
1

Stagefright: An Android
Exploitation Case Study

Joshua "jduck" Drake
August 9th, 2016
WOOT '16

2

Agenda
Introduction
CVE-2015-3864
Android Exploitation
Metaphor
Improving on Metaphor
DEMO!
Porting to a Samsung Device
DEMO 2!
Wrap-Up

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

3

Introduction

About the presenter and this research

4

About Joshua J. Drake aka jduck
Focused on vulnerability research and exploit development
for the past 17 years

Current Affiliations:

Found and initially disclosed "Stagefright"
VP of Platform Research and Exploitation at Zimperium
Lead Author of Android Hacker's Handbook
Founder of the #droidsec research group

Previous Affiliations:

Accuvant Labs (now Optiv), Rapid7 Metasploit, VeriSign
iDefense Labs

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

5

Motivations

1. See Vulnerabilities 101, Drake/Christey, DEF CON 24

For the work in this talk:

1. Explore the difficulty of exploiting Stagefright bugs
2. Get more people involved in vulnerability research

See Vulnerabilities 101, Drake/Christey, DEF CON 24

Originally:

1. Improve the overall state of mobile security
2. Increase visibility of risky code in Android
3. Put the Droid Army to good use!

Led to improvements big and small, but still plenty work le�.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

6

Acknowledgments
This work was sponsored by Accuvant Labs (now Optiv) with
continuing support from Zimperium.

 &

Special thanks go to Amir Etemadieh of Optiv / Exploiteers.

Additional thanks to Collin Mulliner, Mathew Solnik, Daniel
Micay, Gil Dabah, Hanan Be'er

Thanks to USENIX, WOOT, and Natalie Silvanovich for the
opportunity!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

7

What is Stagefright?

1.
See my 2015 talk slides for more introductory information. (link at end)

https://en.wikipedia.org/wiki/Stagefright_%28bug%29

Android Multimedia Framework library
Written primarily in C++
Handles all video and audio files

Provides playback facilities
Extracts meta-data for the Gallery, etc.

Now also the name of "a vulnerability" that made waves.1
An attacker could obtain elevated privileges on an
affected Android device, unbeknownst to the victim,
with only a single MMS.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

https://en.wikipedia.org/wiki/Stagefright_%28bug%29

8

CVE-2015-3864

The Vulnerability Exploited

9

CVE-2015-3864 I: OOPS
When I made my patch for CVE-2015-3824, I missed that
chunk_size is 64-bit and can be above 2^32.

Using such a value, it was possible to bypass my check:
 1896 if (SIZE_MAX - chunk_size <= size) {
 1897 return ERROR_MALFORMED;
 1898 }

How embarrassing :-/

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

10

CVE-2015-3864 II: Why exploit this one?
More vulnerable devices as it was patched a month later.
Exploiting this instead of 2015-3824 is a minor change:

- chunk_size = 0xffffffff - num_write + num_alloc + 1
- tx3g2 = (pack('>L', chunk_size)+'tx3g') + tx3g2data
+ chunk_size = 0x1ffffffff - num_write + num_alloc + 1
+ tx3g2 = (pack('>L', 1)+'tx3g') + (pack('>Q', chunk_size)+tx3g2data)

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

11

CVE-2015-3864 III: Root Cause

From android-5.1.0_r4 (LMY47M) - frameworks/av / media/libstagefright/MPEG4Extractor.cpp

The vulnerability is an Integer Overflow when allocating
buffer in the 'tx3g' handling within MPEG4 parseChunk.
 762 status_t MPEG4Extractor::parseChunk(off64_t offset, int depth) {
 ...
1886 case FOURCC('t', 'x', '3', 'g'):
 ...
1891 if (!mLastTrack->meta->findData(
1892 kKeyTextFormatData, &type, &data, &size)) {
 ...
1896 uint8_t buffer = new (std::nothrow) uint8_t[size + chunk_size];
 ...
1915 mLastTrack->meta->setData(
1916 kKeyTextFormatData, 0, buffer, size + chunk_size);

The size value is accumulated in MetaData. A second 'tx3g'
atom can make size + chunk_size wrap. How is buffer used?

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

12

CVE-2015-3864 IV: Consequence
For each 'tx3g' chunk, the data is appended to a temporary
buffer (buffer) and then saved into the MetaData.
1901 if (size > 0) {
1902 memcpy(buffer, data, size);
1903 }
1904
1905 if ((size_t)(mDataSource->readAt(*offset, buffer + size,
 chunk_size))

We control all the variables, including the allocation size,
overflow length, and contents!

