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$ whoami

● Performance and security at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming
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Encryption at rest layers

storage hardware

block subsystem

filesystems

applications

SED, OPAL

LUKS/dm-crypt, 
BitLocker, 
FileVault

ecryptfs,
ext4 encryption 

or fscrypt

DBMS, PGP, 
OpenSSL,

Themis
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Storage hardware encryption
Pros:
● it’s there
● little configuration needed
● fully transparent to applications
● usually faster than other layers

Cons:
● no visibility into the implementation
● no auditability
● sometimes poor security
https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071

https://support.microsoft.com/en-us/help/4516071/windows-10-update-kb4516071
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Block layer encryption
Pros:
● little configuration needed
● fully transparent to applications
● open, auditable

Cons:
● requires somewhat specialised crypto
● performance issues
● encryption keys in RAM
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Filesystem layer encryption
Pros:
● somewhat transparent to applications
● open, auditable
● more fine-grained
● more choice of crypto + potential integrity support

Cons:
● performance issues
● encryption keys in RAM
● complex configuration
● unencrypted metadata
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Application layer encryption
Pros:
● open, auditable
● fine-grained
● full crypto flexibility

Cons:
● encryption keys in RAM
● requires explicit support in code and configuration
● unencrypted metadata
● full crypto flexibility



LUKS/dm-crypt
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dm-crypt (idealized)
filesystem

dm-crypt

block device drivers

encrypt decrypt
Linux 

Crypto API

write BIO read BIO

encrypted BIOs



dm-crypt benchmarking
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Test setup: RAM-based encrypted disk

$ sudo modprobe brd rd_nr=1 rd_size=4194304
$ echo '0 8388608 delay /dev/ram0 0 0' | 
sudo dmsetup create plain
$ sudo cryptsetup luksFormat 
/dev/mapper/plain
$ sudo cryptsetup open --type luks 
/dev/mapper/plain secure
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test storage stack

Test storage stack

ramdisk

plain: dm-delay

secure: dm-crypt

optional
(0 delay)
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Test setup: sequential reads

$ cat rw.job
[iotest]

direct=1

gtod_reduce=1

loops=1000000

iodepth=16
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Test setup: sequential reads

$ sudo fio --filename=/dev/mapper/plain 
--readwrite=read --bs=4k rw.job
...

   READ: io=21134MB, aggrb=1876.1MB/s
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Test setup: sequential reads

$ sudo fio --filename=/dev/mapper/plain 
--readwrite=read --bs=4k rw.job
...

   READ: io=21134MB, aggrb=1876.1MB/s
$ sudo fio --filename=/dev/mapper/secure 
--readwrite=read --bs=4k rw.job
...

   READ: io=3261.8MB, aggrb=318.6MB/s
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Test setup: sequential reads

$ sudo cryptsetup benchmark -c aes-xts
# Tests are approximate using memory only (no 
storage IO).

#  Algorithm | Key |  Encryption |  Decryption

     aes-xts   256b  1854.7 MiB/s  1904.5 MiB/s
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Test setup: sequential reads

$ sudo cryptsetup benchmark -c aes-xts
# Tests are approximate using memory only (no 
storage IO).

#  Algorithm | Key |  Encryption |  Decryption

     aes-xts   256b  1854.7 MiB/s  1904.5 MiB/s

desired: ~900 MB/s, actual: ~300 MB/s
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We tried...

● switching to different cryptographic algorithms
○ aes-xts seems to be the fastest (at least on x86)

● experimenting with dm-crypt optional flags
○ “same_cpu_crypt” and “submit_from_crypt_cpus”

● trying filesystem-level encryption
○ much slower and potentially less secure
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Ask the community

“If the numbers disturb you, then this is from lack of 
understanding on your side. You are probably unaware 
that encryption is a heavy-weight operation...“

https://www.spinics.net/lists/dm-crypt/msg07516.html

https://www.spinics.net/lists/dm-crypt/msg07516.html
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But actually...

