
How Double-Fetch Situations turn
into Double-Fetch Vulnerabilities:
A Study of Double Fetches in the Linux Kernel

Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, Steve Dodier-Lazaro

Centre for Research on Evolution, Search and Testing
University College London

College of Computer
National University of Defense Technology, China

OUTLINE

• What is a double fetch？

• A static pattern-based double fetch analysis.

• Results and Findings.

Double Fetch
First Appearance - Fermin J. Serna, CVE-2008-2252

Double Fetch
First Study: Jurczyk & Coldwind - 2013

Double Fetch
Exploit Instructions on GitHub - 2016

Double Fetch Vulnerabilities Today:
Where are they?

• Linux had double fetch vulnerabilities,
but no dedicated audit has been done.

• We need a static analysis to cover the
complete kernel including all drivers(44%).

Bochspwn
Weakness

Is dynamic, slow and limited code coverage.

Did not show why double fetches happen.

Only workable for Windows.

Cannot analyze driver code without hardware.

Operating Systems:
Separate Address Spaces

Kernel

User
Space …User

Space
User

Space

• Each user process has its own
virtual memory space

• User spaces are isolated.

• Only the kernel can access all
user spaces.

Operating Systems:
System Call Interface

• Fundamental Interface between
application and kernel

• Arguments are copied
• either directly or
• as pointers to data structures

• The kernel cannot trust any data coming
from the application!

Kernel

User
Space

Syscall

Anatomy of a Double Fetch

204832

Transfer Functions in Linux

• Linux uses dedicated functions to
copy data between user and kernel space:

• Data in user space is not accessed directly:
Ensures that the access is valid.

get_user(src)
copy_from_user(dst, src, size)
put_user(dst)
copy_to_user(dst, src, size)

Double-fetch bug in Linux (CVE-2016-5728)
522 static int mic_copy_dp_entry(...) {

...
533 if (copy_from_user(&dd, argp, sizeof(dd))) {

...
536 return -EFAULT;
537 }
546 dd_config = kmalloc(mic_desc_size(&dd), GFP_KERNEL);
547 if (dd_config == NULL) {

...
return -ENOMEM;

}
552 if (copy_from_user(dd_config, argp, mic_desc_size(&dd))) {
553 ret = -EFAULT;

...
557 }
570 for (i = sizeof(struct mic_bootparam);
571 i < MIC_DP_SIZE - mic_total_desc_size(dd_config);
572 i += mic_total_desc_size(devp)) {
573 devp = mdev->dp + i;
574 ...
577 }
578 }

...
591 memcpy(devp, dd_config, mic_desc_size(dd_config));

...
597 }

Allocate buffer
use ‘size’ from first fetch

Use ‘size’ from
second fetch

Static Pattern-Based Approach

Pattern-based Double Fetch Analysis
Based on Coccinelle (Julia Lawall, LIP6 – France)

Program matching and transformation engine
used for Linux checking

Developed two analyses:
1. A simple analysis to

identify double-fetch situations
2. A refined analysis to

discover double-fetch bugs

Pattern-based Double Fetch Analysis

ble fetch can be located by matching the patterns of fetch
operations, the use of the fetched data varies a lot. For
example, in addition to being used for validation, the first
fetched value can be possibily copied to somewhere else
for later use, which means the first use (or check) could
be temporally absent. Besides, the fetched value can be
passed as an argument to other functions for further use.
Therefore, in this paper, we define the use in a double
fetch to be a conditional check (read data for compar-
ison), an assignment to other variables, a function call
argument pass, or a computation using the fetched data.
We need to take into consideration these double fetch
characteristics.

For these reasons, identifying double-fetch bugs re-
quires a dedicated analysis and previous approaches are
either not applicable or not effective.

2.4 Coccinelle
Coccinelle [17] is a program matching and transforma-
tion engine with a dedicated language SmPL (Seman-
tic Patch Language) for specifying desired matches and
transformations in C code. Coccinelle was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.

