
Speeding Up Linux Disk Encryption
Ignat Korchagin
@ignatkn

@ignatkn

$ whoami

● Performance and security at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming

Encrypting data at rest

@ignatkn

The storage stack

applications

@ignatkn

The storage stack

filesystems

applications

@ignatkn

The storage stack

block subsystem

filesystems

applications

@ignatkn

The storage stack

storage hardware

block subsystem

filesystems

applications

@ignatkn

Encryption at rest layers

storage hardware

block subsystem

filesystems

applications

SED, OPAL

@ignatkn

Encryption at rest layers

storage hardware

block subsystem

filesystems

applications

SED, OPAL

LUKS/dm-crypt,
BitLocker,
FileVault

@ignatkn

Encryption at rest layers

storage hardware

block subsystem

filesystems

applications

SED, OPAL

LUKS/dm-crypt,
BitLocker,
FileVault

ecryptfs,
ext4 encryption

or fscrypt

@ignatkn

Encryption at rest layers

storage hardware

block subsystem

filesystems

applications

SED, OPAL

LUKS/dm-crypt,
BitLocker,
FileVault

ecryptfs,
ext4 encryption

or fscrypt

DBMS, PGP,
OpenSSL,

Themis

@ignatkn

Storage hardware encryption
Pros:
● it’s there
● little configuration needed
● fully transparent to applications
● usually faster than other layers

@ignatkn

Storage hardware encryption
Pros:
● it’s there
● little configuration needed
● fully transparent to applications
● usually faster than other layers

Cons:
● no visibility into the implementation
● no auditability
● sometimes poor security
https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071

https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071

@ignatkn

Block layer encryption
Pros:
● little configuration needed
● fully transparent to applications
● open, auditable

@ignatkn

Block layer encryption
Pros:
● little configuration needed
● fully transparent to applications
● open, auditable

Cons:
● requires somewhat specialised crypto
● performance issues
● encryption keys in RAM

@ignatkn

Filesystem layer encryption
Pros:
● somewhat transparent to applications
● open, auditable
● more fine-grained
● more choice of crypto + potential integrity support

@ignatkn

Filesystem layer encryption
Pros:
● somewhat transparent to applications
● open, auditable
● more fine-grained
● more choice of crypto + potential integrity support

Cons:
● performance issues
● encryption keys in RAM
● complex configuration
● unencrypted metadata

@ignatkn

Application layer encryption
Pros:
● open, auditable
● fine-grained
● full crypto flexibility

@ignatkn

Application layer encryption
Pros:
● open, auditable
● fine-grained
● full crypto flexibility

Cons:
● encryption keys in RAM
● requires explicit support in code and configuration
● unencrypted metadata
● full crypto flexibility

LUKS/dm-crypt

@ignatkn

Device mapper in Linux

applications

@ignatkn

Device mapper in Linux

applications
filesystems

xfs vfatext4

file I/O

@ignatkn

Device mapper in Linux

applications

block device drivers

nvme brdscsi

filesystems

xfs vfatext4

file I/O

block I/O

@ignatkn

Device mapper in Linux

applications

block device drivers

nvme brdscsi

filesystems

xfs vfatext4

device mapper

dm-crypt dm-mirrordm-raid

file I/O

block I/O

block I/O

@ignatkn

Device mapper in Linux

applications

block device drivers

nvme brdscsi

filesystems

xfs vfatext4

device mapper

dm-crypt dm-mirrordm-raid

file I/O

block I/O

block I/O

@ignatkn

dm-crypt (idealized)
filesystem

block device drivers

@ignatkn

dm-crypt (idealized)
filesystem

dm-crypt

block device drivers

@ignatkn

dm-crypt (idealized)
filesystem

dm-crypt

block device drivers

encrypt

write BIO

encrypted BIO

@ignatkn

dm-crypt (idealized)
filesystem

dm-crypt

block device drivers

encrypt decrypt

write BIO read BIO

encrypted BIOs

@ignatkn

dm-crypt (idealized)
filesystem

dm-crypt

block device drivers

encrypt decrypt
Linux

Crypto API

write BIO read BIO

encrypted BIOs

dm-crypt benchmarking

@ignatkn

Test setup: RAM-based encrypted disk

$ sudo modprobe brd rd_nr=1 rd_size=4194304

@ignatkn

Test setup: RAM-based encrypted disk

$ sudo modprobe brd rd_nr=1 rd_size=4194304
$ echo '0 8388608 delay /dev/ram0 0 0' |
sudo dmsetup create plain

