the throughput of MultiLanes against Linux. The result

shows that the virtualization layer of MultiLanes con-
tributes marginally to the performance under the Web-
server workload.

Streamwrite. The single-stream write benchmark
performs 1MB sequential writes to a file that ends up
with about 1GB size. Figure 10c shows the through-
put of benchmark on MultiLanes over Linux. As the
sequential stream writes cause frequent block allocation
of the back-end file, MultiLanes incurs some overheads
of block mapping cache misses. The overhead of Mul-
tiLanes compared to Linux is 9.0%, 10.5%, 10.2% and
44.7% for Ext3, Ext4, XFS and Btrfs respectively.

6 Related Work

This section relates MultiLanes to other work done in
performance isolation, kernel scalability and device vir-
tualization.

Performance Isolation. Most work on performance
isolation mainly focuses on minimizing performance
interference by space partitioning or time multiplex-
ing hardware resources (e.g., CPU, memory, disk and
network bandwidth) between the co-located containers.
VServer [32] enforces resource isolation by carefully al-
locating and scheduling physical resources. Resource
containers [10] provides explicit and fine-grained con-
trol over resource consumption in all levels in the sys-
tem. Eclipse [14] introduces a new operating system ab-

328 12th USENIX Conference on File and Storage Technologies USENIX Association

straction to enable explicit control over the provisioning
of the system resources among applications. Software
Performance Units [35] enforces performance isolation
by restricting the resource consumption of each group of
processes. Cgroup [1], which is used in LXC to pro-
vide resource isolation between co-located containers, is
a Linux kernel feature to limit, account and isolate the
resource usage of process groups. Argon [36] mainly
focuses on the I/O schedule algorithms and the file sys-
tem cache partition mechanisms to provide storage per-
formance isolation.

In contrast, MultiLanes aims to eliminate contention
on shared kernel data structures and locks in the software
to reduce storage performance interference between the
VEs. Hence our work is complementary and orthogonal
to previous studies on performance isolation.

Kernel Scalability. Improving the scalability of op-
erating systems has been a longstanding goal of sys-
tem researchers. Some work investigates new OS struc-
tures to scale operating systems by partitioning the hard-
ware and distributing replicated kernels among the parti-
tioned hardware. Hive [17] structures the operating sys-
tem as an internal distributed system of independent ker-
nels to provide reliability and scalability. Barrelfish [11]
tries to scale applications on multicore systems using a
multi-kernel model, which maintains the operating sys-
tem consistency by message-passing instead of shared-
memory. Corey [12] is an exokernel based operating
system that allows applications to control the sharing of
kernel resources. K42 [9] (and its relative Tornado [20])
are designed to reduce contention and improve locality
on NUMA systems. Other work partitions hardware re-
sources by running a virtualization layer to allow the con-
current execution of multiple commodity operating sys-
tems. For instance, Diso [15] (and its relative Cellular
Diso [22]) runs multiple virtual machines to create a vir-
tual cluster on large-scale shared-memory multiproces-
sors to provide reliability and scalability. Cerberus [33]
scales shared-memory applications with POSIX-APIs on
many cores by running multiple clustered operating sys-
tems atop VMM on a single machine. MultiLanes is in-
fluenced by the philosophy and wisdoms of these work
but strongly foucses on the scalability of I/O stack on fast
storage devices.

Other studies aim to address the scalability problem by
iteratively eliminating the bottlenecks. MCS lock [28],
RCU [27] and local runqueues [8] are strategies proposed
to reduce contention on shared data structures.

Device Virtualization. Traditionally, hardware ab-
straction virtualization adopts three approaches to vir-
tualize devices. First, device emulation [34] is used
to emulate familiar devices such as common network
cards and SCSI devices. Second, para-virtualization
[30] customizes the virtualized device driver to enable

the guest OS to explicitly cooperate with the hypervisor
for performance improvements. Such examples include
KVM’s VirtIO driver, Xen’s para-virtualized driver, and
VMware’s guest tools. Third, direct device assignment
[21, 19, 26] gives the guest direct accesses to physical
devices to achieve near-native hardware performance.

