Augmenting Centralized Password Management with Application-Specific Passwords

Trevor Smith
Brigham Young University
tsmith@isrl.byu.edu

Scott Ruoti
MIT Lincoln Laboratory
scott@ruoti.org

Kent Seamons
Brigham Young University
seamons@cs.byu.edu
Remote User Authentication

Who are you?

JohnDoe01
Passwords

- Easy for developers
- Familiar to users
- Cost effective

- Difficult to remember
- Weak passwords
- Password reuse
Centralized Authentication Management

- Improved security
- Improved convenience

- Single point of failure
- Requires absolute trust
- Additional software
Password Managers

- Generates random passwords
- Stores encrypted passwords
- Protected by a master password
Single Sign-On Systems

- User authenticates to an identity provider
- User requests access to the web application
- Web application contacts the identity provider
- Identity provider authenticates to the web application
Our Proposal

Combine central authentication management with application specific passwords.

- Mitigate the single point of failure
- Reduce the required trust
Application-Specific Passwords

- Relatively low-entropy secret
- Can be unique for every application
- Combined with centralized authenticators
Threat Model

There are three major threats we consider:

1. Phishing a user’s master password
2. Stealing the centralized authentication manager’s password database
3. Stealing a web application’s password database
Evaluation Metrics

Deployability
Requires no changes to the:
- Web Application
- Password Manager
- SSO System

Security
Protects against:
- Stolen Master Password
- Central Party Compromise
- Web Application Compromise
Proposed Systems

1. Password Manager + User Addition
2. Password Manager + Hashing
3. Single Sign-On + Application Request
5. Single Sign-On + Challenge
Augmenting PM - User Addition

Password Manager Supplied

User Supplied

Password: zGJ9H?jVdkaQ!iBHD!b6aHTJ + itsme192

Deployability
Requires no changes to the:

- Web Application
- Password Manager

Security
Protects against:

- Stolen Master Password
- Central Party Compromise
- Web Application Compromise
Augmenting PM - Hashing

Password Manager Supplied

User Supplied

Password: \(h(\text{zGJ9H?jVdkaQ!iBHD!b6aHTJ} + \text{itsme192}) \)

Deployability
Requires no changes to the:

- ✓ Web Application
- ❏ Password Manager

Security
Protects against:

- ✓ Stolen Master Password
- ✓ Central Party Compromise
- ❏ Web Application Compromise
Augmenting SSO - Application Request

Identity Provider

1

2

Web Application

3

4

User

Deployability
Requires no changes to the:

- Web Application
- SSO System

Security
Protects against:

- Stolen Master Password
- Central Party Compromise
- Web Application Compromise
Augmenting SSO - Modified Protocol

Deployability
Requires no changes to the:
- Web Application
- SSO System

Security
Protects against:
- Stolen Master Password
- Central Party Compromise
- Web Application Compromise
Augmenting SSO - SSO Challenge

Identity Provider 2 User

1 4

Web Application

Deployability
Requires no changes to the:
- ✔ Web Application
- ❐ SSO System

Security
Protects against:
- ✔ Stolen Master Password
- ❐ Central Party Compromise
- ✔ Web Application Compromise
Next Steps

Evaluating Usability

- Attitude and Acceptability
- Laboratory Usability Studies
- Longitudinal Studies
Discussion

- How do we decide which system is best?
- How should we measure difficulty of deployment?
- How does these systems compare to Two-Factor Authentication?
- Are there benefits gained from a single point of entry?
- How does not adhering to best practices affect security?
- How should these systems handle recovery?