FlexTLS:

A tool for testing TLS implementations

http://smacktls.com

Y 4

http://mitls.org &zu&,—

INVENTORS FOR THE DIGITALWORLD

mE)i
Microsoft
Benjamin Beurdouche, Antoine Delignat-Lavaud, .

Nadim Kobeissi, Alfredo Pironti, Karthikeyan Bhargavan W

dea
1 software

Testing Agile Cryptographic Protocols

Protocols often negotiate crypto parameters
« Many key exchanges (RSA, DHE, PSK)
« Many authentication mechanisms (Cert, Password)
« Many encryption schemes (AEAD, RC4A-HMAC)

* Much of the complexity of TLS, IKEvZ2, SSH is
in the composition of these mechanisms

How do we test such protocols systematically ?
 How to integrate those tests to a development cycle ?

Transport Layer Security (1994 —)

The default secure channel protocol?

HTTPS, 802.1x, VPNs, files, mail, VolP, ...

Handles ~4 Billion S a day (e-commerce only)

20 years of attacks, and fixes

1994 Netscape’s Secure Sockets Layer

1996 SSL3

1999 TLS1.0 (RFC2246)
2006 TLS1.1 (RFC4346)
2008 TLS1.2 (RFC5246)

2015 TLS1.3?

Many implementations

OpenSSL, SecureTransport, NSS,
SChannel, GnuTLS, JSSE, PolarSSL, ...
many bugs, attacks, patches every year

We need better testing tools !

@ https://tools.ietf.org/html/ O ~ @ B &

\

GQJ@ httpﬁ"""00|5‘i€tf£r_g:'htm|f P~-adc I (& RFC 5246 - The Transport L... % ¥—l o AN
(— — —
[Docs] [txt|pdf] [draft-ietf-tls-rf...] [Diffl] [Diff2] [IPR] [Erratal] A
Updated by: 5746, 5878, 6176 PROPCSED STANDARD
Errata Exist
Network Working Group T. Dierks
Request for Comments: 5246 Independent
Obsoletes: 3268, 4346, 4366 E. Rescorla
Updates: 4492 RTFM, Inc.
Category: Standards Track August 2008

The Transport Layer Security (TLS) Protocol
Version 1.2

Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document specifies Version 1.2 of the Transport Layer Security
(TLS) protocol. The TLS protocol provides communications security
over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery.

TLS protocol overview

Client Server
Hello) Protocol negotiation
* Agreeon version
 Agree on ciphersuite
‘ Determines all crypto algos
Key Authenticated Key Exchange
* Verify server/client identity
Exchange
8 * Generate master secret
* Derive connection keys
Finished Key, transcript confirmation
* Completes authentication
/ e Matches transcripts
)2 e Authenticated encryption
Application Application data streams
* Full duplex channel
Data

e Authenticated encryption

Composing Key Exchanges[

I[EEE S&P’15]

CIientHeIIO(v, [kz1, kz2,...]) .
CIientHeIIo(v, [kz1, kza,...]) RSA v (EC)DHE ClientHello(v, [kz1, k2, .)

ServerHello(v, kx = DHE|ECDHE)
ServerHello(v, kx = RSA) ServerHello(v, kz)

ServerCertificate(certs)

ServerCertificate(certs)

ServerCertificate(certs) kz — DHE|ECDHE

ServerKeyExchange(sign((G, gv), sks) kT — RSA ServerKeyExchange(...)
ServerHelloDone
ServerHelloDone —

CIientKeyExcha Nge(rsaenc(pms, pks)) 1

ClientKeyExchange(s®)

ServerHelloDone

ClientKeyExchange(. -)
ClientCCS

ClientCCS ClientCCS

C”entFiniShed(maC(log, pms))

ClientFinished (mac(log, g®¥))

ClientFiniShed(mac(log,)

ServerCCS

ServerCCS ServerCCS

ServerFinished(mac(iog’, pms))

ServerFinished (mac(iog', %)) ServerFinished (mac(iog', - -)

ApplicationData*

ApplicationData- ApplicationData*

LS State Machine

RSA + DHE + ECDHE
+ Session Resumption

+ Client Authentication

e Covers most features
used on the Web

« Composition proved secure

for miTLS implementation
[IEEE S&P’13, CRYPTO 14]

http://mitls.org

e Reference code written for
verification, in F#

Are state ma;hines of usual
implementations correct?

