P2P File-Sharing in Hell: Exploiting BitTorrent Vulnerabilities to Launch Distributed Reflective DoS Attacks

Florian Adamsky, Syed Ali Khayam, Rudolf Jäger and Muttukrishnan Rajarajan

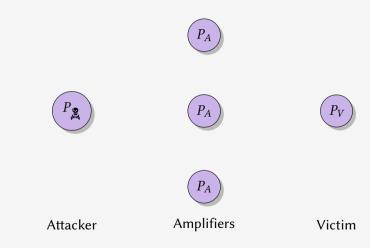
florian-woot15@adamsky.it
http://florian.adamsky.it/

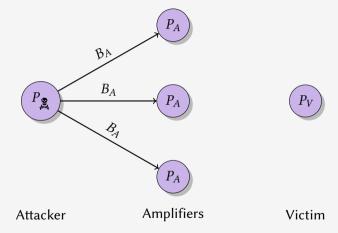
9th USENIX Workshop on Offensive Technologies

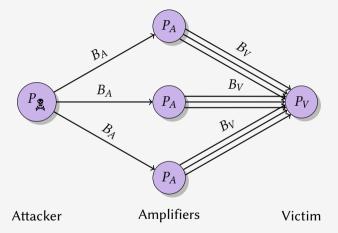
Outline

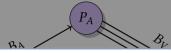
- 1 Introduction
 - Background
- 2 Amplification Vulnerabilities
 - BitTorrent
 - DHT
 - BitTorrent Sync
- 3 Experimental Evaluation
- 4 Countermeasures

Table of Contents


- 1 Introduction
 - Background
- 2 Amplification Vulnerabilities
 - BitTorrent
 - DHT
 - BitTorrent Sync
- 3 Experimental Evaluation
- 4 Countermeasures


2013: DDoS attack record: 300 Gbps

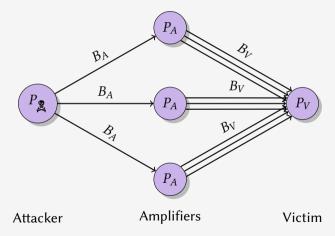



2014: DDoS attack record: 400 Gbps

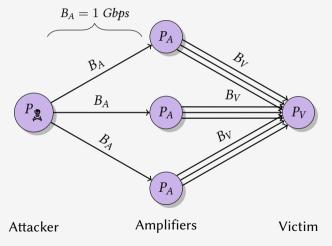
Bandwidth Amplification Factor (BAF)

Christian Rossow introduced the Bandwidth Amplification Factor (BAF):

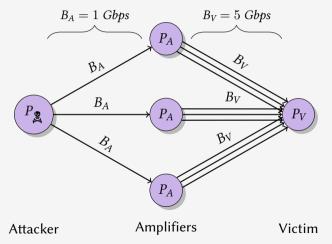
$$BAF = \frac{|B_{\nu}|}{|B_a|}$$



Attacker


Amplifiers

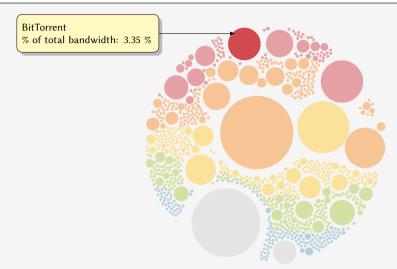
Victim


Example: BAF = 5

Example: BAF = 5

Example: BAF = 5

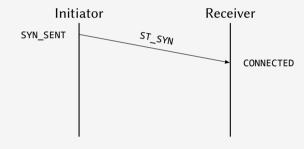
Advantages of a DRDoS Attack

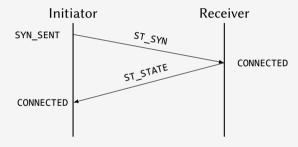

- Attacker hides his own identity
- It can be initiated by a single computer, results in a distributed attack
- Amplifiers send a larger packet to the victim and therefore increase the impact of the attack

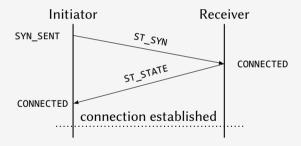
Worldwide Application Usage

9/34 Source: Paloalto Networks

Worldwide Application Usage


BitTorrent's protocol overview

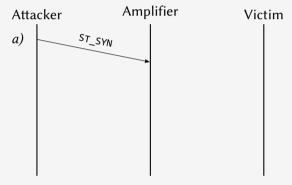

- Variety of UDP-based protocols are used:
 - Distributed Hash Table (DHT)
 - Micro Transport Protocol (uTP)