Since Coccinelle’s strategy for traversing control-flow
graphs is based on temporal logic CTL (Computational
Tree Logic) [3], and the pattern matching implemented
on Coccinelle is path-sensitive, which achieves better
code coverage. Coccinelle is highly optimized to im-
prove performance when exhaustively traversing all the
execution paths. Besides, Coccinelle is insensitive to
newlines, spaces, comments, etc. Moreover, the pattern-
based analysis is applied directly to the source code,
therefore operations that are defined as macros, such as
get_user() or __get_user(), will not be expanded
during the matching, which facilitates the detection of
double fetches based on the identification of transfer
function. Therefore, Coccinelle is the perfect tool for us
to carry out our study of double fetches based on pattern
matching.

3 Double Fetches in the Linux Kernel

In this paper, our study of double fetches in the Linux
kernel is divided into two phases. As shown in Figure 4,
in the first phase, we analyze the Linux kernel with the
Coccinelle engine using a basic double-fetch pattern that
identifies when a function has multiple invocations of a
transfer function. Then we manually investigate the can-
didate files found by the pattern matching, to categorize
the scenarios in which a double fetch occurs and when
a double-fetch bug or vulnerability is prone to happen
based on the context information that is relevant to the

Source
FilesSource
Files

Coccinelle
Matching
Engine

Source
FilesCandidate
Files

void function_name(*src)
{
copy_from_user(dst1, src, len1)
...
copy_from_user(dst2, src, len2)

}
Manual
Analysis

Rule 0 : Basic pattern
Rule 1 : No pointer change
Rule 2 : Pointer aliasing
Rule 3 : Explicit type conversion
Rule 4 : Combination of element

fetch and pointer fetch
Rule 5 : Loop involvement

Bug Details

Categorization

Phase 1: Basic Pattern

Phase 2: Refined Pattern
Source
FilesDouble
Fetch

Context
Information

Trigger &
Consequence

Figure 4: Overview of our Two-Phase Coccinelle-Based
Double-Fetch Situation Detection Process

bug. In the second phase, based on the knowledge gained
from the manual analysis, we developed a more precise
analysis using the Coccinelle engine to systematically
detect double-fetch bugs and vulnerabilities throughout
the kernel, which we also used to additionally analyze
FreeBSD and Android.

3.1 Basic Pattern Matching Analysis
There are situations in which a double fetch is hard to
avoid, and there exist a large number of functions in the
Linux kernel that fetch the same data twice. According
to the definition, a double fetch can occur in the kernel
when the same user data is fetched twice within a short
interval. Therefore we can conclude a basic pattern that
we will use to match all the potential double-fetch sit-
uations. The pattern matches the situation in which a
kernel function is using transfer functions to fetch data
from same user memory region at least twice. In the
case of the Linux kernel, the transfer functions to match
are mainly get_user() and copy_from_user() in all
their variants. The pattern allows the target of the copy
and the size of the copied data to be different, but the
source of copy (the address in user space) must be the
same. As shown in Figure 4, we implemented the basic
pattern matching in the Coccinelle engine.

Our approach examines all source code files of the
Linux kernel and checks whether a kernel function con-
tains two or more invocations of transfer functions that
fetch data from the same user pointer. From the 39,906
Linux source files, 17,532 files belong to drivers (44%),
and 10,398 files belong to non-x86 hardware architec-
tures (26%). We manually analyzed the matched ker-
nel functions to infer knowledge on the characteristics of
double fetches, i.e., how the user data is transferred to
and used in the kernel, which helped us to carry out a
categorization of double-fetch situations, as we discuss
in Section 3.2. The manual analysis also helped us refine
our pattern matching approach and more precisely detect
actual double-fetch bugs, as explained in Section 3.3.

5

Manual Analysis

• How user data is transferred and used in the
kernel

• Trigger and consequence
Characteristics

• Context information
• Implementation details
• Add rules to refine the pattern

Details at C
code level

• Size Checking
• Type Selection
• Shallow Copy

Categorization

Categorization – Size Checking, Type Selection

Header

struct header(*ptr)
{
unsigned int size;
unsigned type;
...

}hdr;

User
Msg content

*ptr

copy_from_user(hdr, ptr, sizeof(header));
...
buf = kalloc(hdr.size)
...
copy_from_user(buf, ptr, hdr.size);
...