Can we test them?

ClientHello

ServerHello(v, kz, 7:4)

Tia =0 & ik =0

(full handshake)

ServerCertificates
kx = DHE|ECDHE

ServerKeyExchange

(authenticate client?)
Cask = 1

CertificateRequest

ServerHelloDone
Cask = 1

ClientCertificate(coger)

ClientKeyExchange
Cask =1 &
Coffer = 1
ClientCertificateVerify

ClientCCS
ClientFinished
Ngick = 1
ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData*

kz = RSA

Cask-—o

Cask =0

Tid = 1|7 tick = 1
(abbreviated handshake)

Ngick = 1

ServerNewSessionTicket

ServerCCS

ServerFinished

ClientCCS

ClientFinished

ApplicationData*

Cask = 0 " Coffer = 0

Ngick =0

State machine
for common ;
Web configurations

FlexTLS: a tool for testing TLS libraries

 Fastimplementation of TLS scenarios
e Setup MITMs and manage easily concurrentconnections

 Fragmentation and arbitrary alterations on TLS messages
at multiple levels of abstraction (Msgs, HS, Record, TCP...)

e State-machine aware fuzzing capabilities

Focused on ease of use

Software architecture

ClientHello
ServerHello

CertificateVerify
Finished

1
! 1
1 | |
! “ ! £ !
1 | I Q |
1 ! ..FD_ O !
1
[~ Sl &1 !
Qs8] ol
Y I S| CINE- SR “
! Q| [|
9 AL s el |
! | o < =
"u“moT o 1|20 S
N V0 Il I - e lellell O e
! ol 2 Twnlel|l=| 1 D &0
N ¥ o BT =4 I PO | 2 G| rag i +
1 [} Re} (@]
A =1 | P FE A = -0 B =2 R RV - I N
\ s} [—
O Q] © (M | X |l d| S . <
"T_ICT“ NS I s o
| “P _H ““T
_cl |||||||||||||||| “. ||||||||||||||| I T T |
1 A A 4
1
1
e S TS - on
ml || ———
1
1
1
DD [P
1
1 | S
1 ! o
1 ' n o
1] LﬂlL.. ﬂ
| | 5 o
_ L8
wn
1 1
| !
" " -
! “ 218
1 | nd
1 ! s || 9
" | 2] € ¢l | e
' c
1 ! o||l o T ..qm -
| HEIE g 18| 8] |5
1 ! 2) © <
1 ' © <
" O 3| +
! Lo S| &8
1 | =] &
1 Hanl
1 ! !
S Sy
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Why did we use miTLS ?

(We wrote miTLS, so we know it well...)

Functional language statically strongly typed (F#)

We can reuse some functions which have been formally
verified (parsing, serializing...)

No side-effects except for networking

Ease the setup of concurrent connections, synchronization
or transfer of states and messages across connections

Applications

* Prototyping of new protocol features (TLS 1.3)
* Implementing proof-of-conceptattack demos (EarlyCCS)
« State machine fuzzing (SKIP & FREAK)

static member client (address:string, cn:string, port:int) : state =

F) . // We need to use the negotiable groups extension for TLS 1.3
rOtOtypI ng let cfg = {defaultConfig with maxVer = TLS_1p3;
negotiableDHGroups = [DHE2432; DHE3@72; DHE4096; DHE6144; DHE8192]} in

