Green Lights Forever
Analyzing the Security of Traffic Infrastructure

Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and J. Alex Halderman
Motivating our investigation

Traffic Lights
Ubiquitous critical infrastructure
High-level overview of our findings

We evaluated an existing anonymous traffic infrastructure deployment

We discovered numerous issues with the system
 Both the road agency and vendors at fault

The real issue:
 An absence of security consciousness in the field
Outline

Anatomy of a traffic intersection

Security evaluation

Recommendations
How vehicles are detected

> 80% of intersections detect vehicles

Inductive sensors
 Wired and wireless

Video detection

Microwave, Radar, Ultrasonic, etc.
Inside the traffic cabinet

- Malfunction Management Unit (MMU)
- Traffic Controller
- Light Relays
Malfunction Management Unit

- Electrical failsafe

- Hand-soldered configuration card
 - Physical connections
 - Whitelist of valid states

- Invalid states trigger an override
 - Goes to blinking red lights
 - Requires manual reset

- Stops 4-way green lights
Other intersection hardware

Radio communication
 Between controllers
 Back to main server

Video cameras
 Remote inspection
Overview of deployment

Collaborated with a road agency
 Urban area
 Approximately 100 lights total

Provided hardware for testing and access to deployment
 Initial testing all performed under a laboratory setting

As a condition of their involvement:
 Wish to remain anonymous and keep vendors anonymous
Deployment wireless network

Lights networked in a tree
Single private network
Data reporting only

Two communication bands
900 MHz
5.8 GHz

20 dBm with directional antennas
Findings – 900 MHz radios

No encryption enabled on connections
 Relies on proprietary protocol and frequency hopping
 WPA is possible

Default username and password in use

Vendor configuration software
 Requires default username and password to function
Findings - 5.8 GHz radios

Proprietary protocol

Similar to 802.11 – still broadcasts an SSID
Network name can be found on a standard laptop
Findings - 5.8 GHz radios

No encryption enabled on connections
 Relies on proprietary protocol
 WPA2 is possible

Default username and password in use

Vendor configuration software
 Allows password to be changed
 Assumes single password in use throughout deployment
Connecting to the network

How difficult is it?

1. Purchase 5.8 GHz radio from same vendor
2. Open laptop and find network SSID
3. Enter SSID into radio configuration as roaming slave

Network access at any point allows communication with all traffic light controllers in the deployment
Findings – Traffic controller

Usually controlled physically from the front panel
 No username or password by default
 Access control can be enabled, but is not simple

FTP server with database file for settings
 Unchangeable default username and password
Findings – Traffic controller

Runs VxWorks real-time operating system
 Default build leaves a debug port open
 Controller we tested was vulnerable
 Arbitrary access to read and write memory

Actually, the vendor had already fixed this issue
 The patch report didn’t mention it
 Road agency hadn’t gotten around to updating controllers
Findings – Traffic controller

NTCIP 1202

National Transportation Communications for ITS Protocol
Standard defining communications for traffic controllers
SNMP can be used to manage devices
Does not provide protection from unauthorized access

Vendor program for remote controller interaction
Uses NTCIP 1202 to emulate front panel interactions
Easy to sniff with Wireshark
Controlling the controller

We created a library of commands based on vendor program
Arrow keys, Number keys, Main Menu button

We then created a C program to act as a “traffic controller shell”
Can manually change settings on the controller
Can also run scripts to automatically perform actions
 Advance lights
 Freeze lights
 Trigger MMU
Putting it all together

We can now:

- Access the network
- Connect to the controller
- Change light states

Next, we wanted to try it out at a real light
Demonstration on Deployment

T-intersection
 MMU defaults to blinking yellows on main road

Required supplies
 5.8 GHz radio
 Laptop
 AC power
Demonstration on Deployment

Connected to network
Ran controller shell
Changed light on command

Also accidentally triggered MMU twice
What can an attacker really do?

Denial of service
 It’s easy to trigger the MMU to take over
 Requires a technician to manually reset the device

Traffic congestion
 Possible to change timings such that a road becomes backed up

Individual light control
 Speedy getaways just like the movies
Recommendations for road agencies

Follow basic security best practices

Need to enable encryption
 Proprietary protocols do not cut it
Hiding SSIDs is a good idea
Add firewalls to block access to ports you aren’t using
Keep firmware up to date

Change default usernames and passwords
Recommendations for vendors

Enforce security

Require strong wireless security options
Allow and expect usernames and passwords to be changed

Somebody needs to be thinking about security
Vendor Response

Traffic controller vendor responded:

The company “has followed the accepted industry standard and it is that standard which does not include security”

Worrying for future Vehicle-to-Vehicle/Infrastructure technologies
Concluding Remarks

The real problem here is a lack of security consciousness

Traffic lights underwent a phase change
 Timing electronics to computerized systems
 Standalone devices to wireless networks
 Security did not keep up

Ensuring security of critical infrastructure should be a top priority
Acknowledgements

Many thanks to the anonymous road agency personnel who allowed us access to their network and hardware
Questions?

Green Lights Forever: Analyzing the Security of Traffic Infrastructure

Branden Ghena brghena@umich.edu
William Beyer wbeyer@umich.edu
Allen Hillaker hillaker@umich.edu
Jonathan Pevarne jpevarne@umich.edu

J. Alex Halderman jhalderm@eecs.umich.edu

MICHIGAN ENGINEERING
UNIVERSITY OF MICHIGAN