Size
Checking

copy_from_user(hdr, ptr, sizeof(header));

switch(hdr.type){
case 1:
copy_from_user()
...

case 2:
copy_from_user()
...

default:
...

}

Type
Selection

Size
Checkin

g

Type
Selection

Categorization – Shallow Copy
Msg is shallow copied to kernel

Get Element

msg’

int

Get Msg

char * m

*ptr

 msg

unsigned int len First Buffer

Second Buffer

Copy from user
again to get element

User Msg

Refined Double Fetch Detection

Source
Code Files

Double-
Fetch Bug

trans_func(dst1, src)
...

trans_func(dst2, src)

Rule 0 Rule 2

Rule 1

Rule 4

Rule 3

for(i=0; i<c; i++){
trans_func(dst1, src[i])
...
trans_func(dst2, src[i])

}

trans_func(dst1, src)
...

when != src = src+ offset
when != src += offset
when != src ++
when != src = ptr
...

trans_func(dst2, src)

trans_func(dst1, src)
...

trans_func(dst2, (T)src)

trans_func(dst1, (T1)src)
...

trans_func(dst2, (T2)src)

trans_func(dst1, src)
...

p = src
...

trans_func(dst2, p)

Refined Rule-based Pattern Matching

Rule 5

trans_func(dst1, ptr->len)
...

trans_func(dst2, ptr)

trans_func(dst1, msg.len)
...

trans_func(dst2, &msg)

Figure 9: Refined Coccinelle-Based Double-Fetch Bug
Detection

81 use the same length sccb->length, line 81 actually
uses the value as copied in 74 (the second fetch) while
line 74 uses the value from the first fetch.

Again, this is a double-fetch bug as a user may have
changed the value between the two fetches in lines 68
and 74. However, this double-fetch bug is not causing a
vulnerability because neither can the kernel be crashed
by an invalid size given to a transfer function, nor can
information leakage occur when the kernel copies back
data beyond the size that it received earlier because the
copied buffer is located in its own memory page. An
attempt to trigger the bug will simply end in termination
of the system call with an error code in line 82. The
double-fetch bug has been eliminated in Linux 4.6.

3.3 Refined Double-Fetch Bug Detection
In this section, we present the second phase of our study
which uses a refined double-fetch bug detection approach
that is again based on the Coccinelle matching engine.
While the first phase of our study was to identify and cat-
egorize scenarios in which double fetches occur, the sec-
ond phase exploited the gained knowledge from the first
phase to design an improved analysis targeted at specifi-
cally identifying double-fetch bugs and vulnerabilities.

As shown in Figure 9, in addition to the basic double-
fetch pattern matching rule (Rule 0), which is trig-
gered when two reads fetch data from the same source
location, we added the following five additional rules
to improve precision as well as discover corner cases.
The Coccinelle engine applies these rules one by one
when analyzing the source files. A double-fetch bug
could involve different transfer functions, therefore,
we have to take the four transfer functions that copy
data from user space (get_user(), __get_user(),
copy_from_user(), __copy_from_user()) into con-

sideration. We use trans_func() in Figure 9 to repre-
sent any possible transfer functions in the Linux kernel.

Rule 1: No pointer change. The most critical rule in
detecting double-fetch bugs is keeping the user pointer
unchanged between two fetches. Otherwise, false posi-
tives can be caused. As can be seen from Rule 1 in Fig-
ure 9, this change might include cases of self-increment
(++), adding an offset, or assignment of another value,
and the corresponding subraction situations.

Rule 2: Pointer aliasing. Pointer aliasing is common
in double-fetch situations. In some cases, the user pointer
is assigned to another pointer, because the pointer might
be changed when processing long messages, while using
two pointers is more convenient, one for checking the
data, and the other for using the data. As can be seen
from Rule 2 in Figure 9, this kind of assignment might
appear at the beginning of a function or in the middle
between the two fetches. Missing aliasing situation could
cause false negtives. In addition, pointer assignments are
usually combined with explicit pointer type conversions.