TI_S 1 . 3 // Start TCP connection with the server

let st,_ =
FlexConnection.clientOpenTcpConnection(address,cn,port,cfg.maxVer) in

Client Server // We want to ensure a ciphersuite
C S let fch = {FlexConstants.nullFClientHello with
ClientHello pv = Somg(cfg.maxVer); .
ClientKeyShare > ciphersuites = Some([TLS_DHE_RSA_WITH_AES_128_GCM_SHA256]) } in

let st,nsc,fch = FlexClientHello.send(st,fch,cfg) in

< ServerHello let st,nsc,fcks = FlexClientKeyShare.send(st,nsc) in

B ServerKeyShare

; _EncryptedExtensions* | let st,nsc,fsh = FlexServerHello.receive(st,fch,nsc) in

_ _ _ _Certificate | let st,nsc,fsks = FlexServerKeyShare.receive(st,nsc) in

< _CertificateRequest* |))))

CertificateVerify // Peer advertises that it wz?l encrypt the traffic .

< T ServerFimisned] let st = FlexStatg.}nstallReaQKeys st hsc in _

€ - - - - - 2T 2T- - - - let st,nsc,fcert = FlexCertificate.receive(st,Client,nsc) in
let st,nsc,scertv =

| _ _ _Certificatex FlexCertificateVerify.receive(st,nsc,FlexConstants.sigAlgs_ALL) in

| _ CertificateVerify* | let st,nsc,ffS = FlexFinished.receive(st,nsc,Server) in

ClientFinished
____________ > // We advertise that we will encrypt the traffic
Data let st = FlexState.installWriteKeys st nsc in
€T T T T T T T T T let st,nsc,ffC = FlexFinished.send(st,nsc,Client) in
_ mmmmmmm /7 Install the application data keys

let st = FlexState.installReadKeys st nsc in
let st = FlexState.installWriteKeys st nsc in

st

Rapid prototyping of TLS scenarios

What is the development cost of scenarios in FlexTLS ?

* Full handshakes for RSA and (EC)DHE are written in seconds
e Mostcomplex scenarios are written in a few hours

* Focusedon ease of use (inference of defaults)

Scenario # of msg | lines of code Reference
TLS 1.2 RSA 9 18 -
TLS 1.2 DHE 13 23 Sec. 2

TLS 1.3 1-RTT 10 24 Sec. 3.3, App. B

53

Implementing CVE-2014-0224

Client Attacker
let earlyCCS (server_name:string , port:int) state * state = ¢ M
(# Start being a Man—In—The—Middle =) ClientHello
let sst, ,cst, = FlexConnection.MitmOpenTcpConnections (
"0.0.0.0" ,server _name, listener port=6666, ServerHello
server _cn=server_name ,server port=port) in
(# Forward client hello =*) CCS
let sst ,nsc,sch = FlexClientHello.receive(sst) in
let cst = FlexHandshake.send(cst ,sch.payload) in
(# Forward server hello and check the ciphersuite =x) Secrets: Secrets:
let cst ,nsc,csh = FlexServerHello.receive (¢st ,sch,nsc) in msweak,keysweak msweak,keysweak
if not (isRSACipherSuite (cipherSuite of name (getSuite csh))) the ces
failwith "Demo implemented for the RSA key exchange only'
else
let sst = FlexHandshake.send(sst,csh.payload) in
Certificate (SNmc=0) Certificat
(#* Inject CCS to both =) - - - .- - - - - - - =
let sst, = FlexCCS.send(sst) in (_S_er'_re{He_ll_oD_on_e (SNme=1) ServerHelloDone
let cst, = FlexCCS.send(cst) in \
(#* Compute the weak keys and start encrypting data we send)
let weakKeys = { FlexConstants.nullKeys with
ms — (Bytes.createBytes 48 0)} in Secrets:
let weakNSC = { nsc with keys = weakKeys} in msstrongakeysweak
let weakNSCServer = FlexSecrets. fillSecrets (sst,Server ,weakNSC) in
let sst = FlexState.installWriteKeys sst weakNSCServer in . .
ClientKeyExchange ClientKeyExchange (SNys=0)
let weakNSCClient = FlexSecrets. fillSecrets (cst, Client ,weakNSC) in ST T ST T T s
let cst = FlexState.installWriteKeys c¢st weakNSCClient in
(# Forward server cert, server hello done, and client key exchange x*)
let cst ,sst, = FlexHandshake.forward(cst, sst) in
let cst,sst, = FlexHandshake.forward(cst , sst) in ces
let sst,cst, = FlexHandshake.forward(sst 6 cst) in
ClientFinished (SNcum=0) ClientFinished (SNus=1)
(* Get the Client CCS, drop it , but install new weak reading keys =) F - - - = = = = = -"=- = F - - - - - - - - - - =
let sst, , = FlexCCS.receive(sst) in
let sst FlexState.installReadKeys sst weakNSCServer in
o ° ve s CCS (SNmc=2) CCS
(* Forward the client finished message =*) ServerFinished (SN -0 ServerFinished (SNay=0
let sst,cst, = FlexHandshake.forward(sst 6 cst) in - - - - - - —(— Nic—)— - - - - - - —(— S—M—)—
(* Forward the CCS, and install weak reading keys on client side =x)
let cst, , = FlexCCS.receive(cst) in | _D%ta_ (S_NC_M:_")_ _ l_)a.Ea_(Sl\iMS_:"_"'l_)
let cst — FlexState.installReadKeys c¢st weakNSCClient in D
h : ata (SNuc= Data (SNsu=
let sst, = FlexCCS.send(sst) in le P -(S-M(-: 7-1) - - P -(S-SI\E 7-1) - I
(# Forward server finished message =*)
let cst,sst, = FlexHandshake.forward(cst 6 sst) in EE— EE—
sst ., cst

