DNSSEC: what every sysadmin should know to keep things working

Roland van Rijswijk - Deij
roland.vanrijswijk@surfnet.nl
About SURFnet

• National Research and Education Network (NREN)

• Founded in 1986

• > 11000km dark-fibre network

• Shared ICT innovation centre

• > 160 connected institutions
 ± 1 million end users
DNSSEC: recap in 1 slide

• Plain DNS does not allow you to check the authenticity or integrity of a message

• DNSSEC adds this using digital signatures

• DNSSEC has two perspectives:
 - Domain owners sign their zone and publish the signed zone on their authoritative name servers
 - Querying hosts validate the digital signatures they receive in answers, along a chain of trust
You are most likely using EDNS0

- **EDNS0 (RFC 2671)**
 - is an extension to DNS that allows for additional flags and large(r) DNS answers over UDP
 - is enabled by default in most modern DNS servers
And if you use EDNS0, you are probably asking for DNSSEC

• EDNS0 introduces the “DNSSEC OK” flag (DO)
 - if set in a query, indicates that the querying host wants to receive DNSSEC information if available
 - again, enabled by default on most modern DNS servers

![Graph showing DNSSEC OK percentage]
So it’s likely you’re using DNSSEC

• Even if you never specifically asked for DNSSEC, it is likely your recursive name servers (resolvers) are in the ±70% of hosts that have it enabled.

• EDNS0 & DNSSEC OK are enabled by default in:
 – BIND 9.x (DNSSEC OK on by default from 9.5 and up)
 – Unbound
 – Microsoft Windows Server 2008R2
 – Microsoft Windows Server 2012
 – that covers the vast majority of DNS servers on the planet
One of the options set in an EDNS0 query is the maximum UDP payload size.

- RFC 2671 defines this as: \textit{the number of octets of the largest UDP payload that can be reassembled and delivered in the sender's network stack}.
- The default value for most servers is 4096 bytes.
- \(\pm 90\%\) of hosts we see use the default value.
So what?

• Recapping: ±70% of querying hosts use EDNS0 and ask for DNSSEC data, 90% of those hosts ask for answers as large as 4096 bytes by default.

• As an indication:

 $ \text{dig +dnssec +bufsize=4096 MX comcast.net}

 ...

 ;; MSG SIZE rcvd: 3229

• That will get fragmented into 3 packets!
Why fragmentation is a problem

1. Recursive caching name server sends a query to the firewall. The firewall passes the query, and the buffer size is 4096 bytes. The authoritative name server responds.

2. The firewall receives the first fragment of the response, but not the second. The recursive caching name server times out the ICMP fragment reassembly time-out.

3. The firewall receives the first fragment of the response, but not the second. The recursive caching name server times out the ICMP fragment reassembly time-out.
So why are fragments blocked?

• In the 1990s there was a host of fragment-related attacks (remember the ping-of-death, anyone?)

• Many vendors still have outdated KB-articles and HOWTO’s floating around

• Some security auditors force people to block fragments, or worse, to block TCP on port 53
 – Not based on proven security issues, but based on “gut feeling” (it used to be bad in the past so it must still be bad)
Extent of the problem

- 9% of all internet hosts may have problems receiving fragmented UDP messages [1];
- 2% – 10% of all resolving name servers experience problems receiving fragmented DNS responses [2]

What you should do on your resolver

• Make sure you know the maximum packet size you can receive

• Use tools like the DNS-OARC reply-size tester
 – https://www.dns-oarc.net/oarc/services/replysizetest

• Reconfigure your firewall not to block fragments
 – e.g. older Cisco firewalls block DNS UDP >512 bytes + frags by default (!)

• Make sure you don’t block TCP port 53!
But I operate a signed zone...

• If you operate a DNSSEC signed zone, servers sending you queries may suffer from this problem...

• You want to be/stay resolvable, right?

• Luckily, there are some things you can do

• Let’s dive into some resolver behaviour
Resolver experiments (1)
Normal operations

Response time (ms.)

<table>
<thead>
<tr>
<th></th>
<th>Windows Server 2012</th>
<th>Unbound</th>
<th>BIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (ms.)</td>
<td>109</td>
<td>83</td>
<td>105</td>
</tr>
<tr>
<td>Response (>me)</td>
<td>150</td>
<td>388</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>281</td>
<td>785</td>
<td>687</td>
</tr>
</tbody>
</table>

SURFnet: we make innovation work
Resolver experiments (2)
Blocking fragments

Response time (ms.) [0/5 altered Authoritative Name Servers]

Windows Server 2012
Unbound
BIND

Time x10 (!)
Time x2
Time x100+ (!!!)