Rule 3: Explicit type conversion. Explicit pointer
type conversion is widely used when the kernel is fetch-
ing data from user space. For instance, in the size check-
ing scenario, a message pointer would be converted to a
header pointer to get the header in the first fetch, then
used again as a message pointer in the second fetch. As
can be seen from Rule 3 in Figure 9, any of the two
source pointers could involve type conversion. Missing
type conversion situations could cause false negtives.

Rue 4: Combination of element fetch and pointer
fetch. In some cases, a user pointer is used to both
fetch the whole data structure as well as fetching only
a part by dereferencing the pointer to an element of
the data structure. For instance, in the size check-
ing scenario, a user pointer is first used to fetch the
message length by get_user(len, ptr->len), then
to copy the whole message in the second fetch by
copy_from_user(msg, ptr, len), which means the
two fetches are not using exactly the same pointer as
the transfer function arguments, but they cover the same
value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation covers both pointer arguments and
the address of the data structure. This situation usually
appears with explicit pointer type conversion, and false
negtives could be caused if this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in each it-
eration of a loop, the second fetch of the last iteration and
the first fetch of the next iteration will be matched. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-

9

Basic rule Pointer aliasing Pointer & element

No pointer change Explicit type
conversion

Loop involvement

Results and Findings

Evaluation - Basic Double Fetch Analysis

• Most double fetches don’t cause double-fetch bugs.
• Double fetches are more likely to occur in drivers.

• About 63% (57 out of 90) of the cases were driver related.
• About 80% (4 out of 5) of the true double-fetch bugs inside drivers.

value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation may use a user pointer or the address
of the data structure as the argument of the transfer func-
tions. This situation usually appears with explicit pointer
type conversion, and false negatives could be caused if
this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in a loop,
the second fetch of the last iteration and the first fetch of
the next iteration will be matched as a double fetch. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-
ations and these two fetches are getting di↵erent values.
Moreover, cases that use an array to copy di↵erent values
inside a loop also cause false positives.

4 Evaluation

In this section, we present the evaluation of our study,
which includes two parts: the statistics of the manual
analysis, and the results of the refined approach when
applied to three open source kernels: Linux, Android,
and FreeBSD. We obtained the most up-to-date versions
available at the time of the analysis.

4.1 Statistics and Analysis
In Linux 4.5, there are 52,881 files in total and 39,906 of
them are source files (with a file extension of .c or .h),
which are our analysis targets (other files are ignored).
17,532 source files belong to drivers (44%). After the
basic pattern matching of the source files and the man-
ual inspection to remove false positives, we obtained 90
double-fetch candidate files for further inspection. We
categorized the candidates into the three double-fetch
scenarios Size Checking, Type Selection and Shallow
Copy. They are the most common cases on how a double
fetch occurs while user space data is copied to the kernel
space and how the data is then used in the kernel. We
have discussed these scenarios in detail with real double-
fetch bug examples in the previous section. As shown
in Table 1, of the 90 candidates we found, 30 were re-
lated to the size checking scenario, 11 were related to the
type selection scenario, and 31 were related to the shal-
low copy scenario, accounting for 33%, 12%, and 34%
respectively. 18 candidates did not fit into one of the
three scenarios.

Furthermore, 57 out of the 90 candidates were part of
Linux drivers and among them, 22 were size checking re-
lated, 9 were type selection related and 19 were shallow
copy related.

Table 1: Basic Double Fetch Analysis Results
Category Occurrences In Drivers

Size Checking 30 33% 22 73%
Type Selection 11 12% 9 82%
Shallow Copy 31 34% 19 61%
Other 18 20% 7 39%
Total 90 100% 57 63%

True Bugs 5 6% 4 80%

Table 2: Refined Double-Fetch Bug Detection Results

Kernel Total
Files

Reported
Files

True
Bugs

Size
Check.

Type
Sel.

Linux 4.5 39,906 53 5 23 6
Android 6.0.1 35,313 48 3 18 6
FreeBSD 32,830 16 0 8 3

Most importantly, we found five previously unknown
double-fetch bugs which include four size checking sce-
narios and one shallow copy scenario which also be-
longs to the size checking scenario. Three of them are
exploitable vulnerabilities. The five bugs have been re-
ported and they all have been confirmed by the develop-
ers and have meanwhile been fixed. From the statistical
result, we can observe the following:

1. 57 out of 90 (63%) of the candidates were driver
related and 22 out of 30 (73%) of the size checking
cases, 9 out of 11 (82%) of the type selection cases
and 19 out of 31 (61%) of the shallow copy cases
occur in drivers.

