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This Work In One Slide

* Introduce sensor input spoofing attacks to exercise
an implicit control channel over an autonomous
vehicle through its sensors

 Demonstrate an instance on optical flow for two
consumer UAVs

* Propose mitigation techniques through robust
algorithms
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consumer UAVs

Propose mitigation techniques through robust
algorithms

Discuss additional defenses and recommendations



What is This?

X Atile floor
+/ An image of a tile floor



What Happens if you Fool a Sensor?

 Depends on how sensor is deployed

* Autonomous Vehicles
— Self-driving cars (Google car)

—|UAVs (Drones) \_/\/ Our focus

» Safety critical
 Commodity sensors
* Widely used

e Qur work:

— (To our knowledge) first to exercise continuous control
over UAV motion



Sensor Input Spoofing Attacks
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Background: Optical Flow (OF)

* Goal: quantify motion
between two temporally
similar images

 Use in UAVs: lateral
stabilization

— Sensor: downward-facing
camera

* High framerate Frame 1 Frame 2
e Low resolution

* Sensor detects motion (x,y)
— UAYV assumes drift (-x,-y)
— Corrects with motion (x,y)




Background: Feature Extraction

e Sparse OF —only tracking
features rather than each
pixel

e Classic: Shi-Tomasi
corner detection

— Sharp intensity falloff
along both x and y
dimensions




Background: Sparse Lucas-Kanade

* Produce feature motion vector

Vi eV,
for each of the N features

* Final motion pair Vis
component-wise mean of
Vi sV,




Attack: Key Idea

e Adversary-controlled
features

* Move features in the
image by (x,y)

— UAV thinks the features
are stationary and it is
drifting by (-x,-y)

— UAV “corrects” by

matching the adversary’s
motion (X,y)




Attack: Creating Features

* Project light onto the
OF sensor’s plane

— Scenario 1: portable
projector

—

— Scenario 2: laser
pointer + filter

.
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e 2 popular UAVs

— ArduCopter — open source control
software, popular amongst UAV
enthusiasts, primarily for outdoor use

— AR.Drone 2.0 — closed source, popular
amongst hobbyists, some use in
professional indoor settings

e 4 real-world environments
— Tile
— Carpet
— @Grass
— Concrete




Attack: Evaluation

Environment Illuminance ArduCopter AR.Drone
(lux) Benign | Projector | Laser | Benign | Projector | Laser
Tile 200 Drift Fail Control | Drift Fail Control
Carpet 150 Drift Fail Control | Drift Fail Control
Concrete 138 Stable Control | Control | Stable Control | Control
Grass 438 Stable Fail Fail Stable Fail Fail

* Portable projector
— Only works in low-light at close range
* Laser pointer
— Effective in all but the most feature-rich environments

— Unbounded motion
— Rapid enough motion with AR.Drone to cause damage to UAV



Attack: Refinement

* Performed experiments in
simulation and practice

* Considered the effect of adversary’s
— feature light intensity
— feature pattern
— feature shape full details
— feature size in the paper
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e Enhance OF to deal with
adversarial features

* Intuition: address the
algorithmic limitations of
sparse-LK in OF




Random Sample Consensus: RANSAC

e Assume data contains
correct “inliers” and bad
“outliers”

 Randomly sample k
features, each with a
“motion hypothesis”

— Other features vote for "
_ . orks when
each hypothesis based if adversary lacks

their own motion is close majority of

Breaks down when features

the adversary

* Use the winning o
hypothesis benign features



Weighted RANSAC w/ Momentum

* Goal: assign more weight
to trusted features
— Features accrue weight
— Fits the scenario of
attacker entering scene
 Smaller number of
trusted features can still
form correct hypothesis




Detense Evaluation: Met

 Evaluation via simulation

— Add moving grid of laser
“dots” across real image
frames

e Several environments
— Asphalt
— Carpet
— @Grass

* Used the strongest
adversary from our
attack strategy




Evaluation

e Tested three variants:

— Lucas-Kanade (avg): blue *
— RANSAC: red
— Weighted RANSAC: teal

* LK moves reliably

e RANSAC initially strong *
until overwhelmed T eac
() WRANSAC fairly Steady : :;S:;ns)ﬁﬁd feature number
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Sensor Firmware Robustness

* RANSAC and Weighted
RANSAC are a good first
step

— Likely much better
performance to be had

e Key insight: safety-
critical sensors need to
go beyond random
noise

I(r+5-.r,y+dy,t+6t)]
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Hardware-level Robustness

e Better cameras mean
more features
— More features

complicate the
attacker’s goal

e IR illumination + IR
cameras for low-light
conditions

o2l 4
I(x+ J;r,y-i-dy,t-l-(st)]
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Beyond Robust Sensing

* Consider a stronger
adversary

e The “Sombrero Attack”

— Adversary obscures the
entire ground plane

— Beyond the limits of
algorithmic hardening




Sensor Fusion

* Consider plausible input
requirement

— Cross-check the results
of multiple sensors

— Drift should be

accompanied by
acceleration




Future Work: Verifying Sensor Fusion

e Dataflow on firmware

— Sources: function
containing sensor
reading

— Sinks: function
containing response

* Policy for desired
sensor fusion

* Prototype static analysis

I(x +j5;r, y + dy, t+ 0t)
on LLVM /




Future Work: Considering other SISAs

e Combine SISA with jamming attacks from the
literature

e Attack other sensors



* Introduced Sensor Input Spoofing Attacks on
passive sensors

* Crafted attack against Optical Flow on two
commercial UAVs

* Developed defenses with robust algorithms

e Recommended future work by hardening the
entire sensor pipeline



Thanks

e Questions?

* Page:
— http://pages.cs.wisc.edu/~davidson/sisa/

* Contact:
— Drew Davidson

* davidson@cs.wisc.edu

 drew@davidson.cool




