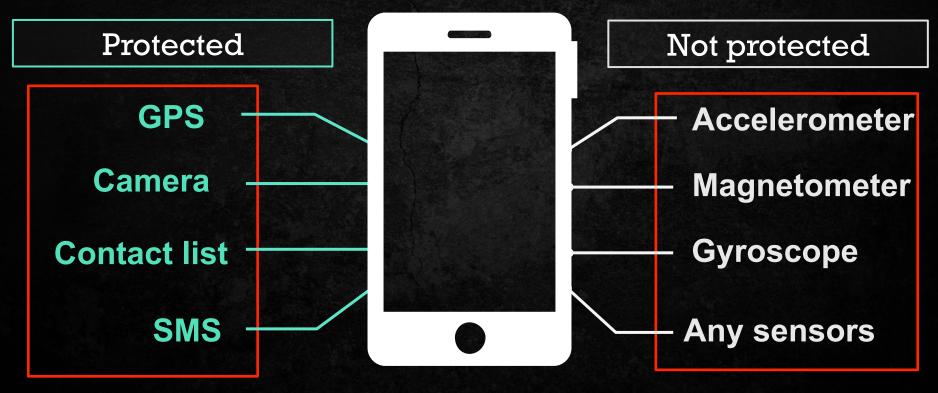
RonteDetector


Sensor-based Positioning System that Exploits Spatio-Temporal Regularity of Human Mobility

Networked Systems Laboratory

The privacy protection mechanism

Android devices

3

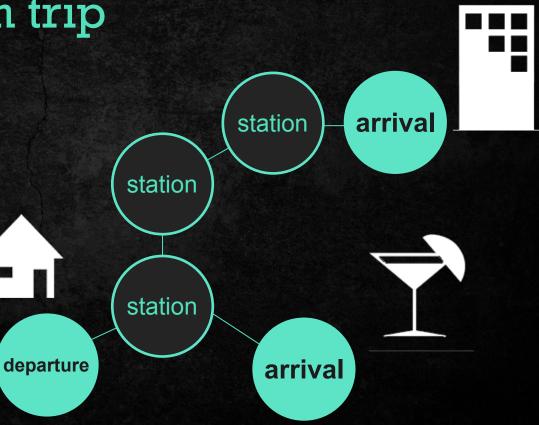
The ultimate goal

Sensor data

Accelerometer Magnetometer Gyroscope

data processing

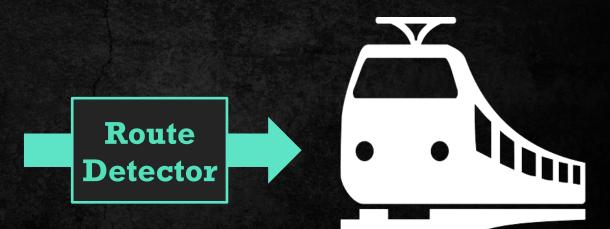
Identify absolute position


It is difficult

Then, we focus...

Features of train trip

- Static route
- Regularly
- Associated with
 - place of residence
 - workplace
 - favorite bar



Our goal in this work

Sensor data

Accelerometer Magnetometer Gyroscope

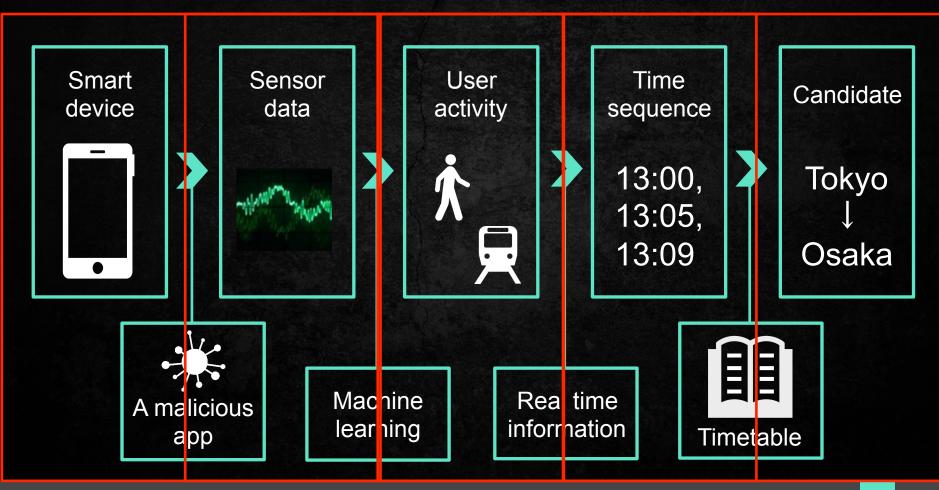
Detect the route of a train trip

Threat model

- A malicious software on a smart device
 - Only internet permission is required

This software secretly keeps collecting sensor values
 It estimates the owners activity (walk, on a vehicle and still)

 An adversary knows the list of public transportation systems that are used by the victim.


