Controlling UAVs with Sensor Input Spoofing Attacks

Drew Davidson¹

1 VISCONSIN-MADISO Hao Wu¹ Robert Jellinek¹ Thomas Ristenpart² Vikas Singh¹

2

This Work In One Slide

- Introduce sensor input spoofing attacks to exercise an implicit control channel over an autonomous vehicle through its sensors
- Demonstrate an instance on **optical flow** for two consumer UAVs
- Propose mitigation techniques through robust algorithms

Outline

- Introduce sensor input spoofing attacks to exercise an implicit control channel over an autonomous vehicle through its sensors
- Demonstrate an instance on **optical flow** for two consumer UAVs
- Propose mitigation techniques through robust algorithms
- Discuss additional defenses and recommendations

What is This?

A tile floorAn *image of* a tile floor

What Happens if you Fool a Sensor?

Our focus

- Depends on how sensor is deployed
- Autonomous Vehicles
 - Self-driving cars (Google car)
 - UAVs (Drones)

Safety critical

- Commodity sensors
- Widely used
- Our work:
 - (To our knowledge) first to exercise continuous control over UAV motion

Sensor Input Spoofing Attacks

Outline

- Introduce sensor input spoofing attacks to exercise an implicit control channel over an autonomous vehicle through its sensors
- Demonstrate an instance on **optical flow** for two consumer UAVs
- Propose mitigation techniques through robust algorithms
- Discuss additional defenses and recommendations

Background: Optical Flow (OF)

- Goal: quantify motion between two temporally similar images
- Use in UAVs: lateral stabilization
 - Sensor: downward-facing camera
 - High framerate
 - Low resolution
- Sensor detects motion (x,y)
 - UAV assumes drift (-x,-y)
 - Corrects with motion (x,y)

Frame 2

Background: Feature Extraction

- Sparse OF only tracking features rather than each pixel
- Classic: Shi-Tomasi
 corner detection
 - Sharp intensity falloff
 along both x and y
 dimensions

Background: Sparse Lucas-Kanade

• Produce feature motion vector

V_{1,} ..., V_n for each of the N features

 Final motion pair V is component-wise mean of V₁, ..., V_n

Attack: Key Idea

- Adversary-controlled features
- Move *features* in the image by (x,y)
 - UAV thinks the features are stationary and **it** is drifting by (-x,-y)
 - UAV "corrects" by matching the adversary's motion (x,y)

Attack: Creating Features

- Project light onto the OF sensor's plane
 - Scenario 1: portable projector

Scenario 2: laser
 pointer + filter

Attack Evaluation: Methodology

• 2 popular UAVs

- ArduCopter open source control software, popular amongst UAV enthusiasts, primarily for outdoor use
- AR.Drone 2.0 closed source, popular amongst hobbyists, some use in professional indoor settings
- 4 real-world environments
 - Tile
 - Carpet
 - Grass
 - Concrete

Attack: Evaluation

Environment	Illuminance	ArduCopter			AR.Drone		
	(lux)	Benign	Projector	Laser	Benign	Projector	Laser
Tile	200	Drift	Fail	Control	Drift	Fail	Control
Carpet	150	Drift	Fail	Control	Drift	Fail	Control
Concrete	138	Stable	Control	Control	Stable	Control	Control
Grass	438	Stable	Fail	Fail	Stable	Fail	Fail

- Portable projector
 - Only works in low-light at close range
- Laser pointer
 - Effective in all but the most feature-rich environments
 - Unbounded motion
 - Rapid enough motion with AR.Drone to cause damage to UAV

Attack: Refinement

- Performed experiments in simulation and practice
- Considered the effect of adversary's
 - feature light intensity
 - feature pattern
 - feature shape
 - feature size

full details in the paper

Outline

- Introduce sensor input spoofing attacks to exercise an implicit control channel over an autonomous vehicle through its sensors
- Demonstrate an instance on optical flow for two consumer UAVs
- Propose mitigation techniques through robust algorithms
- Discuss additional defenses and recommendations

Defenses

- Enhance OF to deal with adversarial features
- Intuition: address the algorithmic limitations of sparse-LK in OF

Random Sample Consensus: RANSAC

- Assume data contains correct "inliers" and bad "outliers"
- Randomly sample k features, each with a "motion hypothesis"
 - Other features vote for each hypothesis based if their own motion is close
- Use the winning hypothesis

Breaks down when the adversary overwhelms benign features Works when adversary lacks majority of features

Weighted RANSAC w/ Momentum

- Goal: assign more weight to trusted features
 - Features accrue weight
 - Fits the scenario of attacker entering scene
- Smaller number of trusted features can still form correct hypothesis

Defense Evaluation: Methodology

- Evaluation via simulation
 - Add moving grid of laser "dots" across real image frames
- Several environments
 - Asphalt
 - Carpet
 - Grass
- Used the strongest adversary from our attack strategy

Evaluation

- Tested three variants:
 - Lucas-Kanade (avg): blue
 - RANSAC: red
 - Weighted RANSAC: teal
- LK moves reliably
- RANSAC initially strong until overwhelmed
- WRANSAC fairly steady

Outline

- Introduce sensor input spoofing attacks to exercise an implicit control channel over an autonomous vehicle through its sensors
- Demonstrate an instance on **optical flow** for two consumer UAVs
- Propose mitigation techniques through robust algorithms
- Discuss additional defenses and recommendations

Sensor Firmware Robustness

- RANSAC and Weighted RANSAC are a good first step
 - Likely much better performance to be had
- Key insight: safetycritical sensors need to go beyond random noise

Hardware-level Robustness

- Better cameras mean more features
 - More features complicate the attacker's goal
- IR illumination + IR cameras for low-light conditions

Beyond Robust Sensing

- Consider a stronger adversary
- The "Sombrero Attack"
 - Adversary obscures the entire ground plane
 - Beyond the limits of algorithmic hardening

Sensor Fusion

- Consider *plausible input* requirement
 - Cross-check the results of multiple sensors
 - Drift should be accompanied by acceleration

Future Work: Verifying Sensor Fusion

- Dataflow on firmware
 - Sources: function containing sensor reading
 - Sinks: function containing response
- Policy for desired sensor fusion
- Prototype static analysis on LLVM

Future Work: Considering other SISAs

- Combine SISA with jamming attacks from the literature
- Attack other sensors

Summary

- Introduced Sensor Input Spoofing Attacks on passive sensors
- Crafted attack against Optical Flow on two commercial UAVs
- Developed defenses with robust algorithms
- Recommended future work by hardening the entire sensor pipeline

- Questions?
- Page:
 - <u>http://pages.cs.wisc.edu/~davidson/sisa/</u>
- Contact:
 - Drew Davidson
 - <u>davidson@cs.wisc.edu</u>
 - drew@davidson.cool