“Using TLS is very cheap, even at the scale of Cloudflare. 
Modern crypto is very fast, with AES-GCM and P256 
being great examples.”

https://blog.cloudflare.com/how-expensive-is-crypto-anyway/

https://blog.cloudflare.com/how-expensive-is-crypto-anyway/
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queues vs latency

“A significant amount of tail latency is 
due to queueing effects”

https://www.usenix.org/conference/srecon19asia/presentation/plenz

https://www.usenix.org/conference/srecon19asia/presentation/plenz
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Crypto APIdm-crypt
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dm-crypt: git archeology
● kcryptd was there from the beginning (2005)

○ only for reads: “it would be very unwise to do decryption in an 
interrupt context”

● some queuing was added to reduce kernel stack 
usage (2006)

● offload writes to thread and IO sorting (2015)
○ for spinning disks, but “may improve SSDs”
○ mentions CFQ scheduler, which is deprecated

● commits to optionally revert some queuing
○ “same_cpu_crypt” and “submit_from_crypt_cpus” option flags
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dm-crypt: things to reconsider

● most code was added with spinning disks in mind
○ disk IO latency >> scheduling latency

● sorting BIOs in dm-crypt probably violates “do one 
thing and do it well” Unix principle
○ the task for the IO scheduler

● kcryptd may be redundant as modern Linux Crypto 
API is asynchronous by itself
○ remove offloading the offload
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dm-crypt: cleanup
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Crypto APIdm-crypt

dm-crypt: life of an encrypted BIO request

block device drivers
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dm-crypt (synchronous)
filesystem

dm-crypt

block device drivers

encrypt decrypt
Sync Linux 
Crypto API

write BIO read BIO

encrypted BIOs
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dm-crypt: removing queues

● dm-crypt module: a simple patch, which bypasses all 
queues/async threads based on a new runtime flag

● Linux Crypto API is a bit more complicated
○ by default specific implementation is selected dynamically based 

on priority
○ aes-ni synchronous implementation is marked as “internal”
○ aes-ni (FPU) is not usable in some interrupt contexts

● xtsproxy: a dedicated synchronous aes-xts module
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xtsproxy crypto API module
aes-xts proxy

Is FPU 
available?

__xts-aes-aesni xts(ecb(aes-generic))

yes no
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$ sudo modprobe xtsproxy

$ sudo dmsetup table secure --showkeys | sed 
's/aes-xts-plain64/capi:xts-aes-xtsproxy-plain64/' | 
sed 's/$/ 1 force_inline/' | sudo dmsetup reload 
secure



@ignatkn

Test setup: sequential IO
$ sudo fio --filename=/dev/mapper/secure 
--readwrite=readwrite --bs=4k rw.job

$ sudo modprobe xtsproxy

$ sudo dmsetup table secure --showkeys | sed 
's/aes-xts-plain64/capi:xts-aes-xtsproxy-plain64/' | 
sed 's/$/ 1 force_inline/' | sudo dmsetup reload 
secure

$ sudo dmsetup suspend secure && sudo dmsetup resume 
secure
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Conclusions

● a simple patch which may improve dm-crypt 
performance by 200%-300%
○ fully compatible with stock Linux dm-crypt
○ can be enabled/disabled in runtime without service disruption

● modern crypto is fast and cheap
○ performance degradation is likely elsewhere

● extra queuing may be harmful on modern low 
latency storage
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Caveats and future work

● the patch improves performance on small block 
size/high IOPS workloads
○ >2MB block size shows worse performance

● the whole setup assumes hardware-accelerated 
crypto
○ xtsproxy supports x86 only

● your mileage may vary
○ always measure and compare before deployment
○ let us know the results
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Links

● https://gitlab.com/cryptsetup/cryptsetup

● http://man7.org/linux/man-pages/man8/dmsetup.8.html

● https://github.com/cloudflare/linux

https://gitlab.com/cryptsetup/cryptsetup
http://man7.org/linux/man-pages/man8/dmsetup.8.html
https://github.com/cloudflare/linux


Questions?