Overview of RouteDetector

2

Detection of User Activities Detection of Departure/Arrival Time Sequences

Extracting Candidate Routes

3

WOOT '15

Networked Systems Laboratory 10

Detection of User Activities

Sensor data User activity Accelerometer Class 0 Magnetometer Still Gyroscope Class 1 Machine Learning Random Forest) On a vehicle Class 2 Walk

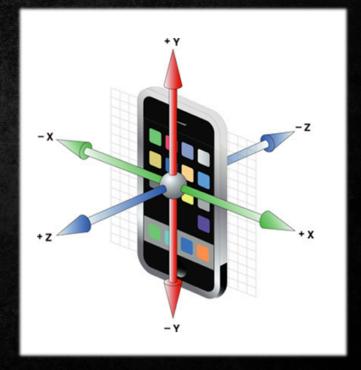
cf: Android API to recognize activity

RouteDetector User activities detection

No permission required

Android official API ActivityRecognitionApi

Permission required


Summary of sensors

	Unit	Туре	Permission	Description
Accelerometer	<i>m s</i> 12	Physical	None	Acceleration applied to a device
Linear accelerometer	<i>m s</i> 12	Virtual	None	Acceleration applied to a device excluding the gravity
Magnetometer	μΤ	Physical	None	Strength of geomagnetic field
Gyroscope	rad/s	Physcal	None	A device's rate of rotation

10 Hz : read 10 values per second

Data preprocessing for each sensor

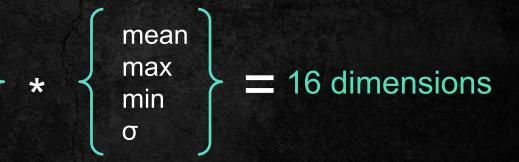
- 1. Compute norm = $\sqrt{a \downarrow x \uparrow 2} + a \downarrow z \uparrow 2$
 - To eliminate the effect of differences in the directions

Data preprocessing for each sensor2. Divide time series data into a set of blocks

 $a\downarrow 1$, $a\downarrow 2$, $a\downarrow 3$,..., $a\downarrow n$

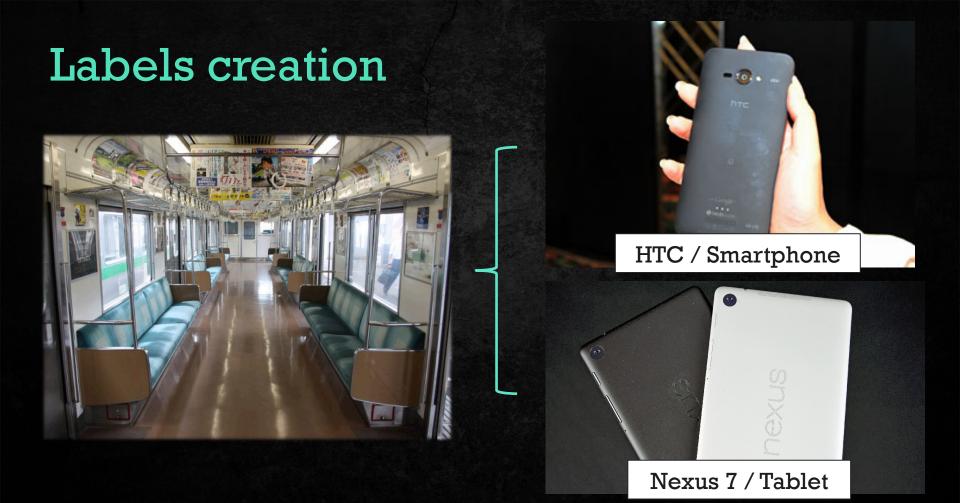
{ $a \downarrow 1$, $a \downarrow 2$, ..., $a \downarrow 20$ }, { $a \downarrow 21$, $a \downarrow 22$, ..., $a \downarrow 40$ },... block1 block2

Data preprocessing for each sensor


3. Calculate typical values: mean, max, min and σ

 $\mathsf{Block1} = \{a \downarrow 1, a \downarrow 2, \dots, a \downarrow 20\}$

 $\begin{array}{c} mean(a 1 , a 2 , ..., a 20), \\ max(a 1 , a 2 , ..., a 20), \\ min(a 1 , a 2 , ..., a 20), \\ \sigma(a 1 , a 2 , ..., a 20) \end{array}$


Feature vectors to detect activity

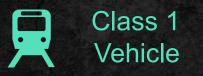
Accelerometer Linear acceleration Magnetometer Gyroscope

