
Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael Lee, Xiaoming Tang, Yuanyuan Zhou, Stefan Savage

University of California, San Diego
University of Illinois at Urbana-Champaign

Be Conservative: Enhancing Failure
Diagnosis with Proactive Logging

http://opera.ucsd.edu/errlog.html

Motivation

2

  Production failures are hard to reproduce
  Privacy concerns for input
  Hard to recreate the production setting

Importance of log messages

3

2.3X

1.4X

3.0X

Diagnosis time*
(normalized)

* result from >100 randomly sampled failures per software

  Vendors actively collect logs
  EMC, NetApp, Cisco, Dell collect logs from >50% of their

customers [SANS2009][EMC][Dell]

  Log messages cut diagnosis time by 2.2X

Fifth annual SANS Survey Reveals 99%
of Organizations Collect Logs or Plan to
Implement Log Management

An real-world example of good logging

4

$./apachectl start

What if there is no such log message?

Starting Apache
web server

Typo
misconfiguration

Could not open group file: /etc/httpd/gorup
No such file or directory

Real-world failure report

5

User:
“Apache httpd cannot start.
No log message printed.”

if ((status = fileopen(grpfile, ..)) != SUCCESS) {

 return DECLINED;
}

+ ap_log_error(“Could not open group file: %s”, grpfile);

Developer:
Cannot reproduce the failure…
Ask lots of user information…
User’s misconfiguration:
 typo in group file name.

Reative instead of proactive!

Detected error
& terminate

Real-world bug in Squid web-cache

6

User:
“In an array of squid servers, from time to time the
available file descriptors drops down to nearly zero.

No log message or anything!”

Developer:
Cannot reproduce the failure…
Ask user for [debug] level logs…
Ask user for configuration file
Additional log statements.
Ask user for DNS statistics…

45 exchanges

Real-world bug in Squid web-cache

7

User:
“In an array of squid servers, from time to time the
available file descriptors drops down to nearly zero.

No log message or anything!”

if (status != OK) {
 idnsSendQuery (q);

}

DNS lookup
error

Not handled
properly

+ idnsTcpCleanup(q);
+ error(“Failed to connect to DNS server with TCP”);

What we have seen from the examples

8

  Developers miss obvious log opportunities
  Analogy: solving crime without evidence

  How many real-world cases are like this?
  What are other obvious places to log?

Our contributions

9

  Quantitative evidences
  Many opportunities that developers could have logged
  Small set of generic “log-worthy” patterns

  Errlog: a tool to automate logging

Errlog
if (status != OK) {

}

if (status != OK) {
 elog(.. ..);

} Added log

statement

Outline

10

  Introduction
  Characterizing logging efficacy
  Errlog design
  Evaluation results
  Conclusion

Goals of our study

11

  Do real-world failures have log messages?

  Where to log?

Study methodology

12

  Randomly sampled 250 recently reported failures*
  Carefully studied the discussion and related code/patch
  Study took 4 authors 4 months

Software Sampled failures
Apache httpd 65

Squid 50

PostgreSQL 45

SVN 45

GNU Coreutils 45

Total 250

* Data can be found at: http://opera.ucsd.edu/errlog.html

How many missed log message?

13

  Only 43% failures have log messages

W/ Log
(43%)

W/O Log
(57%)

Software Failures with log
Apache httpd 37%

Squid 40%

PostgreSQL 53%

SVN 56%

Coreutils 33%

Overall 43%

How many missed log message?