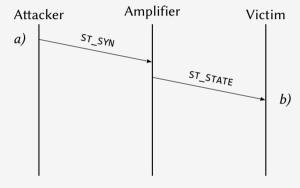

Micro Transport Protocol (uTP)

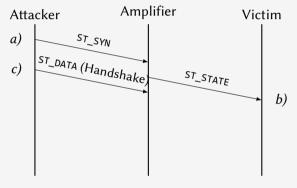
- uTP is a reliable transport protocol which makes use of UDP
- Similarities to TCP
 - Window based flow control
 - Sequence numbers and ACK numbers
- Differences to TCP
 - Sequence numbers and ACKs refer to packets, not bytes
 - lacksquare No congestion control (Slow-start, congestion avoidance, ...) ightarrow LEDBAT
 - Two-way handshake instead of a three-way handshake

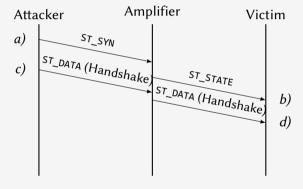
Initiator Receiver

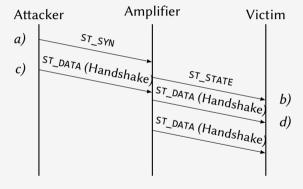
Table of Contents

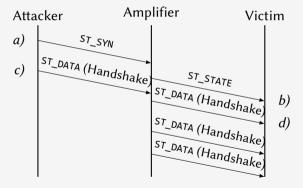

- 1 Introduction
 - Background
- 2 Amplification Vulnerabilities
 - BitTorrent
 - DHT
 - BitTorrent Sync
- 3 Experimental Evaluation
- 4 Countermeasures


BitTorrent Handshake


<pstrlen><pstr><extensions><info_hash><peer_id>


- pstrlen = 19
- pstr = *BitTorrent protocol*
- extensions 8 bytes reserved
- info_hash 20 byte
- peer_id 20 byte


Attacker	Amplitier	Victim



$B_V > B_A$

Definition (Packet Stuffing)

Try to cram as much BitTorrent messages into one packet as possible to minimize the connection establishment protocol flow

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4
Libtorrent with LTEP	5.2	4

Amplification Factors (BitTorrent)

Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

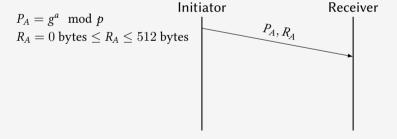
Amplification Factors (BitTorrent)

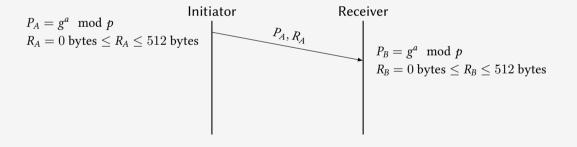
Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

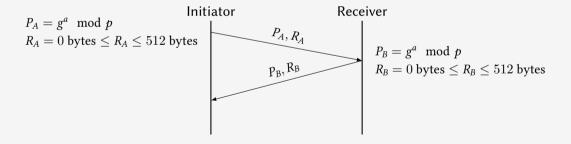
Amplification Factors (BitTorrent)

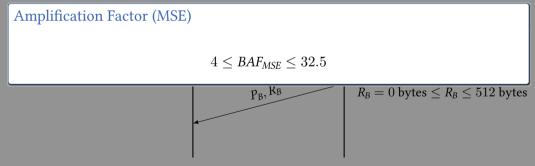
Description	BAF	PAF
ucat	351.5	6
uTorrent w/o extensions	27.6	3.5
Mainline w/o extensions	27.8	3.5
uTorrent with LTEP	39.6	3
Mainline with LTEP	39.6	3
Vuze w/o extensions	13.9	2
Vuze with LTEP	18.7	2
Vuze with AMP	54.3	3.5
Transmission w/o extensions	4.0	3.5
Transmission with LTEP	4.0	3.5
Transmission with AMP	4.0	3.5
Libtorrent w/o extensions	5.2	4
Libtorrent with LTEP	5.2	4

- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted


- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted


- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted


- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted


- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted

- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted

- Aim of MSE is to obfuscate BitTorrent traffic to avoid shaping
- MSE starts a Diffie-Hellman key exchange
- After the key exchange BitTorrent packets are RC4 encrypted