=> A random forest classifier (supervised ML)

Labels stats (# of blocks)

Data	vehicle	walk	still	total	total time
HTC_hold	1,327	510	609	2,446	4,892 sec
HTC_bag	1,360	510	691	2,561	5,122 sec
Nexus_hold	1,352	505	686	2,543	5,086 sec
Nexus_bag	1,304	505	602	2,411	4,822 sec

HTC/Nexus ... devices name hold/bag ... situation



Definition of FP/FN

Ground truth

Prediction

Class 0 or 2 Still or Walk

Class 1 Vehicle Class 0 or 2 Still or Walk

False Negative

Evaluation of Activities Detection

Data	ACC	FNR	FPR	
HTC_hold	0.941	0.042	0.078	
HTC_bag	0.965	0.024	0.047	
Nexus_hold	0.943	0.041	0.074	
Nexus_bag	0.969	0.023	0.041	

Performance of detecting vehicle activity

Example of the classification

0: still, 1: On a moving vehicle, 2:Walk

Ground truth:

Example of the classification

0: still, 1: On a moving vehicle, 2:Walk

On the still train

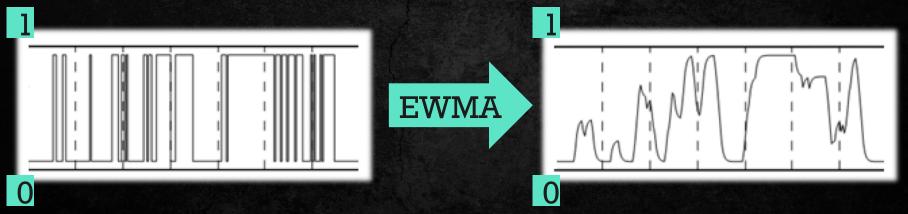
Ground truth:

On the moving train

Detection of Departure/Arrival Time Sequences

0: still, 1: On a moving vehicle, 2:Walk

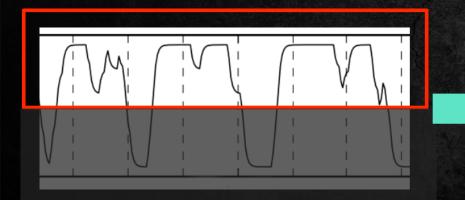
Prediction:


 $22211\underline{00}1111111\underline{01}1111111\underline{01}00\underline{00}0011111\underline{01}11\underline{11}111111$

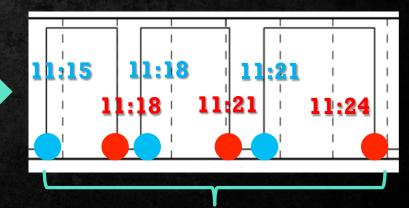
Some noises

Noise reduction

Predicted user activities

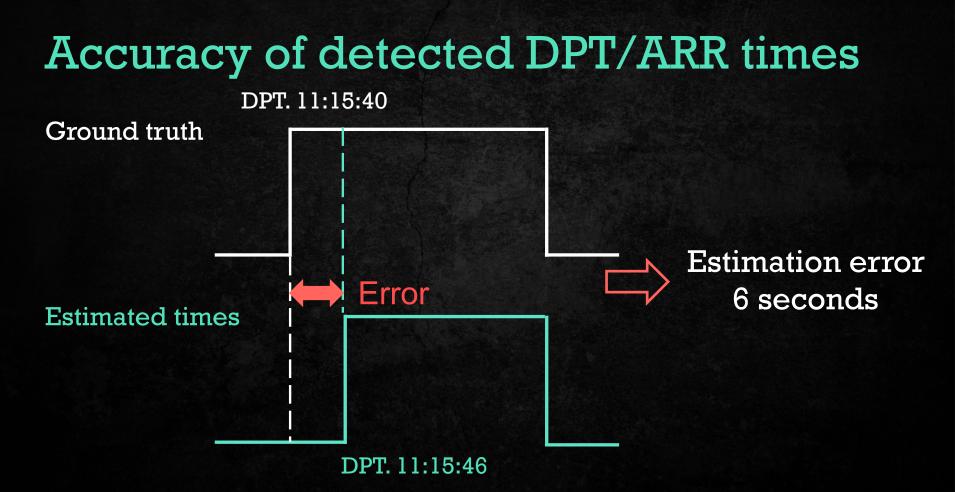


EWMA: Exponentially Weighted Moving Average $S \downarrow n = \lambda S + (1 - \lambda) S \downarrow n - 1$


Smoothened user activities

Noise reduction (cont.) $0.5 > S \rightarrow 1$ (on vehicle) $0.5 \leq S \rightarrow 0$ (still)