@ignatkn

Test setup: RAM-based encrypted disk

$ sudo modprobe brd rd_nr=1 rd_size=4194304
$ echo '0 8388608 delay /dev/ram0 0 0' |
sudo dmsetup create plain
$ sudo cryptsetup luksFormat
/dev/mapper/plain

@ignatkn

Test setup: RAM-based encrypted disk

$ sudo modprobe brd rd_nr=1 rd_size=4194304
$ echo '0 8388608 delay /dev/ram0 0 0' |
sudo dmsetup create plain
$ sudo cryptsetup luksFormat
/dev/mapper/plain
$ sudo cryptsetup open --type luks
/dev/mapper/plain secure

@ignatkn

test storage stack

Test storage stack

ramdisk

plain: dm-delay

secure: dm-crypt

@ignatkn

test storage stack

Test storage stack

ramdisk

plain: dm-delay

secure: dm-crypt

optional
(0 delay)

@ignatkn

Test setup: sequential reads

$ cat rw.job
[iotest]

direct=1

gtod_reduce=1

loops=1000000

iodepth=16

@ignatkn

Test setup: sequential reads

$ sudo fio --filename=/dev/mapper/plain
--readwrite=read --bs=4k rw.job
...

 READ: io=21134MB, aggrb=1876.1MB/s

@ignatkn

Test setup: sequential reads

$ sudo fio --filename=/dev/mapper/plain
--readwrite=read --bs=4k rw.job
...

 READ: io=21134MB, aggrb=1876.1MB/s
$ sudo fio --filename=/dev/mapper/secure
--readwrite=read --bs=4k rw.job
...

 READ: io=3261.8MB, aggrb=318.6MB/s

@ignatkn

Test setup: sequential reads

$ sudo cryptsetup benchmark -c aes-xts
Tests are approximate using memory only (no
storage IO).

Algorithm | Key | Encryption | Decryption

 aes-xts 256b 1854.7 MiB/s 1904.5 MiB/s

@ignatkn

Test setup: sequential reads

$ sudo cryptsetup benchmark -c aes-xts
Tests are approximate using memory only (no
storage IO).

Algorithm | Key | Encryption | Decryption

 aes-xts 256b 1854.7 MiB/s 1904.5 MiB/s

desired: ~900 MB/s, actual: ~300 MB/s

@ignatkn

We tried...

● switching to different cryptographic algorithms
○ aes-xts seems to be the fastest (at least on x86)

@ignatkn

We tried...

● switching to different cryptographic algorithms
○ aes-xts seems to be the fastest (at least on x86)

● experimenting with dm-crypt optional flags
○ “same_cpu_crypt” and “submit_from_crypt_cpus”

@ignatkn

We tried...

● switching to different cryptographic algorithms
○ aes-xts seems to be the fastest (at least on x86)

● experimenting with dm-crypt optional flags
○ “same_cpu_crypt” and “submit_from_crypt_cpus”

● trying filesystem-level encryption
○ much slower and potentially less secure

@ignatkn

Despair

@ignatkn

Ask the community

“If the numbers disturb you, then this is from lack of
understanding on your side. You are probably unaware
that encryption is a heavy-weight operation...“

https://www.spinics.net/lists/dm-crypt/msg07516.html

https://www.spinics.net/lists/dm-crypt/msg07516.html

@ignatkn

But actually...

