
Understanding Kubernetes 
Storage

Getting in Deep by Writing a CSI Driver

Gerry Seidman



Agenda

• The Kubernetes Storage Journey

• Understanding the Kubernetes API Model

• Understanding Kubernetes Storage

• Container Storage Initiative (CSI) plugin model

• My Experience Writing the AFS/AuriStor CSI plugin



The Kubernetes Storage Journey

• Take 1: Containers are Cattle, who needs persistent storage? 

• Take 2: Storage was statically created ‘Persistent Volumes’
• Hardcoded and in-tree 
• Terrible idea
• Lots of junk leftover both code and ‘API’ stuff that is being culled

• Take 3: Flex Volumes
• Kludgy idea while the standards were being fleshed out

• Take 4: Container Storage Initiative (CSI)  



Kubernetes Does not have an Imperative API

• Imperative APIs aren’t suited for resource orchestration
• Things may take a long time to schedule, set up and make available

• It makes more sense to have a Declarative API
• ‘Objects’ specify the state they would like to be in
• Expressed in JSON/YAML

• Kubernetes API Server 
• API Objects are posted, updated or deleted
• Validates API ‘Objects’ and access control for user action.

• Software Controllers and Operators 
• Help bring objects to their desired specification
• May involve creating, modifying or deleting API Objects



Kubernetes API Objects (53 different kinds in k8s 1.17)

• Container Creators
• Pods, Deployments, StatefulSets, DaemonSets, ReplicaSets, CronJobs, Jobs 

• Storage
• PersistentVolumeClaims, PersistentVolumes, VolumeAttachments, StorageClasses
• CsiDrivers, CsiNodes
• VolumeSnapshots, VolumeSnapshotClasses, VolumeSnapshotContents

• General
• ConfigMaps, NameSpaces, Nodes, CustomResourceDefinitions, Events

• Networking
• Endpoints, Service, EndpointSlice, Ingress

• Security
• Secret, ServiceAccount, ClusterRole, ClusterRoleBinding, Role, RoleBinding



Kubernetes API Server

• Restful API
• Post/Watch/Update/Delete Kubernetes Objects
• Backed by etcd, resilient Key/Value Store

• CLI tool 
• kubectl

API Server

Admission Controllers
Validating & mutating

etcd

REST client

kubectl CLI

• Admission Controllers
• Validate API Object
• Mutate API Object (ie defaults)



Operators (Controllers) 

• API Clients that Codify all the operational logic

API 
Server

Kubelet

Pods

Scheduler OperatorsControllers
Kube Controller 

Manager

etcd

Worker Node

Kubelet

Pods

Worker Node



No Container Objects -- Pods

• Container Creators
• Pods, Deployments, StatefulSets, DaemonSets, ReplicaSets, CronJobs, Jobs 

• Pods contain one or more Containers
• Share Localhost

• The same volume can be mounted to 1+ (in same or different place)



Not Quite Simplest Example

Pod Container Wants to mount 
‘volume’ at /data

kind: Pod
apiVersion: v1
metadata:
name: my-csi-app

spec:
containers:
- name: my-frontend
image: busybox
volumeMounts:
- mountPath: "/data"
name: my-csi-volume

command: [ "sleep", "1000000" ]
volumes:
- name: my-csi-volume
persistentVolumeClaim:
claimName: csi-pvc



What Kind of Volume does the end-user want?

Pod Container Wants to mount 
‘volume’ at /data

kind: Pod
apiVersion: v1
metadata:
name: my-csi-app

spec:
containers:
- name: my-frontend
image: busybox
volumeMounts:
- mountPath: "/data"
name: my-csi-volume

command: [ "sleep", "1000000" ]
volumes:
- name: my-csi-volume
persistentVolumeClaim:
claimName: csi-pvc

Persistent Volume 
Claim

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: csi-pvc
spec:

accessModes:
- ReadWriteOnce
resources:

requests:
storage: 1Gi

storageClassName: csi-afs-sc



What the Cluster (Storage) admin Specifies

Pod Container Wants to mount 
‘volume’ at /data

Persistent Volume 
Claim

To be Resolved 
by

Storage Class

Providing 
Parameters 

to a 
Storage 
Driver 

CSI Driver
(AuriStor)

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: csi-afs-sc

provisioner: csi-driver.auristor.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
parameters:
afs-cell-name: auristor.io
afs-vol-name: gerko

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: csi-pvc
spec:

accessModes:
- ReadWriteOnce
resources:

requests:
storage: 1Gi

storageClassName: csi-afs-sc



PersistentVolume Object: CSI + Driver Magic 

Pod Container Wants to mount 
‘volume’ at /data

Persistent Volume 
Claim

To be Resolved 
by

Storage Class

Providing 
Parameters 

to a 
Storage 
Driver 

CSI Driver
(AuriStor)Kubernetes + CSI MagicPersistent Volume



CSI Driver Responsibility
• CSI Driver  on each node that would provide this kind of storage

• Typically as a privileged Kubernetes Pod
• Provides 3 services: accessible via Unix Domain Sockets  as gRPC Service

• Identity Service – must be on each Node that can will use this driver
• Informs Node about the instance and Driver capabilities 

• Ie Is Storage Topology Aware Pod Scheduling supported?

