A Service Adaptation Middleware for Delay Tolerant Network based on HTTP Simple Queue Service

Hao Zhuang \(^1,^2\), Herve Ntareme\(^2\), Zhonghong Ou\(^1\), Bjorn Pehrson\(^2\)

\(^1\)Aalto University, Finland
\(^2\)Royal Institute of Technology, KTH, Sweden
Motivation

- Communication-challenged area
 - Environment
 - Health
- Services in need
 - Environment monitor
 - Secure drug distribution
- Delay tolerant network
 - Establish network quickly
Delay Tolerant Network

- Store-forward
 - Bundle Layer
 - RFC 5050
- DTN Prototypes
 - DTN2 : Linux C/C++
 - Bytewalla : Android
Problems

- Applications based on different development platform
 - Java, Python, J2ME and C/C++
- Applications deployed in different OS
 - Bifrost, Voyage, Ubuntu, Android
- Different ways to communicate with DTN service daemon
 - Embedded Linux command in Java or C
 - Shellscrip
 - Python

Message-oriented Middleware
Background Hardware

• ALIX board computer
 • Voyage Linux as DTN gateway
 • Bifrost Linux as DTN router
• Sun SPOTs
 • collects light level, temperature and battery
 • Small-footprint JVM
 • host multiple applications
 • no underlying operating system
Background Software

- DTN Service Daemon
 - DTN2: Linux C/C++, ALIX Board
 - Bytewalla: Android, HTC Desire Android Phone
- HTTPSQS
 - Lightweight MOM to provide HTTP Simple Queue Service
 - Only 800 lines source codes and easy to second development
Architecture

- HTTPSQS
 - Simple Queue Service
- Client API
 - Java, PHP, Python, C/C++
 - DNT2 API
- HTTPSQS Message Processor
 - Serialize and deserialize
 - Request and reply
Message Design

- Text Message
 - command [option], ...
 - Bundle stat/list/
 - Route dump/add/del
 - Simple and but poor extensibility

- XML Message
 - QoS control: expire/priority/correlation
 - Better extensibility but consumes more computing and power
HTTPSQS Message Processor

- Message serialize and deserialize
 - external store and transfer → serialize
 - External to local representation → deserialize
- Request-reply processor
 - Request, Reply, Retry and Dead queues
 - Message dispatcher process
DTN2 Network Management Tool

- Provide a user-friendly DTN network management tool
 - Bundles stat/list
 - Route dump/add/del
 - Link add/del
- Socket communication between DNMT and DTN2
Environmental Monitoring Application

- PHP web client
 - User Interface
- Java client on SunSPOT
 - Collect data
 - Broadcast data
- Java client on DTN Gateway
 - Setup and teardown connection
 - Process data
- C/C++ DTN2 Services Client
 - Httpdtnsend/Httpdtnrecv
 - Httpdtncp/Httpdtncpd
Evaluation Network Setup

- Cover all the DTN nodes: Gateway, Router and Host
- Bytewalla: DTN Mobile router based on Android
- 2 base station and 10 SunSPOTs
Evaluation

DTN2 Send/Recv Bundles

<table>
<thead>
<tr>
<th>File Size(MB)</th>
<th>Time(Seconds)</th>
<th>Throughput(MB/s)</th>
<th>Power(Watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>199</td>
<td>5.14</td>
<td>4.975</td>
</tr>
<tr>
<td>70</td>
<td>199</td>
<td>5.14</td>
<td>4.912</td>
</tr>
<tr>
<td>50</td>
<td>177</td>
<td>5.79</td>
<td>4.962</td>
</tr>
<tr>
<td>30</td>
<td>159</td>
<td>6.44</td>
<td>4.941</td>
</tr>
<tr>
<td>20</td>
<td>154</td>
<td>6.65</td>
<td>5.032</td>
</tr>
<tr>
<td>10</td>
<td>194</td>
<td>5.28</td>
<td>4.802</td>
</tr>
<tr>
<td>1</td>
<td>338</td>
<td>3.03</td>
<td>4.973</td>
</tr>
</tbody>
</table>

- Send 1 GB data in different file size
- Best file size 20MB-30MB
Evaluation

DSAM Put/Get HTTPSQS Message

- Put/Get 10,000 HTTPSQS Message with various size
- Power remains constant at 4.6 watts
- When size is same, Get are larger than PUT
- When msg size > 256 bytes, throughput decreases dramatically
Conclusion

- Provide a communication layer between DTN service daemons and different applications
- Develop two applications to validate the effectiveness of DTN Service Middleware
- Provide an environmental monitoring solution for developing regions
Thank you