MultiLanes maps a regular file as the virtualized de-
vice of a VE rather than giving it direct accesses to a
physical device or a logical volume. The use of back-
end files eases the management of the storage images
[24]. Our virtualized block device approach is more
efficient when compared to device emulation and para-
virtualization as it comes with little overhead by adopting
a bypass strategy.

7 Conclusions

The advent of fast storage technologies has shifted the
I/O bottlenecks from the storage devices to system soft-
ware. The co-located containers in OS-level virtualiza-
tion will suffer from severe storage performance inter-
ference on many cores due to the fact that they share
the same I/O stack. In this work, we propose Multi-
Lanes, which consists of the virtualized storage device,
and the partitioned VFS, to provide an isolate I/O stack
to each container on many cores. The evaluation demon-
strates that MultiLanes effectively addresses the I/O per-
formance interference between the VEs on many cores
and exhibits significant performance improvement com-
pared to Linux for most workloads.

As we try to eliminate contention on shared data struc-
tures and locks within the file system layer with the virtu-
alized storage device, the effectiveness of our approach is
based on the premise that multiple file system instances
work independently and share almost nothing. For those
file systems in which the instances share the same worker
thread pool (e.g., JFS), there might still exist perfor-
mance interference between containers.

8 Acknowledgements

We would like to thank our shepherd Anand Sivasubra-
maniam and the anonymous reviewers for their excel-
lent feedback and suggestions. This work was funded
by China 973 Program (No.2011CB302602), China 863
Program (No.2011AA01A202, 2013AA01A213), HGJ
Program (2010ZX01045-001-002-4) and Projects from
NSFC (No.61170294, 91118008). Tianyu Wo and Chun-
ming Hu are the corresponding authors of this paper.

References
[1] Cgroup. https://www.kernel.org/doc/

Documentation/cgroups.

USENIX Association 12th USENIX Conference on File and Storage Technologies 329

[2] Filebench. http://sourceforge.net/projects/
filebench/.

[3] IOzone. http://www.iozone.org/.

[4] LXC. http://en.wikipedia.org/wiki/LXC.

[5] MySQL. http://www.mysql.com/.

[6] OpenVZ. http://en.wikipedia.org/wiki/OpenVZ.

[7] Sysbench. http://sysbench.sourceforge.net/.

[8] AAS, J. Understanding the Linux 2.6.8.1 CPU scheduler. http:
//josh.trancesoftware.com/linux/.

[9] APPAVOO, J., SILVA, D. D., KRIEGER, O., AUSLANDER,
M. A., OSTROWSKI, M., ROSENBURG, B. S., WATERLAND,
A., WISNIEWSKI, R. W., XENIDIS, J., STUMM, M., AND
SOARES, L. Experience distributing objects in an SMMP OS.
ACM Trans. Comput. Syst. 25, 3 (2007).

[10] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
Containers: A new facility for resource management in server
systems. In OSDI (1999).

[11] BAUMANN, A., BARHAM, P., DAGAND, P.-É., HARRIS, T. L.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for
scalable multicore systems. In SOSP (2009).

[12] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, M. F., MORRIS, R., PESTEREV, A., STEIN, L.,
WU, M., HUA DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey:
An operating system for many cores. In OSDI (2008).

[13] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DOVICH, N. An analysis of Linux scalability to many cores. In
OSDI (2010).

[14] BRUNO, J., GABBER, E., OZDEN, B., AND SILBERSCHATZ, A.
The Eclipse operating system: Providing quality of service via
reservation domains. In USENIX Annual Technical Conference
(1998).

[15] BUGNION, E., DEVINE, S., AND ROSENBLUM, M. Disco: Run-
ning commodity operating systems on scalable multiprocessors.
In SOSP (1997).

[16] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,
GUPTA, R. K., AND SWANSON, S. Moneta: A high-
performance storage array architecture for next-generation, non-
volatile memories. In MICRO (2010).

[17] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. Hive: Fault containment for shared-
memory multiprocessors. In SOSP (1995).

[18] CUI, Y., WANG, Y., CHEN, Y., AND SHI, Y. Lock-contention-
aware scheduler: A scalable and energy-efficient method for ad-
dressing scalability collapse on multicore systems. TACO 9, 4
(2013), 44.