From the exploit:
 707 big_num = 0x1ffffffff - tx3g_1.length + 1 + vector_alloc_size
 708 tx3g_2 = get_atom('tx3g', more_data, big_num)

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

13

Exploitation

Is Android secure yet?

14

Exploitation I: Crucial Components
Certain system properties are critical to understand for
exploitation.

Heap implementation details - libc
ASLR Quality (entropy) - kernel

It is difficult (some argue impossible) to eliminate all
vulnerabilities in a code base.

Hardening critical system components can preventing
successful attacks.

Other system-wide mitigations exist and can help too...

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

15

Exploitation II: Newer Heap is Weaker
Android is switching to jemalloc instead of dlmalloc

This new heap implementation is weaker in two ways.

1. Less entropy in heap addresses
Easier to guess where your data is in memory

2. No more in-line meta-data
dlmalloc checks for corrupt meta-data
Detected corruption leads to a crash

As a result, exploiting Lollipop/Marshmallow/Nougat is
easier than older versions.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

16

Exploitation III: Mitigation Summary

1. Only comes into play on some devices and only a�er achieving arbitrary code execution.
2. Only affects some of the vulnerabilities. It still leads to DoS.

Mitigation Applicability

SELinux N/A 1

Stack Cookies N/A

FORTIFY_SOURCE N/A

ASLR only Android >= 4.1

NX bypass with ROP

GCC new[] mitigation N/A 2

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

17

Exploitation IV: ASLR
I previously developed 3 exploits.

1. CVE-2015-1538 via MMS on Android 4.0.4
2. CVE-2015-3824 via MediaScanner on Android 5.1
3. CVE-2015-3824 via Browser on Android 5.1

It was discussed at ISSW 2016. Ask me for slides later...

I was able to overcome ASLR in each case.

However, ASLR impacts speed and reliability of the exploit.

Enter...

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

18

Metaphor

Novel Work on Exploiting CVE-2015-3864

19

Metaphor I: Key Takeaways
Metaphor proved it was possible to leak information from
mediaserver to the browser.

JavaScript can read the "duration" attribute of an HTML5
video element.
Using CVE-2015-3864, an attacker can corrupt a pointer
that's used to obtain the "duration".

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

20

Metaphor II: Details
MetaData + Vector trickery...

Uses MetaData items / Vector storage
In memory, the Vector looks like this:

 addr tag type len data
- 0xb4c27bb0: "heig" "in32" 0x00000004 0x00000300
+ 0xb4c27bb0: "dura" "in64" 0x00000008 0xb4010530
 0xb4c27bc0: "hvcc" "hvcc" 0x00000078 0xb4d2e200
 0xb4c27bd0: "inpS" "in32" 0x00000004 0x00120000
 0xb4c27be0: "mime" "cstr" 0x0000000e 0xb4d2c3a0
 0xb4c27bf0: "text" 0x00000000 0x00000090 0xb4c27ce0
 0xb4c27c00: "widt" "in32" 0x00000004 0x00000400

A�er overwriting the "heig" item with the "dura" tag, type,
and length of 8, JavaScript can read from the pointer using
the HTML5 video element's "duration" attribute.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

21

Metaphor III: Problems
1. Paper stated multiple devices/firmware versions

supported, but exploit only supported one.

2. The leak method had annoying Limitations.

Value is rounded and converted to double.
Can only leak 64-bit values with high 32-bits < 0x1ff
Some precision is lost during conversion :-/

3. The technique to utilize the leak required many requests.

Testing showed it worked worse than my 3rd exploit.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

22

Improving on Metaphor

What else can we do?