Distributed Hash Table

- DHT implementation in BitTorrent is divided into two protocols:
 - Mainline DHT (MLDHT)
 - Vuze DHT (VDHT)
- MLDHT is by far the biggest overlay network (around 15–27 million users per day)
- Both protocols are not compatible with each other

Implementation	Description	BAF
MLDHT	ping	0.8
	find_node with $K\!=8$	3.1
	get_peers with 100 peers (IPv4)	11.9
	get_peers with 100 peers (IPv6)	24.5
	get_peers with scrapes	13.4
VDHT	ping	0.8
	ping with Vivaldi coordinates	14.9

Implementation	Description	BAF
MLDHT	ping	0.8
	find_node with $K\!=8$	3.1
	get_peers with 100 peers (IPv4)	11.9
	get_peers with 100 peers (IPv6)	24.5
	get_peers with scrapes	13.4
VDHT	ping	0.8
	ping with Vivaldi coordinates	14.9

Implementation	Description	BAF
MLDHT	ping	0.8
	find_node with $K\!=8$	3.1
	get_peers with 100 peers (IPv4)	11.9
	get_peers with 100 peers (IPv6)	24.5
	get_peers with scrapes	13.4
VDHT	ping	0.8
	ping with Vivaldi coordinates	14.9

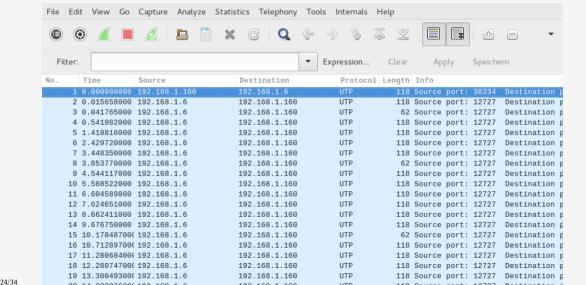
Implementation	Description	BAF
MLDHT	ping	0.8
	find_node with $K\!=8$	3.1
	get_peers with 100 peers (IPv4)	11.9
	get_peers with 100 peers (IPv6)	24.5
	get_peers with scrapes	13.4
VDHT	ping	0.8
	ping with Vivaldi coordinates	14.9

BitTorrent Sync

- Proprietary protocol to synchronize files in a P2P way
- BTSync reached the 1 million users mark in 2013
- BTSync also uses uTP as its transport protocol

Amplification Vulnerabilities (BTSync)

Message	BAF
BTSync handshake	10.8
ping	120


Amplification Vulnerabilities (BTSync)

Message	BAF
BTSync handshake	10.8
ping	120

Amplification Vulnerabilities (BTSync)

Message	BAF
BTSync handshake	10.8
ping	120

BTSync: ping flood

Evadability

	01/5/3	Nip,	874	MOH	SOHY	875/nc	45F
SPI firwall	X	X					
DPI firewall			X	X	X	X	

Table of Contents

- 1 Introduction
 - Background
- 2 Amplification Vulnerabilitie
 - BitTorrent
 - DHT
 - BitTorrent Sync
- 3 Experimental Evaluation
- 4 Countermeasures

Experimental Evaluation

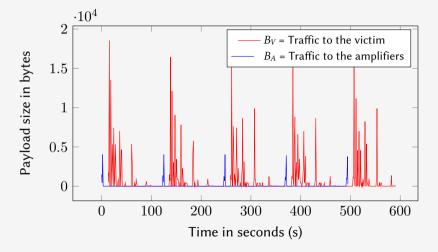
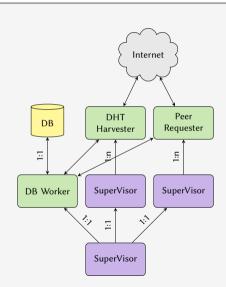



Figure: Amplification attack with 1 attacker, 31 amplifiers and 1 victim.

BitTorrent Crawler

- We wrote a BitTorrent Crawler in Elixir
- Used PirateBay magnet link database from Feb 2012
- We collected overall 9.6 million peers via MLDHT
 - Beginning from 1st January 2015 until 1st February 2015.

ntroduction Amplification Vulnerabilities **Experimental Evaluation** Countermeasures

Payload size from the DHT responses

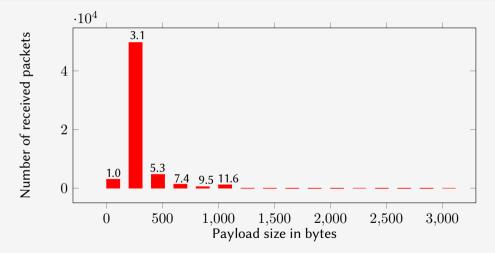


Figure: Histogram of the payload size from the DHT responses which are caused by get_peers requests.