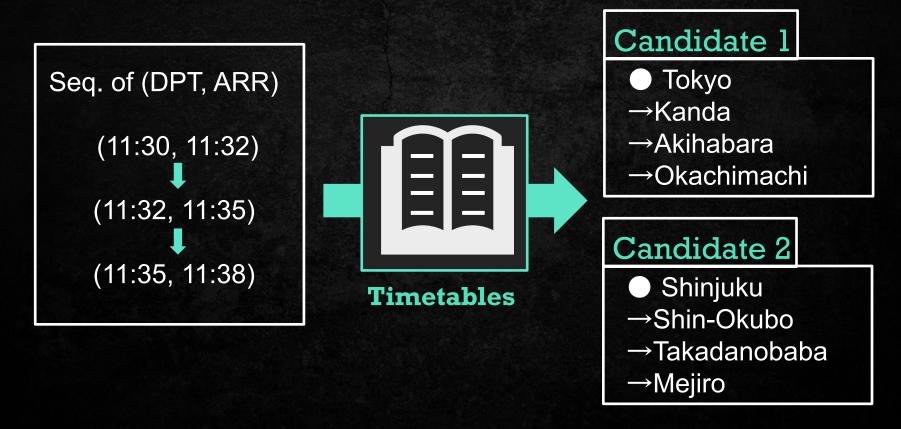
Departure Arrival


extract these times

Smoothened user activities

Corrected user activities

Networked Systems Laboratory



Stats of absolute estimation errors (secs)

Data	Departure			Arrival		
	min	max	mean	min	max	mean
HTC_hold	1.97	3.54	2.79	2.52	6.75	4.13
HTC_bag	2.04	3.06	2.53	1.71	4.63	3.21
Nexus_hold	2.33	7.94	4.60	3.07	10.78	6.03
Nexus_bag	1.55	2.76	2.17	2.22	5.16	3.43

Candidate Routes Extraction

Timetables

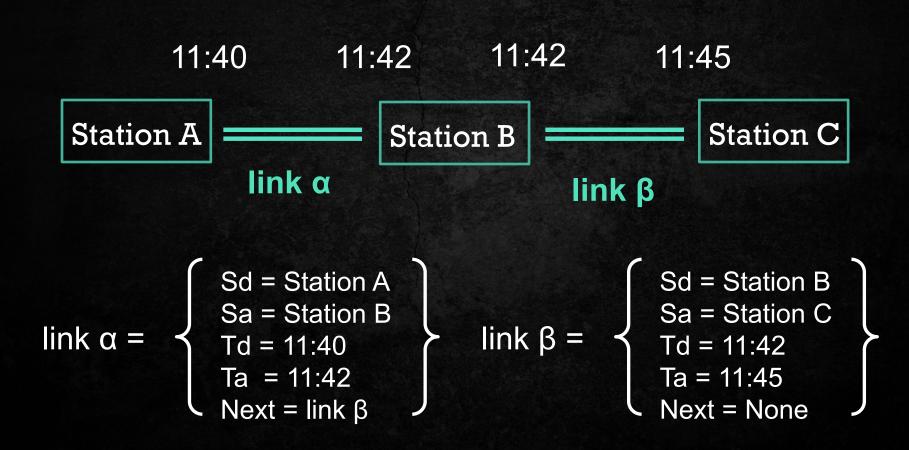
- Collected timetables of passenger train companies operating in Japan
- The DB covers all the prefectures in Japan
 - 9,090 railway stations
 - 597 lines

WOOT '15

- 172 railway companies
- 2,277,397 "links"

<u>Osaki</u>	DPT.	11:46	11:51
<u>Gotanda</u>	DPT.	11:48	11:52
<u>Meguro</u>	DPT.	11:50	11:55
<u>Ebisu</u>	DPT.	11:53	11:57
<u>Shibuya</u>	DPT.	11:55	12:00
<u>Harajuku</u>	DPT.	11:58	12:02
<u>Yoyogi</u>	DPT.	12:00	12:05
<u>Shinjuku</u>	DPT.	12:02	12:07
Shin-Okubo	<u>DPT.</u>	12:04	12:09
<u>Takadanobaba</u>	DPT.	12:07	12:11
<u>Mejiro</u>	DPT.	12:09	12:13
<u>Ikebukuro</u>	ARR.	12:11	12:15