23

What about height and width?
As mentioned in the Metaphor paper, videoHeight and
videoWidth are also derived from MetaData items read from
the file.

videoHeight comes from MetaData items of type 'heig'
videoWidth comes from MetaData items of type 'widt'

These can be populated by including an 'mp4v' atom in the
MP4 file. In memory, they look like this:
addr tag type len data
0xb4d14350: "heig" "in32" 0x00000004 0x00000300
0xb4d14360: "hvcc" "hvcc" 0x00000078 0xb4c6fa00
0xb4d14370: "inpS" "in32" 0x00000004 0x00120000
0xb4d14380: "mime" "cstr" 0x0000000e 0xb4e42800
0xb4d14390: "text" 0x00000000 0x00000090 0xb4d14660
0xb4d143a0: "widt" "in32" 0x00000004 0x00000400

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

24

Another Leak Technique!
Partially overwriting MetaData items allows more primitives:

Change the size of an item (read or write too much)
Change an element's type (type confusion)

Allows arbitrary write by "updating" MetaData items, and
most importantly leaking allocated pointers!
 addr tag type len data
- 0xb4d14350: "heig" "in32" 0x00000004 0x00000300
- 0xb4d14360: "hvcc" "hvcc" 0x00000078 0xb4c6fa00
- 0xb4d14370: "inpS" "in32" 0x00000004 0x00120000
- 0xb4d14380: "mime" "cstr" 0x0000000e 0xb4e42800
+ 0xb4d14350: "abc1" "in32" 0x00000004 0x00007a67
+ 0xb4d14360: "abc2" "in32" 0x00000004 0x00007a68
+ 0xb4d14370: "abc3" "in32" 0x00000004 0x00007a69
+ 0xb4d14380: "heig" "in32" 0x00000004 0xb4e42800
 0xb4d14390: "text" 0x00000000 0x00000090 0xb4d14660
 0xb4d143a0: "widt" "in32" 0x00000004 0x00000400

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

25

An Interesting Property
My previous experiences told me that this won't be reliable
because the buffer would be freed a�er finishing processing
the file.

I decided to give it a try anyway and was surprised.

The buffer lives across multiple requests!

Browser keeps a connection to the MetadataRetriever.
MPEG4Extractor data is only freed on disconnect.

So we can leak a pointer and be sure it will be alive on our
next request! AWESOME!!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

26

Getting a Code Pointer
The next step in any good modern exploit is to leak a vtable
pointer.

MetaData items have been useful so far, can they help here?

Short answer is no.

Code pointers are never put in MetaData items
MetaData items don't point to C++ objects

We can't use them directly :-/

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

27

Getting a Code Pointer II
A�er looking around, the most common C++ virtual objects
are specializations of VectorImpl.

The first two fields are: vtable pointer and mStorage
mStorage is initialized whenever the Vector is pre-sized or
any item is added.

This means we can only use the original Metaphor technique
if the Vector is empty.

A cursory look for Vectors did not look promising.

Time to look deeper to find out if any such Vectors exist!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

28

Getting a Code Pointer III
A�er looking at many objects, I found ONE.

It turns out SampleIterator objects are created without
initializing the Vector within. The plan:

1. Allocate a MetaData item with the same size as a
SampleIterator object.

2. Leak that pointer back to ourselves via videoHeight
3. Use the original Metaphor technique to read from an

offset of that pointer to get the vtable pointer.

We can use this 2-stage leak to build our ROP chain from
libstagefright itself.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

29

Putting it All Together
ASLR still poses a small problem.

We need to point to some memory we control to hijack the
execution flow.

We use a large heap spray, which turns out to be very
predictable.

This was used with much success in my third exploit too.

The result is a highly reliable and fast exploit.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

30

Key Exploit Details
This exploit has been implemented as a Metasploit module.

Currently 29 supported targets
Includes all vulnerable 5.x Nexus devices
Automatically selects a target based on user-agent,
contains the precise firmware version!!

This particular exploit is currently limited to Android 5.x
devices using jemalloc -- future work

Only 3 web requests needed

Mozilla/5.0 (Linux; Android 5.1; Nexus 6 Build/LMY47M)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.84
Mobile Safari/537.36

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

31

Android Device Diversity
Diversity in the Android ecosystem complicates research,
but is not a significant barrier to exploitation.

Exploiting a device usually requires porting/testing per-
device-model.

However, automation makes cra�ing a device-specific
exploit rather simple.

Extract and use key details from each firmware version

BTW, Android browsers are very revealing:
Mozilla/5.0 (Linux; Android 5.1; Nexus 6 Build/LMY47M)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.84
 Mobile Safari/537.36

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

32

Mandated by Android CDD
From the Android 1.6 (and later) Compatibility Definitions
Document:
...
The user agent string reported by the WebView MUST be in this format:

Mozilla/5.0 (Linux; Android $(VERSION); $(MODEL) Build/$(BUILD)$(WEBVIEW))
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER)
Mobile Safari/537.36

The value of the $(VERSION) string MUST be the same as the value
for android.os.Build.VERSION.RELEASE.

