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How It Started
● Spun afl-fuzz on Open vSwitch

○ Found 8 vulnerabilities
○ Responsibly disclosed and now patched
○ 1 RCE 

■ Crashing input tweetable

ffffffffffff0000000000008847
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Bottleneck
● OvS has over 100 functional test cases

○ Only 3-4 fuzzable

○ Test coverage ≤ 3%

Duh, extensively write fuzzable test cases!
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Problem
● Not faulting OvS, problem deep-rooted
● Writing fuzzable tests challenging

○ Applicability limited
○ Does not scale
○ Requires domain expertise

Fuzzing may not exercise every single LoC
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Pitch

Fuzzer-directed static analysis
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Proposal
Leverage hard data to ask the compiler specific 

questions

Fuzzer crash ⇒ Stack trace ⇒ Vulnerability Template ⇒ Recurrences
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Design
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int main() {
  read();
  process(in);
  If (crypto())
    process(in);
}

int main() {
  read();
  process(in);
  If (crypto())
    process(in);
}

  if (crypto())
    process(in);

Software Localize
Fault

Vulnerability
Template

read();
process(in);

RankFuzz
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Implementation
● Fault localization & Ranking ⇒ custom python script
● Template matching engine ⇒ Clang libASTMatcher

https://github.com/test-pipeline
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Results: Effectiveness
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Vulnerability Num. matches Num. issues

CVE-2016-10377 5 0

CVE-2017-9264 (TCP) 10 0

CVE-2017-9264 (UDP) 2 1

CVE-2017-9264 (IPv6) 3 0

CVE-2017-9214 41 0

CVE-2017-9263 34 0

CVE-2017-9265 1 0
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Ranking Matches
● Reports provides insufficient context
● We rank matches based on fuzzer coverage
● Matches containing uncovered code interesting

Only 36 out of 96 matches ranked high
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Insight
Developers want contextual information

“I would like to hear about other similar 
problem(s) you find in the code. Whether they 
are exploitable or not, it is better for the 
code to be careful.”

- Ben Pfaff, OvS lead developer
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Results: Run time
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Insight
● Structural (AST) analysis is relatively fast
● Semantic analysis is relatively slow
● Tension between analysis precision and speed
● Run time suitable for continuous integration
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Summary
● Going beyond fuzzing is necessary
● Static analysis well-suited, results promising
● Evaluated on OvS, drew attention to 1 real issue and 

several corner cases
● Fast enough for continuous integration
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Future Work
● Reducing false positives

○ Formulating more precise vulnerability templates
● Easing manual review further

○ Use Angr for path reachability queries
○ Greetz to Dominic Maier
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Questions?
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Related Work
When vulnerable code pattern known

● Code mining
○ Rely on security patches ⇒ Reactive

When vulnerable code pattern unknown

● Machine learning
○ As good as training set ⇒ Insufficient guarantees
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