14

  Only 43% failures have log messages
  77% have easy-to-log opportunities

W/ Log
(43%)

W/O Log
(57%)

Software Failures with log
Apache httpd 37%

Squid 40%

PostgreSQL 53%

SVN 56%

Coreutils 33%

Overall 43%

Easy-to-log
opportunity

7 patterns

77%

Pattern I: function return error

15

if ((status = fileopen (grpfile, ..)) != SUCCESS) {
 return DECLINED;
}

No log:

/* Apache httpd misconfiguration. */

wrapper function of
“open” system call

Unnecessary user complain and
debugging efforts

Pattern I: function return error

16

svn_err_t* svn_export(..) {
 SVN_ERR(svn_versioned(..));
}

Good practice:

/* SVN */

svn_err_t* svn_versioned(..) {
 if (!entry)
 return error_create(“%s is not under version control”, ..);
}

#define SVN_ERR(func)
 svn_error_t* temp=(func);
 if (temp)
 return temp;

int main (..) {
 if (svn_export(..))

}

print
message once

Propagate to caller

Macro to detect all
func. return error

Create and return an
error message

Pattern I: function return error

17

svn_err_t* svn_export(..) {
 SVN_ERR(svn_versioned(..));
}

Good practice:

/* SVN */

svn_err_t* svn_versioned(..) {
 if (!entry)
 return error_create(“%s is not under version control”, ..);
}

#define SVN_ERR(func)
 svn_error_t* temp=(func);
 if (temp)
 return temp;

int main (..) {
 if (svn_export(..))

}

print
message once

Propagate to caller

Macro to detect all
func. return error

Create and return an
error message

Pattern II: abnormal exit

18

if (svn_dirent_is_root)
 abort ();

No log:

/* SVN */

+ svn_error_raise_on_malfunction(_FILE_, _LINE_);

+ svn_error_raise_on_malfunction (..) {
+ err=svn_error_create(“In file ‘%s’ line ‘%d’: internal malfunction”);
+ svn_handle_error2 (err);
+ abort();
+ }

“I really hate abort() calls! Instead of getting a
usable core-dump, I often got nothing. ”

--- developer’s check-in message

A bug triggered
this abort

Over 10 discussion messages
btw. user and dev.

print error
message.

Generic log-worthy patterns

19

1. Function return
 error (30%)

2. Switch stmt.
 fall-through to
 ‘default’ (14%)

3. Exception signals (13%)

6. Abnormal
 exit (4%)

7. Failed memory
 safety check (3%)

5. Resource leak (4%)

4. Failed input validity check (9%)

Generic log-worthy patterns

20

1. Function return
 error (30%)

2. Switch stmt.
 fall-through to
 ‘default’ (14%)

3. Exception signals (13%)

6. Abnormal
 exit (4%)

7. Failed memory
 safety check (3%)

5. Resource leak (4%)

4. Failed input validity check (9%)

77%

Exception conditions

Log the exception

21

  Classic Fault-Error-Failure model [Laprie.95]

Fault

Root cause,
e.g., s/w bug,

h/w fault,
misconfiguration,

etc…

Failure

Affect service/result
Visible to user

Error (exception)

Start to misbehave,
e.g., system-call

error return

Log?
Fault is hard to find!

Log!

Not too much overhead
Relevant to the failures

Failure

Why developers missed logging?

22

113
no log: 11

Fault

Undetected
Error

Detected
Error

96 (39%)

no log: 46
154 (61%)

Give up

no log: 96

Failure

Failure

41
no log: 35

Handle incorrectly

250 failures:

Don’t be optimistic;
conservatively log!

Log detected
errors!

Carefully check
the error!

39 (41%) can be
detected

Outline

23

  Introduction
  Characterizing logging efficacy
  Errlog design
  Evaluation results
  Conclusion

automate such
logging

Errlog: a practical logging tool

24

Exception
identification

Source
code

Modified
source code

Is it already
logged?

