
Two methods for exploiting speculative
control flow hijacks

Andrea Mambretti

Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorniotti,
 Anil Kurmus

Early 2018

2

Multiple vulnerabilities

CVE Variant Name

2017-5753 Spectre v1 Bounds Check Bypass

2017-5715 Spectre v2 Branch Target Injection

2017-5754 Meltdown Rogue Data Cache Load

2018-3640 Spectre v3a Rogue System Register Read

2018-3639 Spectre v4 Speculative Store Bypass

2018-3665 Spectre-FP Lazy FP State Restore

2018-3693 Spectre v1.1 Bounds Check Bypass Store

3

Spectre v1 - Bounds Check Bypass

if (x < array1_size) {
y = array2[array1[x]];

}

Cached

Not Cached

Example:
- array1_size = 8
- x = 15 (attacker controlled)

array1

s 3 c r 3 7

array2

...
HIGHLOW

...

0x63
array2+0x63

Speculative Execution Trigger

4

Speculative CFH Attack Breakdown

Attacker injection
(e.g. Branch Predictor Training)

Speculative Control Flow Hijack
lure the victim to execute the vulnerable code

Side Channel Send gadget executed inside the victim

Side Channel Receive gadget executed inside the attacker 5

Branch Target Buffer

f(PC) Target

A

D

X

Z

V

E

B

G

 mov rax, [0xc0ff33]

A: call *rax
 ...

E: mov rbx, 20
 ret

V: mov rbx, 10
 ret

Normal Exec
(Simplified)

Branch Target Buffer

44

E

1235

666

Memory

0xc0ff33 Not cached

E

6

Core

Spectre v2 - Branch Target Injection (BTI)

f(PC) Target

A

D

X

Z

V

E

B

G

 mov rax, [0xc0ff33]

A: call *rax
 ...

E: mov rbx, 20
 ret

V: mov rbx, 10
 ret

Evil: GADGET

Victim Thread
(Simplified)

Branch Target Buffer

44

E

1235

666

Memory

0xc0ff33 Not cached

repeat:
 mov rax, Evil

A: call *rax
 ...
 loop repeat
 ...

Evil: ret

Attacker Thread

Evil

Logic core 0 Logic core 1

SC Send Leak: GADGET

SC Receive

7

Control Flow Hijack - Gadget

Spectre v2 and other CF hijack techniques uses Spectre v1 gadget as “side channel send”

Project Zero Spectre v2 Proof-of-Concept relies on Kernel extended Berkeley Packet
Filter (eBPF) JIT mechanism to inject a suitable gadget

Are there other (easier to find) gadgets that can be used?

8

Our Contribution - New SC Send gadgets

Instruction cache:

timing the execution of a piece of code that is executed conditionally based on a
secret

Branch Predictor (Double BTI):

let the victim program train the Branch Predictor using a secret computed value

9

 rdtsc
 call fun1
 rdtsc

Side Channel Receive
(i-cache timing)

Instruction Cache - POC

 mov rdx, Evil

A: call *rdx

Attacker

time

Victim

Training
 mov rax, secret

A: call *rdx

BTI Gadget
Hijack

Evil: cmp rax, 0
 je end

B: call fun1

end: ...

Side Channel Send
(i-cache gadget)

rax = 0

rax != 0

10

fun1 is in a shared memory area
between attack and victim process

Double BTI - POC Phase 1

 mov rdx, Evil

A: call *rdx

Attacker

time

Victim

Training
 mov ax, secret_byte
 shl eax, 16
 add rax, BASE
 mov rdx, Good
A: call *rdx

BTI Gadget
Hijack

Evil: nop
 call *rax
 ...
Good: ret

Side Channel Send
(reverse BTI gadget)

Evil: ret
 call *rax
 retf(PC) Target

A

D

X

Z

V

E

B

G

Evil

Evil fun(secret)

11

Double BTI - POC Phase 2

 mov rdx, Evil

A: call *rdx

Attacker

time

Side Channel Receive

Evil: nop
 call *rax
 ret

addr0: mov rax, QWORD[array + 0]
 ret
addr1: mov rax, QWORD[array + 1]
 ret
…
addr71: mov rax, QWORD[array+71]

 ret
...
addr255: mov rax, QWORD[array+255]

 ret

f(PC) Target

A

D

X

Z

V

E

B

G

Evil

Evil fun(secret)

fun(secret) => addrX with {X∈ ℕ | X ∈ [0, 255] }

 e.g. fun(0) = addr0, fun(255) = addr255

secret_byte = 71 = ‘G’

12

Results
Double BTIIcache attack

Secret Success Rate

0 80.84% +/- 1.37

1 97.29% +/- 0.11

13

Mitigations

Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier
(IBPB) does not apply to user-space attacks.

Single Thread Indirect Branch Predictors (STIBP) mitigates our attacks

Current STIBP default setting leaves to the application the burden of requesting the
protection through either SECCOMP, or the prctl interface.

Retpoline stops our attacks, though the application has to be recompiled with it 14

Conclusions

We introduced two new SC send gadgets and tested them in BTI attacks (applicable to other

Control Flow Hijack attacks, e.g. ret2spec)

Through the I-cache gadget we can leak 1 bit at the time

Through the double BTI gadget we can leak 1 byte at the time with very good signal

Current mitigations do not protect applications unless specifically requested 15

Questions?

16