• Controller Service
• Makes higher level decisions.  Doesn’t have to run on a worker node

• Node Service
• Must run on every node that will use this driver



Controller Service and Node Service

ControllerService

• CreateVolume()

• PublishVolume()

• UnpublishVolume()

• DeleteVolume()

NodeService

• NodeStageVolume()

• NodePublishVolume()

• NodeUnstageVolume()

• NodeUnpublishVolume()

Controller 
Service 

Node 
Service

Identity 
Service

CSI Driver (Leader)

Node 
Service

Identity 
Service

CSI Driver 



Contexts are passed along to future calls

• The CSI Driver is may be ephemeral (ie may crash and restart
• The Sidecars cooperatively will retain ‘context’ data 

• Volume Context 
• Created at Controller.createVolume time

• Typically include copies of some of the ‘parameters’ (ie parameters in the storage class)
• Augmented by CO for future calls

• Future: publishVolume, unpublishVolme, deleteVolume

• Publish Context
• Created at Controller.publishVolume
• Future calls on both the Controller and Node Services will get the volumeContext

• Controller  NodeStageVolume, NodePublishVoume



API 
Server

Kubelet

Worker Node

Controller 
Service 

Node 
Service

Identity 
Service

CSI Driver (Leader)

Node 
Registrar

External 
Attacher

External 
Provisioner

Side Cars

Worker Node

Node 
Service

Identity 
Service

CSI Driver Node 
Registrar

External 
Attacher

External 
Provisioner

Side Cars

Kubelet



Node Registration (All Nodes)
• Gets Node Info from NodeService

• Register via kublet

API 
Server

Worker Node

Node 
Service

Identity 
Service

CSI Driver Node 
Registrar

External 
Attacher

External 
Provisioner

Side Cars

Kubelet



Desire to Create Storage

1. External Provisioner ‘notices’ a PVC (via API Server)  referencing a storageClass Object

2. External Provisioner ‘notices matching StorageClass object is for this ‘provisioner’ (CSI Driver)

3. Asks Driver ControllerService to ‘create Volume’

4. Creates Kubernetes Persistent Volume Object

API 
Server

Kubelet

Worker Node

Controller 
Service 

Node 
Service

Identity 
Service

CSI Driver (Leader)

Node 
Registrar

External 
Attacher

External 
Provisioner

Sider Cars



Scheduling
1. External Provisioner ‘notices’ a Pod is Scheduled

2. Asks Driver ControllerService to ‘publish Volume’

API 
Server

Kubelet

Worker Node

Controller 
Service 

Node 
Service

Identity 
Service

CSI Driver (Leader)

Node 
Registrar

External 
Attacher

External 
Provisioner

Side Cars



Attaching
1. Looks for Volume Attachments (Pairing of PV and PVC)

2. Node Stage

3. Node Publish

API 
Server

Worker Node

Node 
Service

Identity 
Service

CSI Driver Node 
Registrar

External 
Attacher

External 
Provisioner

Sider Cars

Kubelet



What the Kubernetes CSI Driver Does

Pod Container Wants to mount 
‘volume’ at /data

Persistent Volume 
Claim

To be Resolved 
by

Storage Class

Providing 
Parameters 

to a 
Storage 
Driver 

CSI Driver
(AuriStor)

(a) May provide Topology hints to Scheduler
(b) Creates the Mount onto the Scheduled Node



Upon Scheduling the External Attacher does…

Pod Container Wants to mount 
‘volume’ at /data

Persistent Volume 
Claim

To be Resolved 
by

Storage Class

Providing 
Parameters 

to a 
Storage 
Driver 

CSI Driver
(AuriStor)

(a) May provide Topology hints to Scheduler
(b) Creates the Mount onto the Scheduled Node

Persistent Volume Attachment

Bound To

Persistent Volume 
(on specific node)



AuriStor / AFS 

• Andrew File System (AFS)
• What is it

• Secure Distributed File System
• AuriStor adds Combined Identity ACL

• WAN/LAN optimized with local cache consistency

• Zero client configuration Global Namespace
• cat /afs/umich.edu/README

• Platform Independent

• Unit of Management and Policy is an AFS Volume
• Rooted Directory tree that can be mounted locally

• Can be mounted to the AFS global namespace

• Example Policy is replicas 



AuriStor CSI Storage Class

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: csi-afs-sc

provisioner: afs.csi.auristor.com

reclaimPolicy: Delete

volumeBindingMode: WaitForFirstConsumer

parameters:
afs.csi.auristor.com/volumeType: "normal" # scratch, normal, createIfDoesntExist
afs.csi.auristor.com/cellName: "auristor.io"
afs.csi.auristor.com/volumeName: "allPlay"
afs.csi.auristor.com/VolumeProximityRequired: "true"
afs.csi.auristor.com/schedulingDeferralType: "immediate" # options: immediate, eventual
afs.csi.auristor.com/scratchVolumePrefix: "myExperiment"



Understanding Kubernetes Storage

Getting in Deep by Writing a CSI Driver

Thank you!

CSI Specification: https://github.com/container-storage-interface/spec/blob/master/spec.md

Kubernetes CSI Documentation: https://kubernetes-csi.github.io/docs/

AuriStorFS: https://www.auristor.com/filesystem

https://github.com/container-storage-interface/spec/blob/master/spec.md
https://kubernetes-csi.github.io/docs/
https://www.auristor.com/filesystem