Insertion &
optimization

errlog –logfunc=“error” CVS/src

No

Exception identification

25

  Mechanically search for generic error conditions
  Learn domain-specific error conditions

 if (status != COMM_OK)

 goto ERROR;

ERROR:

 error(“network failure”);

if (status != COMM_OK){

}

Frequently logged

+ elog ();

Log statement insertion

26

  Check if the exception is already logged
  Each log statement contains:

  Unique log ID, global counter, call stack, useful variables

 /* Errlog modified code */

 if (status != COMM_OK) {

+ elog (logID, glob_counter, logEnhancer());

 }

LogEnhancer [TOCS’12]

Adaptive sampling to reduce overhead

27

  Not every identified condition is a true error
  E.g., using error return of ‘stat’ to test the existence of file

  Adaptive sampling [HauswirthASPLOS’04]
  More frequently it occurs, less likely to be a true error
  Differentiate run-time log by call stack and errno

Logged
occurrence

1st 2nd 3rd 4th 5th 6th 7th 8th …
Dynamic
occurrence 2 th n

Evaluation

28

  Applied Errlog on ten software projects

Software LOC
Apache httpd 317K

Squid 121K

PostgreSQL 1029K

SVN 288K

Coreutils 69K

Software LOC
CVS 111K

OpenSSH 81K

Lighttpd 56K

gzip 22K

GNU make 29K

Software used in our
empirical study

New software not used
in our empirical study

Reducing silent failures

29

  Errlog adds 0.60X extra log printing statements
  What is the benefit?

  Evaluated on 141 silent failures

Failures originally print no logs

65% have
error msg.
with Errlog

35% still
fail silently

Subtle
exceptions.

Comparison with manual logging

30

  16,065 existing log stmt. in ten systems
  Many added reactively

Average: 83%

Used in study

Average: 85%

New

Objective baseline

Performance overhead

31

<1% <1% <1% <1% <1% <1%

Maximum
4.6%

  Why Errlog has overhead?
  A few noisy log messages in normal execution

  Errlog adds 1.4% overhead

User study

32

  20 programmers from UCSD
  5 real-world failures

Failure Repro? Description
apache
crash

Yes NULL ptr. dereference caused by user
misconfiguration.

apache
no-file

Yes Misconfiguration caused apache cannot
find the group-file

chmod No Silently fail on dangling symbolic link

cp Yes Fail to copy the content of /proc/cpuinfo

squid No Denies user’s valid authentication when
using an external authentication server

GDB can be used.

User study result

33

  On average, Errlog reduces diagnosis time by 61%

“(Errlog added) logs are in particular helpful for debugging complex
systems or unfamiliar code where it required a great deal of time in
isolating the buggy code path.”
 – from a user’s feedback

74%

Limitations

34

  Study result might not be representative
  Only five software projects
  All written in C/C++

  Not all failures can benefit from Errlog
  Still 35% of the silent failures remain silent

  Semantic of the log message is not as good

Related work

35

  Detecting bugs in exception handling code
[RenzelmannOSDI’12][GunawiFAST’08][GonzalesPLDI’09]
[MarinescuTOCS’11][GunawiNSDI’11][YangOSDI’04]

  Different: logging instead of bug detection
  Complementary: exception patterns can benefit previous work

  Deterministic replay [VeeraraghavanASPLOS’11][AltekarSOSP’09]
[DunlapOSDI’02][SubhravetiSIGMETRICS’11]

  Overhead and privacy

  Log enhancement [Yuan TOCS’12][Yuan ICSE’12]

  Unique challenges: Shooting blind and overhead
  Different approaches: failure study, exception identification,

check if exception is logged, adaptive sampling, etc.

Conclusions

36

  Many obvious exceptions are not logged
  Carefully write error checking code
  Conservatively log the detected error, even when it’s handled

  Errlog: practical log automation tool
  User study: Errlog shortens the diagnosis by 61%
  Adding only 1.4% overhead

Failure diagnosis reports can be found at:

http://opera.ucsd.edu/errlog.html

"As personal choice, we tend not to use
debuggers beyond getting a stack trace or the
value of a variable… We find stepping through a
program less productive than thinking harder and
adding output statements and self-checking code
at critical places. More important, debugging
statements stay with the program; debugging
sessions are transient. ”

 --- Brian W. Kernighan and Rob Pike
 “The Practice of Programming”

Thanks!

