
USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Static Exploration of Taint-Style
Vulnerabilities Found by Fuzzing

Bhargava Shastry, Federico Maggi, Fabian Yamaguchi,
Konrad Rieck, and Jean-Pierre Seifert

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

How It Started
● Spun afl-fuzz on Open vSwitch

○ Found 8 vulnerabilities
○ Responsibly disclosed and now patched
○ 1 RCE

■ Crashing input tweetable

ffffffffffff0000000000008847

2

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Bottleneck
● OvS has over 100 functional test cases

○ Only 3-4 fuzzable

○ Test coverage ≤ 3%

Duh, extensively write fuzzable test cases!

3

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Problem
● Not faulting OvS, problem deep-rooted
● Writing fuzzable tests challenging

○ Applicability limited
○ Does not scale
○ Requires domain expertise

Fuzzing may not exercise every single LoC

4

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Pitch

Fuzzer-directed static analysis

5

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Proposal
Leverage hard data to ask the compiler specific

questions

Fuzzer crash ⇒ Stack trace ⇒ Vulnerability Template ⇒ Recurrences

6

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Design
7

int main() {
 read();
 process(in);
 If (crypto())
 process(in);
}

int main() {
 read();
 process(in);
 If (crypto())
 process(in);
}

 if (crypto())
 process(in);

Software Localize
Fault

Vulnerability
Template

read();
process(in);

RankFuzz

Image: https://www.laserfiche.com/content/uploads/2015/02/shutterstock_137894381.jpg

https://www.laserfiche.com/content/uploads/2015/02/shutterstock_137894381.jpg

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Implementation
● Fault localization & Ranking ⇒ custom python script
● Template matching engine ⇒ Clang libASTMatcher

https://github.com/test-pipeline

8

https://github.com/test-pipeline

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Results: Effectiveness
9

Vulnerability Num. matches Num. issues

CVE-2016-10377 5 0

CVE-2017-9264 (TCP) 10 0

CVE-2017-9264 (UDP) 2 1

CVE-2017-9264 (IPv6) 3 0

CVE-2017-9214 41 0

CVE-2017-9263 34 0

CVE-2017-9265 1 0

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Ranking Matches
● Reports provides insufficient context
● We rank matches based on fuzzer coverage
● Matches containing uncovered code interesting

Only 36 out of 96 matches ranked high

10

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Insight
Developers want contextual information

“I would like to hear about other similar
problem(s) you find in the code. Whether they
are exploitable or not, it is better for the
code to be careful.”

- Ben Pfaff, OvS lead developer

11

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Results: Run time
12

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Insight
● Structural (AST) analysis is relatively fast
● Semantic analysis is relatively slow
● Tension between analysis precision and speed
● Run time suitable for continuous integration

13

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Summary
● Going beyond fuzzing is necessary
● Static analysis well-suited, results promising
● Evaluated on OvS, drew attention to 1 real issue and

several corner cases
● Fast enough for continuous integration

14

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Future Work
● Reducing false positives

○ Formulating more precise vulnerability templates
● Easing manual review further

○ Use Angr for path reachability queries
○ Greetz to Dominic Maier

15

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Acknowledgements

Thank OvS Security/Dev team for timely fixes

16

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Questions?

17

USENIX WOOT’17 | Static Exploration of Taint Style Vulnerabilities Found by Fuzzing

Related Work
When vulnerable code pattern known

● Code mining
○ Rely on security patches ⇒ Reactive

When vulnerable code pattern unknown

● Machine learning
○ As good as training set ⇒ Insufficient guarantees

18