http://ekikara.jp/



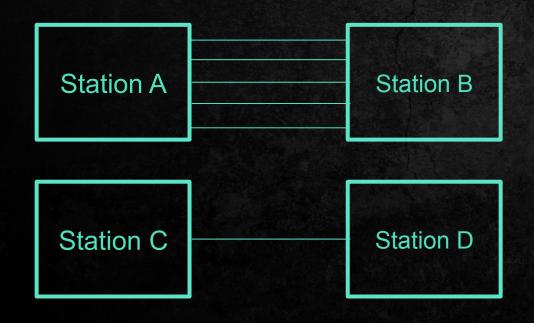
Definition of a link

Link =

- departure stationarrival station
- departure time
- arrival time
- next link

32

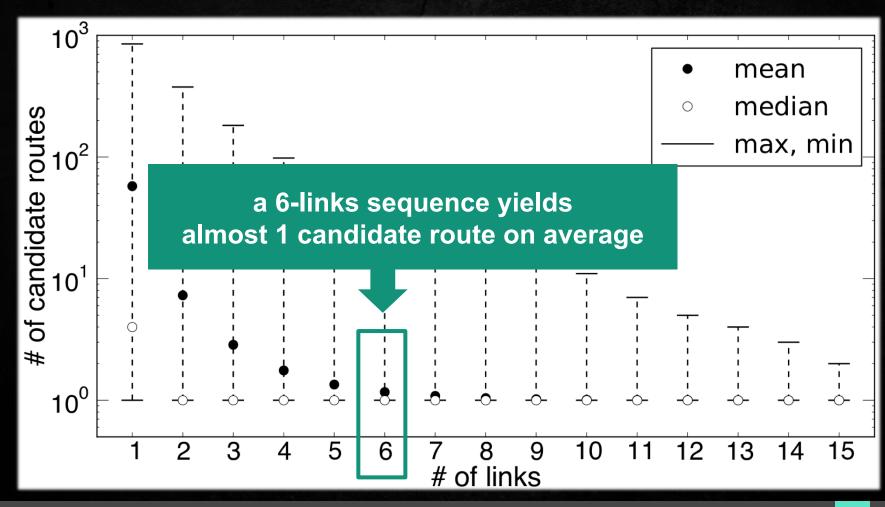
Searching Candidate Routes Input: [(07:20, 07:22), (07:22, 07:25), (07:25, 07:28)]



Count # of Links { Same origin / destination Different Td / Ta

Score: +5 (more popular)

Score: +1



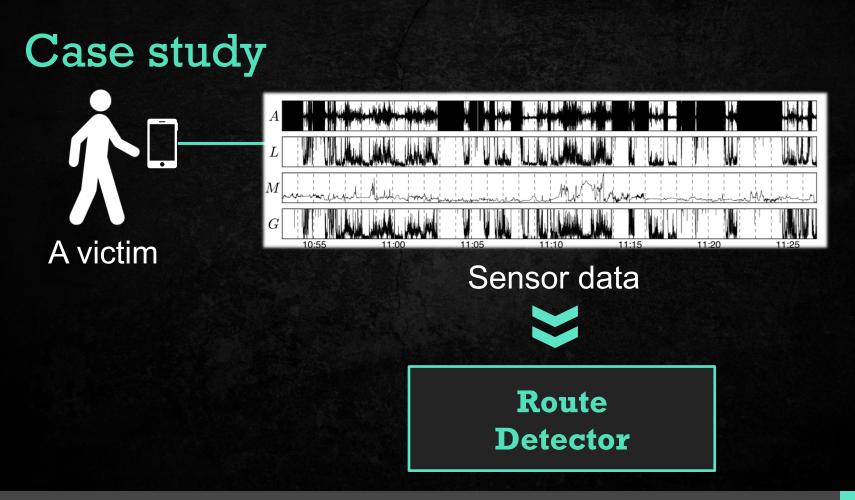
Performance of the algorithm (1)

- Enumerate all the possible routes
 - → extracted 6.4 billion routes
 - Sequence length = less than 15 links
 - At most 2 line changes

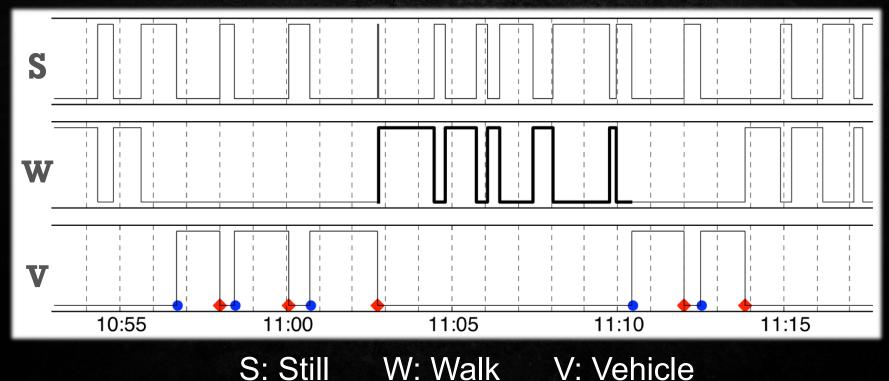
• Compute the relationship between the number of links and the number of candidate routes.