[19] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMSON, M. Safe hardware access
with the Xen virtual machine monitor. In 1st Workshop on Op-
erating System and Architectural Support for the on demand IT
InfraStructure (OASIS) (2004).

[20] GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M.
Tornado: Maximizing locality and concurrency in a shared mem-
ory multiprocessor operating system. In OSDI (1999).

[21] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ASPLOS (2012).

[22] GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM,
M. Cellular Disco: resource management using virtual clusters
on shared-memory multiprocessors. In SOSP (1999).

[23] KLEIMAN, S. R. Vnodes: An architecture for multiple file sys-
tem types in Sun UNIX. In USENIX Summer (1986).

[24] LE, D., HUANG, H., AND WANG, H. Understanding perfor-
mance implications of nested file systems in a virtualized envi-
ronment. In FAST (2012).

[25] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable DRAM alternative. In
ISCA (2009).

[26] MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: Safe and
fast device access from unprivileged domains. In Euro-Par Work-
shops (2007).

[27] MCKENNEY, P. E., SARMA, D., ARCANGELI, A., KLEEN, A.,
KRIEGER, O., AND RUSSELL, R. Read-copy update. In Linux
Symposium (2002).

[28] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algorithms
for scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst. 9, 1 (1991), 21–65.

[29] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The
design and implementation of Zap: A system for migrating com-
puting environments. In OSDI (2002).

[30] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O
devices. Operating Systems Review 42, 5 (2008), 95–103.

[31] SEPPANEN, E., O’KEEFE, M. T., AND LILJA, D. J. High per-
formance solid state storage under Linux. In MSST (2010).

[32] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A. C.,
AND PETERSON, L. L. Container-based operating system virtu-
alization: a scalable, high-performance alternative to hypervisors.
In EuroSys (2007).

[33] SONG, X., CHEN, H., CHEN, R., WANG, Y., AND ZANG, B. A
case for scaling applications to many-core with OS clustering. In
EuroSys (2011).

[34] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtu-
alizing I/O devices on VMware Workstation’s hosted virtual ma-
chine monitor. In USENIX Annual Technical Conference, Gen-
eral Track (2001).

[35] VERGHESE, B., GUPTA, A., AND ROSENBLUM, M. Perfor-
mance isolation: Sharing and isolation in shared-memory multi-
processors. In ASPLOS (1998).

[36] WACHS, M., ABD-EL-MALEK, M., THERESKA, E., AND
GANGER, G. R. Argon: Performance insulation for shared stor-
age servers. In FAST (2007).

	Conference Organizers
	Contents
	Message from the12th USENIX Conference on File and Storage Technologies Program Co-Chairs
	Log-structured Memory for DRAM-based Storage
	Strata: Scalable High-Performance Storage on Virtualized Non-volatile Memory
	Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches
	Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance
	Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling
	ReconFS: A Reconstructable File System on Flash Storage
	Toward strong, usable access control for shared distributed data
	On the Energy Overhead of Mobile Storage Systems
	ViewBox: Integrating Local File Systems with Cloud Storage Services
	CRAID: Online RAID Upgrades Using Dynamic Hot Data Reorganization
	STAIR Codes: A General Family of Erasure Codes for Tolerating Device and Sector Failures in Practical Storage Systems
	Parity Logging with Reserved Space: Towards Efficient Updates and Recovery in Erasure-coded Clustered Storage
	(Big)Data in a Virtualized World: Volume, Velocity, and Variety in Cloud Datacenters
	From research to practice: experiences engineering a production metadata database for a scale out file system
	Analysis of HDFS Under HBase: A Facebook Messages Case Study
	Automatic Identification of Application I/O Signatures from Noisy Server-Side Traces
	Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation
	SpringFS: Bridging Agility and Performance in Elastic Distributed Storage
	Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility
	Resolving Journaling of Journal Anomaly in Android I/O: Multi-Version B-tree with Lazy Split
	Journaling of Journal Is (Almost) Free
	Checking the Integrity of Transactional Mechanisms
	DC Express: Shortest Latency Protocol for Reading Phase Change Memory over PCI Express
	MultiLanes: Providing Virtualized Storage for OS-level Virtualization on Many Cores

