DDoS Coin
Cryptocurrency with a Malicious Proof-of-Work

Eric Wustrow
University of Colorado Boulder
ewust@colorado.edu

Benjamin VanderSloot
University of Michigan
benvds@umich.edu
Cryptocurrencies

- Digital, decentralized cash
- Public ledger of transactions
- Mining rewards

Source: bitcoin.org
Proof-of-Work

"Hello, world!0" => 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec
"Hello, world!1" => e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a93
"Hello, world!2" => ae37343a357a8297591625e7134cbea22f5928be8ca2a32aa475cf05fd
...
"Hello, world!4248" => 6e110d98b388e77e9c6f042ac6b497cec46660deef75a55ebc7cfdf
"Hello, world!4249" => c004190b822f1669cac8dc37e761cb73652e7832fb814565702245c
"Hello, world!4250" => 0000c3af42fc31103f1fdec0151fa747ff87349a4714df7cc52ea464

Source: bitcoin.org
Alternate Proofs-of-Work

- Bitcoin
- Litecoin
- Peercoin
- Permacoin
- TorPath
- Primecoin

- DDoS Coin
Proof-of-Stake

• Peercoin
• Coin-days are proof
• Rate-limiting prevents proof-of-work
• Coins can only age 90 days
Proof-of-DDoS

Miner

Target

SHA256(DH Parameters || signature || N)
Block Validation

Proves many connections to a target server, and leaves the blockchain in a good state

Miner

client_random = SHA256(prev_block||merkle_root||N)

cipher = DHE

server_random = 0x...

certificate_chain

DH Parameters

signed(client_random, server_random, DH Parameters)

Target

SHA256(DH Parameters || signature || N)
Target Selection

- Any server?
- Fixed set of servers?

Our Solution

- Proof-of-Stake blocks
- PAY_TO_DDOS transactions
Target Selection

New Proof-of-DDoS block
- Prev block hash: 2f7c63...
- Tx Merkle root: 9c8f15...
- Nonce: 63a108...
- Proof-of-DDoS: 8b2761...
- Transactions:
 * -> Miner
 Alice -> Bob

Proof-of-Stake block
- Prev block hash: cc2b1a...
- Tx Merkle root: 839f2c...
- Diff: + vicX.com
- Transactions:
 Bob -> Bob (coinstake)
Proof-of-DDoS Implementation

CDF

Time (ms)

Normal
Under DDoS
Defenses

• Version or cipher suite changes
• Victims claiming own rewards
• Stakeholding
• Legal action
Discussion

• Malicious “useful” proof-of-work
• Challenges regarding bandwidth availability
• Ethereum smart contracts
• Ethical Forks
• Barriers to adoption
Ethics

• Did not attack real servers
• Did not publish the full coin
Ethics

• Did not attack real servers
• Did not publish the full coin
• Full disclosure
DDoSCoin
Cryptocurrency with a Malicious Proof-of-Work

Eric Wustrow
University of Colorado Boulder
ewust@colorado.edu

Benjamin VanderSloot
University of Michigan
benvds@umich.edu
Target Difficulty

• Global difficulty parameter
 • Adjust the rate at which transactions are processed

• Per-domain difficulty parameter
 • Allow all targets to be viable

• Constant time intervals

• Initial difficulty set by user