Server

[s]

Secrets:

MSweak keysweak

Secrets:

MSstrong, keysweak‘

Fuzzing TLS
(SmackTLS)

We built a test framework

« Generate 100s of non-

conforming traces from a state
machine specification

* Foreach trace, we automatically
generate a FlexTLS scenario

« We tested many TLS libraries
using those “deviant” traces

ClientHello

ServerHello(v, kz,7:4)

Tia =0 & Tyier =0

(full handshake)

ServerCertificates
kx = DHE|ECDHE

ServerKeyExchange

(authenticate client?)
Cask =1

CertificateRequest

ServerHelloDone
Cask =1

ClientCertificate(coger)

ClientKeyExchange
Cask =1 &
Coffer = 1

kx = RSA

ca.sk=0

Tia = 1||7gicr = 1

(abbreviated handshake)

Ngick = 1

ServerNewSessionTicket |7 =0

ServerCCS

ServerFinished

ClientCCS

ClientFinished

Cask =0 ApplicationData*

ClientCertificateVerify | Cast = 0 || Cogrer =0

ClientCCS

ClientFinished

Ngick = 1

ServerNewSessionTicket | 7tick =0

ServerCCS

ServerFinished

ApplicationData*

State machine
for common »
Web configurations

Many, Many Bugs o

Server-Gated Crypto

ServerHello(v,kz,i4)

Tia =0 & T4icr =0 rid = 1|reick = 1
.. . (full handshake) (abbreviated handshake)
Uﬂ@XpECtEd state transitions In Mok = 1
ServerCertificates |N . OIIﬁgxyerNewSessionTicke Titick =
OpenSSL, NSS, Java, — i
ServerKeyExchange K] = RSA ServerCCS
SecureTlransport, ... S
(authenticate client?) ServerFinished
 Required messages are
. CertificateRequest 0 ClientCCs
allowed to be skipped
« Unexpected messages are |
a”OWed to be received ClientCertificate(coﬁ") ca\k B0 ApplicationData*
e CVEs for many libraries B iy
Coffer = 1

ClientCCSs

How come all these bugs?

* Inindependent code bases,
sitting in there for years

* Are they exploitable? L
OpenSSL

State Machine

ServerFinished

ApplicationData*

Many, Many Bugs

Unexpected state transitions in
OpenSSL, NSS, Java,
SecureTlransport, ...

e Required messages are
allowed to be skipped

« Unexpected messages are
allowed to be received

* CVEs for many libraries

How come all these bugs?

* Inindependent code bases,
sitting in there for years

* Are they exploitable?