“Using TLS is very cheap, even at the scale of Cloudflare.
Modern crypto is very fast, with AES-GCM and P256
being great examples.”

https://blog.cloudflare.com/how-expensive-is-crypto-anyway/

https://blog.cloudflare.com/how-expensive-is-crypto-anyway/

@ignatkn

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

kcryptd

write

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd

kcryptd

write

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

write

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

queues vs latency

“A significant amount of tail latency is
due to queueing effects”

https://www.usenix.org/conference/srecon19asia/presentation/plenz

https://www.usenix.org/conference/srecon19asia/presentation/plenz

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

dm-crypt: git archeology
● kcryptd was there from the beginning (2005)

○ only for reads: “it would be very unwise to do decryption in an
interrupt context”

@ignatkn

dm-crypt: git archeology
● kcryptd was there from the beginning (2005)

○ only for reads: “it would be very unwise to do decryption in an
interrupt context”

● some queuing was added to reduce kernel stack
usage (2006)

@ignatkn

dm-crypt: git archeology
● kcryptd was there from the beginning (2005)

○ only for reads: “it would be very unwise to do decryption in an
interrupt context”

● some queuing was added to reduce kernel stack
usage (2006)

● offload writes to thread and IO sorting (2015)
○ for spinning disks, but “may improve SSDs”
○ mentions CFQ scheduler, which is deprecated

@ignatkn

dm-crypt: git archeology
● kcryptd was there from the beginning (2005)

○ only for reads: “it would be very unwise to do decryption in an
interrupt context”

● some queuing was added to reduce kernel stack
usage (2006)

● offload writes to thread and IO sorting (2015)
○ for spinning disks, but “may improve SSDs”
○ mentions CFQ scheduler, which is deprecated

● commits to optionally revert some queuing
○ “same_cpu_crypt” and “submit_from_crypt_cpus” option flags

@ignatkn

dm-crypt: things to reconsider

● most code was added with spinning disks in mind
○ disk IO latency >> scheduling latency

@ignatkn

dm-crypt: things to reconsider

● most code was added with spinning disks in mind
○ disk IO latency >> scheduling latency

● sorting BIOs in dm-crypt probably violates “do one
thing and do it well” Unix principle
○ the task for the IO scheduler

@ignatkn

dm-crypt: things to reconsider

● most code was added with spinning disks in mind
○ disk IO latency >> scheduling latency

● sorting BIOs in dm-crypt probably violates “do one
thing and do it well” Unix principle
○ the task for the IO scheduler

● kcryptd may be redundant as modern Linux Crypto
API is asynchronous by itself
○ remove offloading the offload

@ignatkn

dm-crypt: cleanup

@ignatkn

Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers

filesystem

cryptd
kcryptd_io

kcryptd

dmcrypt_write

write

read

@ignatkn

dm-crypt (synchronous)
filesystem

dm-crypt

block device drivers

encrypt decrypt

write BIO read BIO

encrypted BIOs

@ignatkn

dm-crypt (synchronous)
filesystem

dm-crypt

block device drivers

encrypt decrypt
Sync Linux
Crypto API

write BIO read BIO

encrypted BIOs

@ignatkn

dm-crypt: removing queues

● dm-crypt module: a simple patch, which bypasses all
queues/async threads based on a new runtime flag

@ignatkn

dm-crypt: removing queues

● dm-crypt module: a simple patch, which bypasses all
queues/async threads based on a new runtime flag

● Linux Crypto API is a bit more complicated
○ by default specific implementation is selected dynamically based

on priority
○ aes-ni synchronous implementation is marked as “internal”
○ aes-ni (FPU) is not usable in some interrupt contexts

@ignatkn

dm-crypt: removing queues

● dm-crypt module: a simple patch, which bypasses all
queues/async threads based on a new runtime flag

● Linux Crypto API is a bit more complicated
○ by default specific implementation is selected dynamically based

on priority
○ aes-ni synchronous implementation is marked as “internal”
○ aes-ni (FPU) is not usable in some interrupt contexts

● xtsproxy: a dedicated synchronous aes-xts module

@ignatkn

xtsproxy crypto API module
aes-xts proxy

@ignatkn

xtsproxy crypto API module
aes-xts proxy

Is FPU
available?