WOOT '15

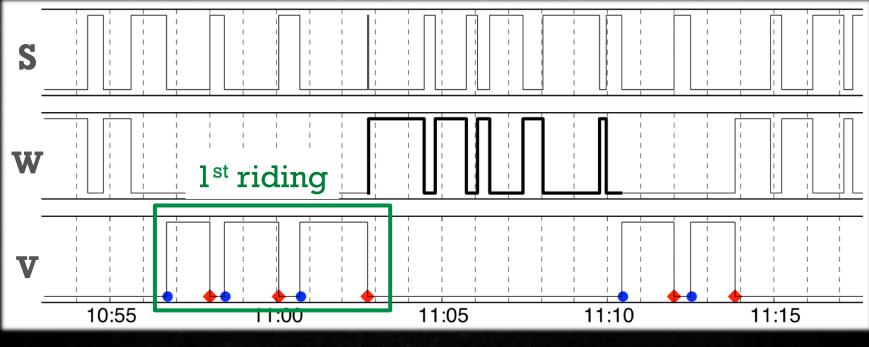
Networked Systems Laboratory



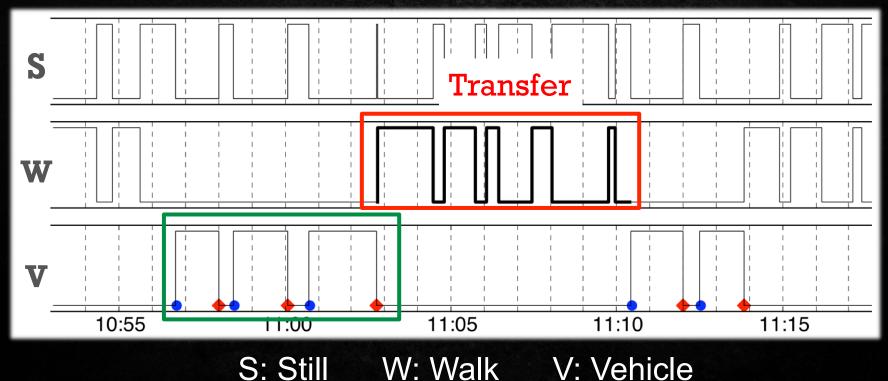
Performance of the algorithm (2)


 More than 6.4 billion routes were searched within 74 mins

- A route was searched
 - within $74 mins/640000000 = 7.1 \mu sec$ on average



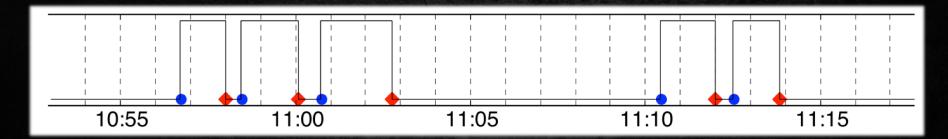
WOOT '15



S: Still W: Walk V: Vehicle

WOOT '15

WOOT '15

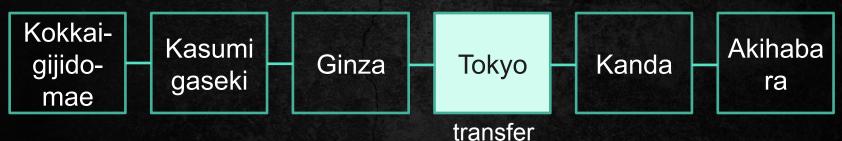

S: Still W: Walk V: Vehicle

WOOT '15

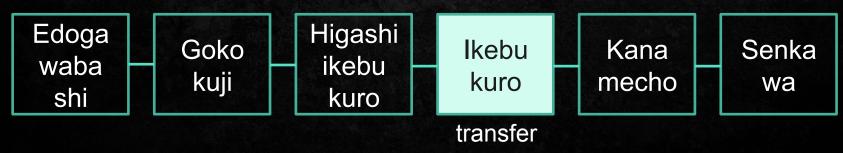
Networked Systems Laboratory

42

Case study 1 Results of Dpt./Arr. time detection


 $(10:56, 10:58) \rightarrow (10:58, 11:00) \rightarrow (11:00, 11:03) \rightarrow (10:00, 10:00) \rightarrow (10:$