The numbers on top of the bars are the average BAF values.

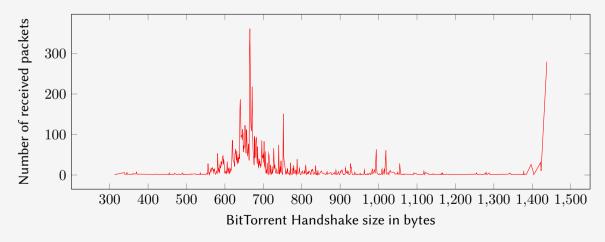


Figure: Histogram of the BitTorrent handshake size from the uTP responses.

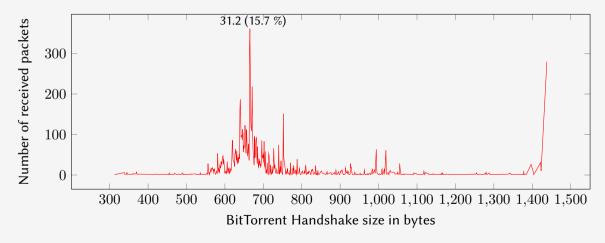


Figure: Histogram of the BitTorrent handshake size from the uTP responses.

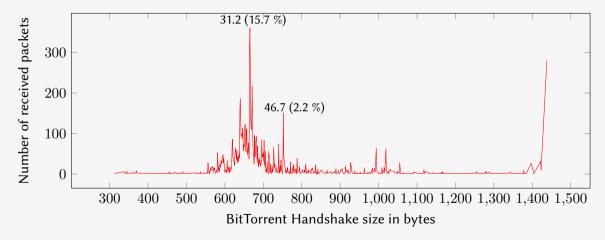


Figure: Histogram of the BitTorrent handshake size from the uTP responses.

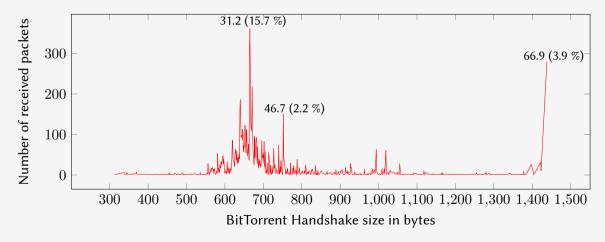


Figure: Histogram of the BitTorrent handshake size from the uTP responses.

Table of Contents

- 1 Introduction
 - Background
- 2 Amplification Vulnerabilities
 - BitTorrent
 - DHT
 - BitTorrent Sync
- 3 Experimental Evaluation
- 4 Countermeasures

Coutermeasures

ISP side

- BCP 38 (ingress filtering)
 - 2015: more than 70 % of the public networks deployed BCP 38

Coutermeasures

ISP side

- BCP 38 (ingress filtering)
 - 2015: more than 70 % of the public networks deployed BCP 38

Protocol side

- uTP
 - Three-way handshake
 - Verify the second acknowledgment
- DHT
 - Token scheme (similar to announce_peer)

Conclusion

- BitTorrent and BitTorrent Sync are vulnerable to DRDoS attacks
- Attacker is able to amplify traffic up to 50 times and with BTSync up to 120 times
- With Trackers, DHT and PEX, an attacker can collect millions of amplifiers
- Hard to circumvent, as the found vulnerabilities can only be defended with a DPI firewall
 - in case of MSE it is even harder

Conclusion

- BitTorrent and BitTorrent Sync are vulnerable to DRDoS attacks
- Attacker is able to amplify traffic up to 50 times and with BTSync up to 120 times
- With Trackers, DHT and PEX, an attacker can collect millions of amplifiers
- Hard to circumvent, as the found vulnerabilities can only be defended with a DPI firewall
 - in case of MSE it is even harder

Responsible Disclosure

uTorrent 3.4.4 49854 (beta) is released today!

Thank You

Questions?

florian-woot15@adamsky.it
http://florian.adamsky.it/

Institutions:

