Discretized Streams

An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica
Motivation

• Many important applications need to process large data streams arriving in real time
 – User activity statistics (e.g. Facebook’s Puma)
 – Spam detection
 – Traffic estimation
 – Network intrusion detection

• Our target: large-scale apps that must run on tens–hundreds of nodes with $O(1 \text{ sec})$ latency
Challenge

• To run at large scale, system has to be both:
 – **Fault-tolerant:** recover quickly from failures and stragglers
 – **Cost-efficient:** do not require significant hardware beyond that needed for basic processing

• Existing streaming systems don’t have both properties
Traditional Streaming Systems

• “Record-at-a-time” processing model
 – Each node has mutable state
 – For each record, update state & send new records
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

- Node 1
- Node 2
- Node 3
- Node 1'
- Node 2'
- Node 3'

Input

Synchronization

Standby

Replication

Upstream backup
Traditional Streaming Systems

Fault tolerance via **replication** or **upstream backup**:

Fast recovery, but 2x hardware cost

Only need 1 standby, but slow to recover
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

Neither approach tolerates stragglers
Observation

• **Batch** processing models for clusters (e.g. MapReduce) provide fault tolerance efficiently
 – Divide job into deterministic tasks
 – Rerun failed/slow tasks in parallel on other nodes

• Idea: run a streaming computation as a series of very small, deterministic batches
 – Same recovery schemes at much smaller timescale
 – Work to make batch size as small as possible
Discretized Stream Processing

$t = 1$: input

pull

immutable dataset (stored reliably)

batch operation

$t = 2$: input

immutable dataset (output or state); stored in memory without replication

...
Parallel Recovery

- Checkpoint state datasets periodically
- If a node fails/straggles, recompute its dataset partitions in parallel on other nodes

Faster recovery than upstream backup, without the cost of replication
How Fast Can It Go?

- Prototype built on the Spark in-memory computing engine can process **2 GB/s (20M records/s)** of data on 50 nodes at **sub-second latency**

Max throughput within a given latency bound (1 or 2s)
How Fast Can It Go?

- Recovers from failures within 1 second

Sliding WordCount on 10 nodes with 30s checkpoint interval
Programming Model

• A discretized stream (D-stream) is a sequence of immutable, partitioned datasets
 – Specifically, resilient distributed datasets (RDDs), the storage abstraction in Spark

• Deterministic transformations operators produce new streams
API

• LINQ-like language-integrated API in Scala
• New “stateful” operators for windowing

```
pageViews = readStream("...", "1s")
ones = pageViews.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)
```

```
sliding = ones.reduceByWindow(
  "5s", _ + _, _ - _)
```

Incremental version with “add” and “subtract” functions
Other Benefits of Discretized Streams

• Consistency: each record is processed atomically

• Unification with batch processing:
 – Combining streams with historical data

    ```java
    pageViews.join(historicCounts).map(...)
    ```

 – Interactive ad-hoc queries on stream state

    ```java
    pageViews.slice("21:00", "21:05").topK(10)
    ```
Conclusion

• D-Streams forgo traditional streaming wisdom by **batching** data in small timesteps

• Enable efficient, new parallel recovery scheme

• Let users seamlessly intermix streaming, batch and interactive queries
Related Work

• Bulk incremental processing (CBP, Comet)
 – Periodic (~5 min) batch jobs on Hadoop/Dryad
 – On-disk, replicated FS for storage instead of RDDs

• Hadoop Online
 – Does not recover stateful ops or allow multi-stage jobs

• Streaming databases
 – Record-at-a-time processing, generally replication for FT

• Parallel recovery (MapReduce, GFS, RAMCloud, etc)
 – Hwang et al [ICDE’07] have a parallel recovery protocol for streams, but only allow 1 failure & do not handle stragglers
Timing Considerations

• D-streams group input into intervals based on when records arrive at the system

• For apps that need to group by an “external” time and tolerate network delays, support:
 – **Slack time**: delay starting a batch for a short fixed time to give records a chance to arrive
 – **Application-level correction**: e.g. give a result for time t at time t+1, then use later records to update incrementally at time t+5
D-Streams vs. Traditional Streaming

<table>
<thead>
<tr>
<th>Concern</th>
<th>Discretized Streams</th>
<th>Record-at-a-time Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency</td>
<td>0.5–2s</td>
<td>1-100 ms</td>
</tr>
<tr>
<td>Consistency</td>
<td>Yes, batch-level</td>
<td>Not in msg. passing systems; some DBs use waiting</td>
</tr>
<tr>
<td>Failures</td>
<td>Parallel recovery</td>
<td>Replication or upstream bkp.</td>
</tr>
<tr>
<td>Stragglers</td>
<td>Speculation</td>
<td>Typically not handled</td>
</tr>
<tr>
<td>Unification with batch</td>
<td>Ad-hoc queries from Spark shell, join w. RDD</td>
<td>Not in msg. passing systems; in some DBs</td>
</tr>
</tbody>
</table>