Candidate Routes



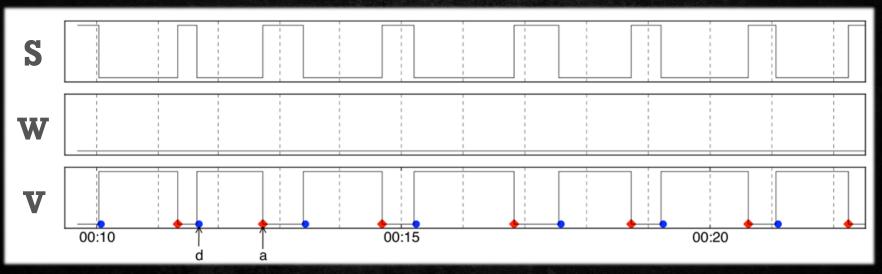
Case study 1 Results of Candidate Routes Detection

Candidate 1: Score 2664

Candidate 2: Score 2277

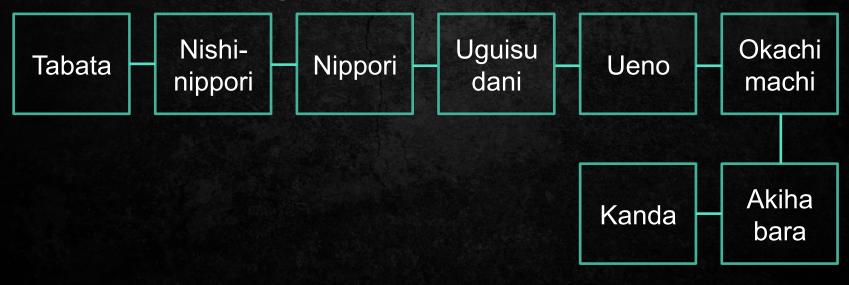
Case study 1 Results of Candidate Routes Detection

Candidate 1: Score 2664 Kokkaigijidomae Kasumi gaseki Ginza Tokyo Kanda Akihaba ra transfer

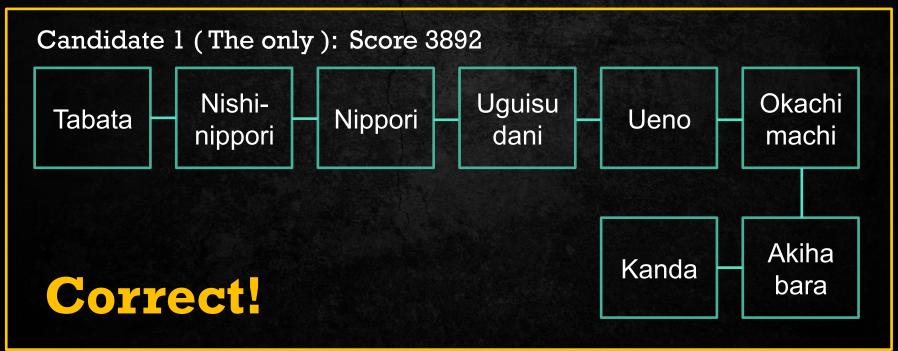

Candidate 2: Score 2277

WOOT '15

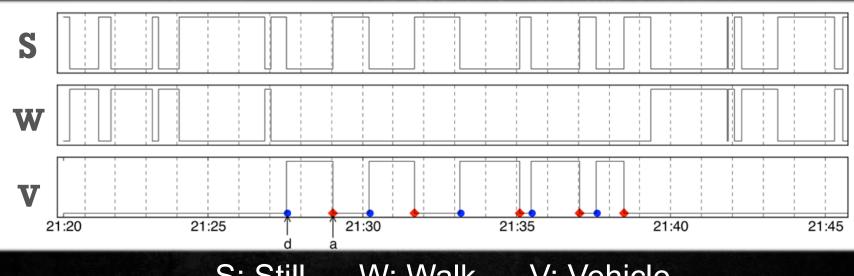
Case study 2



S: Still W: Walk V: Vehicle (0:10, 0:11) \rightarrow (0:11, 0:13) \rightarrow (0:13, 0:15) \rightarrow (0:15, 0:17) \rightarrow (0:17, 0:19) \rightarrow (0:19, 0:21) \rightarrow (0:21, 0:22)


Case study 2 Results of Candidate Routes Detection

Candidate 1 (The only): Score 3892



Case study 2 Results of Candidate Routes Detection

Case study 3

S: Still W: Walk V: Vehicle

 $(21:27, 21:29) \rightarrow (21:30, 21:32) \rightarrow (21:33, 21:35)$

 \rightarrow (21:35, 21:37) \rightarrow (21:37, 21:39)

Case study 3 Results of Candidate Routes Detection

None

WOOT '15

Why we failed to detect in Case 3?

	DPT	AR R								
Scheduled	21:26	21:28	21:28	21:32	21:32	21:35	21:35	21:37	21:37	21:39
Observed	21:27	21:29	21:30	21:32	21:33	21:35	21:35	21:37	21:37	21:39
Detected	21:27	21:29	21:30	21:32	21:33	21:35	21:35	21:37	21:37	21:39

WOOT '15

Why we failed to detect in Case 3?

