Learning from Early Attempts to Measure Information Security Performance

Jing Zhang¹, Robin Berthier², Will Rhee¹, Michael Bailey¹, Partha Pal³, Farnam Jahanian¹, and William H. Sanders²

¹ University of Michigan
 ² University of Illinois at Urbana-Champaign
 ³ BBN Technologies, Cambridge, MA

Importance of Organizations in the Security Ecosystem

Our Organizations

- Security operation teams at our universities
 - Information and Infrastructure Assurance (IIA) at University of Michigan

Security teams at UIUC

- We oversee IT security at the universities
 - More than 40,000 students
 - More than 30,000 faculty and staff at UofM, and more than 10,000 at UIUC
 - Facilitating campus-wide incident response activities
 - Provide services such as security assessment and consultation, network scans, education and training
 - Managing IT security issues at the university level

Organizational Background

Context: Account compromise at UofM and UIUC

 613 incidents related to unauthorized use of university accounts during 2010 and first 6 months of 2011 at UofM

 178 compromised accounts were reported in the first half of 2011 at UIUC Market place for the compromised university accounts

Organizational Goals

We want to answer:

- How secure is the organization?
- Has the secure posture improved over the last years?
- How to compare with peers with respect to security?
- What is the marginal change in the security, given the use of a tool or practice?
- How to prioritize resources to maximize security and minimize risks?

Security Metrics

- Micro-level of view
- Quantified measurement
- Hard to achieve
 - Complexity of the environment
 - rapid evolution of technology and adversarial action

"We cannot manage what we cannot measure!"

Our Work Today

What we have

- Incidents Tickets
- Authentication Logs
- Victim Information
- Password-cracking results
- Security quiz results

Factors Analyzed

- Victim Demographic
- Temporal Factor
- Geographical Factor
- Topological Factor
- Usage Behavior
- Password Strength
- Security Quiz

Our Work Today

What we have

- Incidents Tickets
- Authentication Logs
- Victim Information
- Password-cracking results
- Security quiz results

Factors Analyzed

- Victim Demographic
- Temporal Factor
- Geographical Factor
- Topological Factor
- Usage Behavior
- Password Strength
- Security Quiz

Example 1 - User Susceptibility

Question

What roles gender, age, education-level, citizenship, and department play in the compromise of student accounts?

Data

- Student victims: 242 at UofM from 2009 to 2011, 130 at UIUC in 2011
- Aggregated Demographics for the total student population

Group	Variable	Type	Details		
	Gender	Binary	Male, Female		
	А се	Categorical	<19, 20-21, 22-23, 24-25,		
Student	Age	Categorical	26-30, 31-35, >35		
	Education Ca	Categorical	Undergraduate, Graduate,		
		Categorical	Others		
	Citizenship	Binary	U.S. Citizen,		
	Citizensinp	Dinary	Non-U.S. Citizen		
	Department	Categorical			

Example 1 - User Susceptibility

- Methodology: Multivariate Linear Regression
 - Predict the effect of one factor, holding other factors constant.
 - Example: Age and Education Level
 - Simple distribution -> 20-21, undergraduate
 - Undergraduate students has more people in age 20-21 than graduate students
 - Which is the real significant factor? Or both?
 - Logistic Regression Model:

$$L = a + \sum B_i X_i. \qquad L = \ln \frac{\hat{p}}{1 - \hat{p}}.$$

- Null Hypothesis Ho: Bi = 0 (Variable Xi is not statistically significant in predicting user susceptibility)
- Test Statistics: p-value < 0.05

Example 1 - User Susceptibility

Results

Factor	University	Year	p-value	Coef.
Undergraduate	UofM	2009	0.009	2.957
		2010	<0.001	3.520
		2011	0.020	3.489
	UIUC	2011	0.958	-10.733
	UofM	2009	0.002	1.219
Age (20-21)		2010	0.004	0.823
7.85 (25 22)		2011	0.017	0.896
	UIUC	2011	0.410	-0.472
	UofM	2009	0.520	0.315
Citizenship		2010	0.659	-0.126
2.11.2.13.11.15		2011	0.128	-0.460
	UIUC	2011	0.007	0.5433

Disagreement between the two universities

Gender is not statistically significant!

Example 2 - Temporal Factor

Question

Whether the incidence of compromises varies at different time of the year?

Data

Monthly number of tickets at UofM from 2009 to 2011

Example 2 - Temporal Factor

- Methodology: Time series data analysis
 - "Holt-Winters" exponential smoothing procedure
 - Long-term trend + Seasonality
- Result
 - No seasonality pattern in the monthly number of tickets

Creation time ≠ Compromise time

Example 3 - Password Policy

Question

Whether accounts with weak passwords are more likely to be compromised?

Data

Password-cracking performed at UofM (2012)

	# of total	# of compromised	Pr (compromise)
Weak Password	2,284	12	0.525%
Total Population	550,000	380	0.069%

Example 3 - Password Policy

- Methodology: Test of Homogeneity
 - Whether the response of identifiable sub-populations differ from those of others
 - Null Hypothesis H_o: users who have weak passwords have the same probability to be compromised as other users
 - Test statistics: deviance; Confidence level: p-value < 0.05

Result

- Test statistics of deviance of 28.09 and a p-value of 1.16⁻¹⁶
- Reject Null Hypothesis, and conclude that the users, who use weak passwords, have a higher probability to be compromised

Is weak password the reason of compromise?

But are the limited number of potentially impacted accounts worth our effort?

Discussions

Are the questions meaningful?

Actionable? Proactive or Reactive?

Is it the right data?

Quality? Sensitivity?

Are we using right analysis techniques?

Observation ≠ Statistical Inference Correlation ≠ Causality

- How to reproduce the measurement?
 - Continuous measurement
 - Reproduce across multiple organizations

Generalized measurement metrics and techniques

Data collection and sharing platform

How to form actionable strategies based on those metrics?

Results ≠ Strategy Strategy ≠ Success