The $(WEBVIEW) string MAY be omitted, but if included MUST be "; wv"
to note that this is a webview

The value of the $(MODEL) string MUST be the same as the value
for android.os.Build.MODEL.

The value of the $(BUILD) string MUST be the same as the value
for android.os.Build.ID.

...
Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

33

See also: https://asciinema.org/a/8jlbdq006wsnkqewvcaf05wva

LIVE DEMO!

Let's see it in action!

https://asciinema.org/a/8jlbdq006wsnkqewvcaf05wva

34

Porting to a Samsung Device

Because Android is Samsung, right?

35

Porting to a Samsung Device I
Chosen device - Samsung Galaxy S5 Verizon (SM-G900V)

Because it was available cheaply...

Porting was not easy.

Required reverse engineering because Samsung modifies
lots and does not release the modified source.
Debugging is harder because there are no symbols

Makes GDB crashy and half-useless.
Used IDA Pro android_server

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

36

Porting to SM-G900V II
Initial tests did not even reach the vulnerable code!

Samsung devices actually have 2 different meta-data
processing libraries

Proprietary "libsavsmeta.so"
The traditional libstagefright

Reaching the libstagefright code required changing the
delivery method slightly.

Instead of using URL.createObjectURL, we use FileReader
with readAsDataURL.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

37

Porting to SM-G900V III
Samsung modified libstagefright to add additional
processing...

Closed source --> binary diffing required :-/
One particular change is very interesting!!

Usually, errors processing meta-data causes an error
processing the file itself
Samsung changed "trak" processing to return "OK" on
error

This allows repeatedly triggering vulnerabilities in
MPEG4Extractor with only one file!!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

38

Porting to SM-G900V IV
Otherwise, only minor adjustments needed.

Some object sizes changed
Adds several meta-data items

Introduces complexity in Vector overwrite (due to
ordering)

In the end, I got it working and even managed to make one
module work for both.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

39

Just like before, except you get "system" group privileges and can shell without disabling SELinux...

LIVE DEMO 2!

Let's see it in action against Samsung!

40

Wrap-Up

Future Work and Conclusions

41

Future Work
Exploit TODO:

Support dlmalloc devices (i.e. Android 4.4 and older)
Support additional devices (esp. non-Nexus)
Eliminate the need for a heap spray
Put all exploit logic into the JavaScript only

Android TODO:

Research Android system_server
Shares address space layout with apps!!
No ASLR thanks to Zygote!

Mitigate android::RefBase technique

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

42

Conclusions I
Exploiting via the browser is awesome

Auto-targeting thanks to the Android CDD
Infoleaks workable
Can hide traffic in https
Vulnerabilities reachable even if MMS vector patched
Getting people to click links is easy

Browser based attacks on android devices should be a high
concern!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

43

Conclusions II
Fragmentation is a thorn, but less-so for exploit-dev

I'm considering pitching a talk on scaling Android
exploit development

The faster the patching, the better

Android N raises the bar, but...

Adoption remains a problem
jemalloc remains still weak (PLZ HARDEN!!)

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

44

Releasing the Exploit
The tentative exploit release date is September 2016

Reach out to me if you'd like to contribute!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

45

Thanks for your time!
Any questions?

My 2015 Talk Slides:

Prefer to ask offline? Contact me:

Joshua J. Drake
jdrake@zimperium.com
jduck @ Twitter/IRC

http://j.mp/stagefright-slides

www.droidsec.org

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

http://j.mp/stagefright-slides
http://www.droidsec.org/

46

the real end. really.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

47

Older Slides....

These are still useful, just no time to talk

about them here...

48

Android Exploitability

What stands in the way?

49

Address Space Layout Randomization
ASLR is the ONLY challenge, and it is not that hard.

I managed to fully bypass ASLR on ICS and Lollipop.

Information leakage issues
Heap spraying

Address space is usually only 32-bits
On 64-bit devices, mediaserver remains 32-bit :-/

Other virtual memory tricks
Bruteforce or statistical guessing

These tricks are simple but very effective.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

50

CVE-2015-3824 III: What to smash?
Experimentation yielded some interesting crashes.

The most interesting involved a smashed mDataSource.
Used for a virtual function call just a�er the overflow!