'Java
State Mackine

ApplicationData”

SKIP Inconvenient Messages

Network attacker impersonates
api.paypal.com to a JSSE client

1. Send PayPal’s cert

2. SKIP ServerKeyExchange
(bypass server signature)

3. SKIP ServerHelloDone

4. SKIP ServerCCS
(bypass encryption)

5. Send ServerFinished
using uninitialized MAC key
(bypass handshake integrity)

6. Send ApplicationData
(unencrypted) as S.com

ClientHello(v, [kz1, kzo, .. .])

FREAK: Downgrade to RSA EXPORT

A man-in-the-middle attack against :
* servers that support RSA_EXPORT (512bit keys obsoleted in 2000)
e clients that accept ServerKeyExchange in RSA (SmackTLS bug)

Client C MitM Server S
ClientHello(cr,[...,RSA,...]) ClientHello(cr, [RSA_EXPORT])
B ServerHello(sr,RSA) B ServerHello(sr,RSA_EXPORT)
: ServerCertifli?:ate(certs)
lf’g_c_ : ServerKeyExchange(sign(cr | sr | psi2, sks)]
AR ‘CIientKeyExchange(rsaenc(pms,p512)> Factoring
(ms, k1, ko) = kdf(pms, cr | sr) s512 = factor(ps12) in 7-10h
(ms, k1, ko) = kdf(pms, cr | sr)
ClientCCS _
l‘jgic -7 ClientFinished (mac(log~, ms)) :
ServerCCS :
_ ServerFinished(mac(logl:, ms))
) authenc(k;,Data) _
B authenc(ky,Data’) §

Smacktest.com{

ALPHA]

Online instance of FlexTLS

e Publicly available web application for testing TLS clients and servers
 Demonstrates FlexTLS’s capability to underpin TLS testing suites.

SMACKTest

Live state machine attack testing.

ClientHello e
If the test does not begin, iclick here to launch it

ServerHello manually, then return to this tab to inspect results.

ServerCertificate 298: Test failed. Click for detailed log.

BerverKeyExchange 297: Test failed. Click for detailed log.

Ruthenticate Client 96: Test failed. Click for detailed log.

ServerCertificateRequest

N
D
)
D
»
»
»
D
D
»
D
»

295: Test succeeded. Click for detailed log.

ServerHelloDone . .

294: Test succeeded. Click for detailed log.
ClientCertificate

293: Test failed. Click for detailed log.
ClientKeyExchange

292: Test failed. Click for detailed log.
ClientCertificateVerify

Status

Prototyping of exploits using FlexTLS

e First known complete implementation of the Triple Handshake
e Replication of several known attacks like EarlyCCS, Fragmented CH.
* Discovery and implementation of FREAK, SKIP [IEEE s&P15]

Systematic testing of TLS implementation
e State machine fuzzing automation and discovery of bugs
* Regression testing of implementations and attack database

Scenario # of msg | lines of code Reference
TLS 1.2 RSA 9 18 -
TLS 1.2 DHE 13 23 Sec. 2

TLS 1.3 1-RTT 10 24 Sec. 3.3, App. B
ClientHello Fragmentation 3 8 Sec.3.1.2
Alert Fragmentation 3 7 Sec. 3.1.3
FREAK 15 38 Sec. 3.1.6
SKIP 7 15 | Sec. 3.1.1, App. A
Triple Handshake 28 44 Sec. 3.1.4
Early CCS Injection 17 29 Sec. 3.1.5

Table 2: FLEXTLS Scenarios: evaluating succinctness

Conclusions

Cryptographic protocol testing needs work

State-machine fuzzing should be done systematically
You can use FlexTLS to demonstrate new attacks (Logjam)

You can use FlexTLS to test new features in your code
to ensure that it does not re-enable old attacks

There may be similar bugs in IPsec and SSH

FlexTLS is available at http://smacktls.com

(Future releases at http://mitls.org)

Thank you |

We would also like toaknowledge the INRIA Prosecco team
and our colleagues working both on miTLS and F*

22