@ignatkn

xtsproxy crypto API module
aes-xts proxy

Is FPU
available?

__xts-aes-aesni

yes

@ignatkn

xtsproxy crypto API module
aes-xts proxy

Is FPU
available?

__xts-aes-aesni xts(ecb(aes-generic))

yes no

@ignatkn

xtsproxy crypto API module
aes-xts proxy

Is FPU
available?

__xts-aes-aesni xts(ecb(aes-generic))

yes no

@ignatkn

Test setup: sequential IO
$ sudo fio --filename=/dev/mapper/secure
--readwrite=readwrite --bs=4k rw.job

@ignatkn

Test setup: sequential IO
$ sudo fio --filename=/dev/mapper/secure
--readwrite=readwrite --bs=4k rw.job

$ sudo modprobe xtsproxy

@ignatkn

Test setup: sequential IO
$ sudo fio --filename=/dev/mapper/secure
--readwrite=readwrite --bs=4k rw.job

$ sudo modprobe xtsproxy

$ sudo dmsetup table secure --showkeys | sed
's/aes-xts-plain64/capi:xts-aes-xtsproxy-plain64/' |
sed 's/$/ 1 force_inline/' | sudo dmsetup reload
secure

@ignatkn

Test setup: sequential IO
$ sudo fio --filename=/dev/mapper/secure
--readwrite=readwrite --bs=4k rw.job

$ sudo modprobe xtsproxy

$ sudo dmsetup table secure --showkeys | sed
's/aes-xts-plain64/capi:xts-aes-xtsproxy-plain64/' |
sed 's/$/ 1 force_inline/' | sudo dmsetup reload
secure

$ sudo dmsetup suspend secure && sudo dmsetup resume
secure

@ignatkn

ramdisk: read throughput

@ignatkn

ramdisk: read throughput

inline enabled

@ignatkn

ramdisk: write throughput

@ignatkn

ramdisk: write throughput

inline enabled

@ignatkn

ssd: IO latency (iowait) ● ssd disk
● dm-crypt device

@ignatkn

ssd: IO latency (iowait)

inline enabled

● ssd disk
● dm-crypt device

Conclusions

@ignatkn

Conclusions

● a simple patch which may improve dm-crypt
performance by 200%-300%
○ fully compatible with stock Linux dm-crypt
○ can be enabled/disabled in runtime without service disruption

@ignatkn

Conclusions

● a simple patch which may improve dm-crypt
performance by 200%-300%
○ fully compatible with stock Linux dm-crypt
○ can be enabled/disabled in runtime without service disruption

● modern crypto is fast and cheap
○ performance degradation is likely elsewhere

@ignatkn

Conclusions

● a simple patch which may improve dm-crypt
performance by 200%-300%
○ fully compatible with stock Linux dm-crypt
○ can be enabled/disabled in runtime without service disruption

● modern crypto is fast and cheap
○ performance degradation is likely elsewhere

● extra queuing may be harmful on modern low
latency storage

@ignatkn

Caveats and future work

● the patch improves performance on small block
size/high IOPS workloads
○ >2MB block size shows worse performance

@ignatkn

Caveats and future work

● the patch improves performance on small block
size/high IOPS workloads
○ >2MB block size shows worse performance

● the whole setup assumes hardware-accelerated
crypto
○ xtsproxy supports x86 only

@ignatkn

Caveats and future work

● the patch improves performance on small block
size/high IOPS workloads
○ >2MB block size shows worse performance

● the whole setup assumes hardware-accelerated
crypto
○ xtsproxy supports x86 only

● your mileage may vary
○ always measure and compare before deployment
○ let us know the results

@ignatkn

Links

● https://gitlab.com/cryptsetup/cryptsetup

● http://man7.org/linux/man-pages/man8/dmsetup.8.html

● https://github.com/cloudflare/linux

https://gitlab.com/cryptsetup/cryptsetup
http://man7.org/linux/man-pages/man8/dmsetup.8.html
https://github.com/cloudflare/linux

Questions?