1905 if ((size_t)(mDataSource->readAt(*offset, buffer + size,
 chunk_size))

We control the values or contents of almost all of the
parameters to the function too!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

51

CVE-2015-3824 IV: Heap Feng Shui

1. , Patroklos Argyroudis and Chariton KaramitasExploiting the jemalloc Memory Allocator

For a reliable exploit, we need buffer before mDataSource
consistently.

Luckily, jemalloc also makes heap feng shui easier too. See
the paper on it for more details.1

'covr' #1 - alloc chunk near size of an MPEG4DataSource
'stbl' - alloc an MPEG4DataSource and set to mDataSource
'covr' #2 - free first 'covr', making a free hole
'tx3g' #1 - alloc chunk w/overflow data/size
'tx3g' #2 - alloc buffer into hole, overflow it

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf

52

CVE-2015-3824 V: Heap Spray!
If all goes well, we smahed mDataSource and control:

all member variables
the virtual function table pointer

To reduce guessing, we point it to a heap spray!

Same strategy as CVE-2015-1538 exploit
As before, a single large chunk
jemalloc still falls back to mmap

Used a 16MB 'avcC' chunk
~99% predictable in testing!

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

53

CVE-2015-3824 VI: Stack Pivot I
We have control of pc, but where do we point it?

Android 4.1+ no longer have predictable linker
Guessing libc is apparently 1 in 256 (< 1%)

Daniel Micay (of CopperheadOS) recommended abusing a
library loaded by dlopen

Address space would already be stabilized
Chose the largest library

libWVStreamControlAPI_L1.so - 2.4MB
Could spray more constrain more? (untested)

Result: ~38% success rate per single attempt
Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

54

CVE-2015-3824 VI: Stack Pivot II
The stack pivot is significantly more complicated.

Executes in three (!!) stages instead of one.
 # ldr r2, [r0, #8] ; ldr r3, [r2, #0x28] ; blx r3
 mds_pivot1 = mod_base + 0x179202+1

 # ldm.w r2!, {r8, sb, sl, fp, ip, sp, pc}
 mds_pivot2 = mod_base + 0xc8558+1

 # pop {r4, r5, r6, pc}
 mds_adjust = mod_base + 0xdbd78+1

This complicated dance launches the ROP chain.

Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

55

CVE-2015-3824 VII: ROP Chain
ROP Stager to make shellcode RWX and run it, like the -1538
exploit, but different...

Also based on the Widevine streaming library
Works around ASLR by resolving the libc base
Resolves mprotect from the socket GOT entry

 rop += struct.pack('<L', mod_base + ropdict['pop0123'])
 rop += struct.pack('<L', mod_base + ropdict['socket_got'])
 rop += struct.pack('<L', ropdict['libc_socket'])
 rop += struct.pack('<L', ropdict['libc_mprotect'])
 scratch_addr = spray_addr + 0xfe0
 rop += struct.pack('<L', scratch_addr) # r3, libc base

 # Modify the address to point to mprotect in libc
 rop += struct.pack('<L', mod_base + ropdict['deref_r0'])
 rop += struct.pack('<L', mod_base + ropdict['subr0r1'])
 # Save the libc base address in scratch memory
 rop += struct.pack('<L', mod_base + ropdict['strr0r3'])
 rop += struct.pack('<L', mod_base + ropdict['addem']) Stagefright: An Android Exploitation Case Study — WOOT '16

Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

56

CVE-2015-3824 VIII: Payload
Nexus devices on 5.x+ have SELinux in enforcing mode.

mediaserver policy does not allow execve :-/
no shell for you!
Not the case on all Android devices (ahem Samsung)

I developed a kernel exploit (CVE-2015-3636) as a payload!

Wrote in C first
Translated to assembly from objdump output

That sucked, use gcc -S instead!
Sets SELinux to permissive mode

Remote kernel FTW! Demo?
Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

57

Conclusions

What are the key takeaways?

58

Final Conclusions
1. Take care when changing heap implementations.

Changes here can weaken your security posture.
2. Thinking outside the box can make your exploit better!

Controlling the environment can influence your target!
3. Diversity is a thorn, but can be dealt with

Android Browser user agents are very helpful!
4. Mitigations are not a silver bullet

Especially when multiple attempts are possible
5. Vendors using Android need to

Be more proactive in finding / fixing flaws
Be more aggressive in deploying fixes

6. The Android code base needs more attention. BBMFTW!
Stagefright: An Android Exploitation Case Study — WOOT '16
Joshua "jduck" Drake — © Zimperium Inc. All rights reserved.