[24,195;12,167]
\[\bar{x} = 17,787 \]

4.463
3.435
2.524
1.175
760
465
Resolver experiments (3)
Max. resp. size on 1 authNS

Response time (ms.) [1/5 altered Authoritative Name Servers]

Max. = 16,162
Resolver experiments (4)
Max. resp. size on 2 authNS

Response time (ms.) [2/5 altered Authoritative Name Servers]
Experiment on live authNS

<table>
<thead>
<tr>
<th>Traffic (IPv4 + IPv6)</th>
<th>Normal Operations</th>
<th>Max. response size 1232 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmented responses</td>
<td>28.9%</td>
<td>0.0%*</td>
</tr>
<tr>
<td>Fragment receiving resolvers</td>
<td>57.3%</td>
<td>0.0%*</td>
</tr>
<tr>
<td>Truncated UDP responses</td>
<td>0.8%</td>
<td>0.9%</td>
</tr>
<tr>
<td>ICMP FRTE messages</td>
<td>5649/h</td>
<td>< 1/h*</td>
</tr>
<tr>
<td>ICMP FRTE sending resolvers</td>
<td>1.3%</td>
<td>0.0%*</td>
</tr>
<tr>
<td>Total retries</td>
<td>25.8%</td>
<td>25.5%</td>
</tr>
</tbody>
</table>

*Statistically significant difference between experiments
Rise in truncated answers

• Experiment:
 - Querying 995 zones in .com, .edu, .mil, .net and .nl
 - All zones are signed and have a www-node
 - Results:

<table>
<thead>
<tr>
<th>Max. response</th>
<th>A for www</th>
<th>AAAA for www</th>
<th>DNSKEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1472</td>
<td>1.8%</td>
<td>1.8%</td>
<td>8.1%</td>
</tr>
<tr>
<td>1232</td>
<td>2.9%</td>
<td>3.5%</td>
<td>40.0%</td>
</tr>
</tbody>
</table>

So what can you do?

- If you use BIND: set “minimal-responses: yes”
- If you use NSD, make sure you use NSD ≥ 3.2.9

- Or: limit the maximum response size
 - Works well, as demonstrated in previous slides
 - BIND: set “edns-udp-size”
 - Windows Server: change “MaximumUdpPacketSize” in registry
 - Do this only on some of your authoritative servers
 - Choose a value below the PMTU (e.g. 1472 or 1232 bytes)
 - And make sure your server can be reached over TCP!
And now for something completely different
DNS(SEC) amplification

Small query + Big response = amplification

Query big record, spoof sender = 10.11.12.13

Attacker

Victim (IP 10.11.12.13)

Big response victim didn't ask for
$ tcpdump -n -v -i en0 host xxxx
...
11:00:19.411981 IP (... proto UDP (17), length 68)
...
11:00:19.430637 IP (... proto UDP (17), length 1500)
 xxxx.53 > yyyy.55023: 36075$ 3/6/29 comcast.net. MX ...
11:00:19.430640 IP (... length 1500)
 xxxx > yyyy: udp
11:00:19.430641 IP (... length 297)
 xxxx > yyyy: udp

Send: 68 bytes, recv: 3297 bytes, amp. ≈ 48.5x !
DNS(SEC) amplification is on the rise

• Our CERT team sees both abuse of our name servers as well as the attack being used against us and our constituency

• Seems to be popular among “evildoers”

• Hasn’t gotten any better with the introduction of DNSSEC (larger answers!) but was already a problem with plain old DNS
A small (?) example

- Attack against some infrastructure we host:

Yes, that really is 38 Gigabits/s
Another example: abuse of our authoritative name servers

±10K queries per second

Outbound traffic before filtering

Inbound traffic not very high
What can you do?

• Only real solution: implement BCP38
 – BCP38 = ingress filtering; only allow traffic into your network from end points with valid addresses
 --> http://tools.ietf.org/html/bcp38

• We actively monitor attacks and filter them

• Rate limiting DNS is being advocated a lot lately
 – Preliminary patch for BIND
 – Plans to implement in NSD
 – But can affect legitimate traffic, so be careful (!)
Conclusions

• It is very likely that you are using DNSSEC one way or another

• You may need to take action to make sure things keep working smoothly; DNSSEC is here to stay, the number of signed zones is on the rise

• We need to keep an eye out for “evil” behaviour that abuses DNS(SEC)
More information

SURFnet DNSSEC blog: https://dnssec.surfnet.nl/