	DPT	AR R	DPT	AR R	DPT	AR R	DPT	AR R	DPT	AR R
Scheduled	21:26	21:28	21:28	21:32	21:32	21:35	21:35	21:37	21:37	21:39
Observed	21:27	21:29	21:30	21:32	21:33	21:35	21:35	21:37	21:37	21:39
Detected	21:27	21:29	21:30	21:32	21:33	21:35	21:35	21:37	21:37	21:39

DPT./ARR. time detection was perfect

Why we failed to detect in Case 3?

	DPT	AR R	DPT	AR R	DPT	AR R	DPT	AR R	DPT	AR R
Scheduled	21:26	21:28	21:28	21:32	21:32	21:35	21:35	21:37	21:37	21:39
Observed	-21:27 -	21:29	21:30	21.32	21.33	21:35	21:35	21:37	21:37	21:39
Detected	21:27	21:29	21:30	21:32	21:33	21:35	21:35	21:37	21:37	21:39

The train was delayed at the time of measurement

WOOT '15

Discussion - Train Operation

#1001	On time	#8001	Delayed
#1002	On time	#8002	Delayed
#1003	On time	#8003	Suspended
#1004	On time	#8004	Delayed
	J		
Detec	table 🙄	Undete	ctable 💌

54

WOOT '15

Discussion - Train Operation (cont.)

- Multiple observations
 - An adversary can figure out locations frequently visited by the target in a statistical way

- Automatic train operation
 - It will work to increase the accuracy of train operations

Countermeasures

- Restricting access to raw sensor data
 - Requiring permission
 - Wrapping in APIs
- Low-pass filtering
 - The trade offs between functionality and security
- Staying away from Japan

Conclusion

 A novel, proof-of-concept side-channel attack framework called RouteDetector was introduced

- It needs only sensors data which is not protected on the Android platform
- We successfully demonstrated that a route can be identified, used for a trip by train using timetables and route maps.

WOOT '15

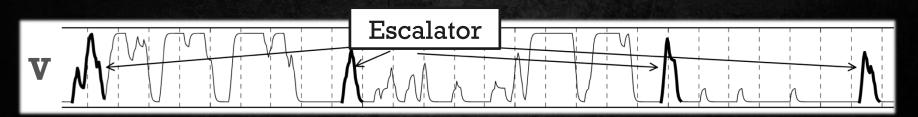
Discussion - Types of Vehicles

Networked Systems Laboratory

60

Discussion - Types of Vehicles (cont.)

- An airplane
- A mono rail
 - Possible candidate to be attacked


• A bus

average time waiting at traffic lights > average time waiting at bus stops

Discussion – Detection errors

 Our classifier can predict the activity of riding an escalator as "Vehicle"

To distinguish between escalator and train, we apply a timing heuristics;

Discussion – Detection errors (cont.)

- We consider a short "vehicle activity" (less than 60 seconds) as other activities
 - Coping with long escalator ride,
 e.g., more than 60 seconds, is for future work.

Image sources

Map: https://www.google.co.jp/maps Boss icon: http://pictogram-free.com/03-mark/042-mark.html Location icon: http://www.cliparthut.com/map-icons-clip-art-clipart-W13IHd.html Train photo: http://blogs.yahoo.co.jp/yuuki_20140313/40442989.html Sensor image: http://fscomps.fotosearch.com/bigcomps/CSP/CSP139/k1398123.jpg Train icon: https://commons.wikimedia.org/wiki/File:Bahn_aus_Zusatzzeichen_1024-15.svg Timetable icon: http://simpleicon.com/book-2.html Airplane icon: http://www.sozai-library.com/wp-content/uploads/2013/05/00289-450x337.jpg Bus icon: http://4vector.com/i/free-vector-bus-symbol-black-clip

-art_110561_Bus_Symbol_black_clip_art_hight.png Home icon: http://free-icon.org/data/dl_05/m_06.gif Bar icon: http://map-icon.com/material/eatanddrink/m_05.gif Malware icon: http://freeiconbox.com/icon/256/30992.png Smartphone with xyz axis: http://vnreview.vn/image/61/36/613648.jpg?t=1373940855536 Photo in the train :http://www.uraken.net/rail/alltrain/ec/syanai/207e.jpg Nexus7: http://i.ytimg.com/vi/Vj1koPa9FGQ/maxresdefault.jpg Htc j: http://adcdn.goo.ne.jp/images/sumaho/model/au/htc_j_butterfly_htl21_c.jpg

WOOT '15

Acknowledgements

 A part of this work was supported by JSPS Grant-in-Aid for Challenging Exploratory Research (KAKENHI), Grant number 15K12038.