2. 4 out of 5 (80%) of the double-fetch bugs we found
inside drivers and belong to the size checking cate-
gory.

Overall, this leads to the conclusion that most double
fetches do not cause double-fetch bugs and that double
fetches are more likely to occur in drivers. However, as
soon as a double fetch is due to size checking, developers
have to be careful: Four out of 22 size checking scenarios
in drivers turned out to be double-fetch bugs.

4.2 Analysis of Three Open Source Kernels
Based on the double fetch basic pattern matching and
manual analysis, we refined our double fetch pattern
and developed a new double-fetch bug detection analysis
based on the Coccinelle engine. In order to fully evalu-
ate our approach, we analyzed three popular open source
kernels, namely Linux, Android, and FreeBSD. Results
are shown in Table 2.

Evaluation – Refined Detection

• Totally 6 bugs found:
• 5 new bugs in newest Linux kernel 4.5.
• 2 shared between Android and Linux.
• 1 bug only showed in Android.
• No bug found in FreeBSD.

value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation may use a user pointer or the address
of the data structure as the argument of the transfer func-
tions. This situation usually appears with explicit pointer
type conversion, and false negatives could be caused if
this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in a loop,
the second fetch of the last iteration and the first fetch of
the next iteration will be matched as a double fetch. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-
ations and these two fetches are getting di↵erent values.
Moreover, cases that use an array to copy di↵erent values
inside a loop also cause false positives.

4 Evaluation

In this section, we present the evaluation of our study,
which includes two parts: the statistics of the manual
analysis, and the results of the refined approach when
applied to three open source kernels: Linux, Android,
and FreeBSD. We obtained the most up-to-date versions
available at the time of the analysis.

4.1 Statistics and Analysis
In Linux 4.5, there are 52,881 files in total and 39,906 of
them are source files (with a file extension of .c or .h),
which are our analysis targets (other files are ignored).
17,532 source files belong to drivers (44%). After the
basic pattern matching of the source files and the man-
ual inspection to remove false positives, we obtained 90
double-fetch candidate files for further inspection. We
categorized the candidates into the three double-fetch
scenarios Size Checking, Type Selection and Shallow
Copy. They are the most common cases on how a double
fetch occurs while user space data is copied to the kernel
space and how the data is then used in the kernel. We
have discussed these scenarios in detail with real double-
fetch bug examples in the previous section. As shown
in Table 1, of the 90 candidates we found, 30 were re-
lated to the size checking scenario, 11 were related to the
type selection scenario, and 31 were related to the shal-
low copy scenario, accounting for 33%, 12%, and 34%
respectively. 18 candidates did not fit into one of the
three scenarios.

Furthermore, 57 out of the 90 candidates were part of
Linux drivers and among them, 22 were size checking re-
lated, 9 were type selection related and 19 were shallow
copy related.

Table 1: Basic Double Fetch Analysis Results
Category Occurrences In Drivers

Size Checking 30 33% 22 73%
Type Selection 11 12% 9 82%
Shallow Copy 31 34% 19 61%
Other 18 20% 7 39%
Total 90 100% 57 63%

True Bugs 5 6% 4 80%

Table 2: Refined Double-Fetch Bug Detection Results

Kernel Total
Files

Reported
Files

True
Bugs

Size
Check.

Type
Sel.

Linux 4.5 39,906 53 5 23 6
Android 6.0.1 35,313 48 3 18 6
FreeBSD 32,830 16 0 8 3

Most importantly, we found five previously unknown
double-fetch bugs which include four size checking sce-
narios and one shallow copy scenario which also be-
longs to the size checking scenario. Three of them are
exploitable vulnerabilities. The five bugs have been re-
ported and they all have been confirmed by the develop-
ers and have meanwhile been fixed. From the statistical
result, we can observe the following:

1. 57 out of 90 (63%) of the candidates were driver
related and 22 out of 30 (73%) of the size checking
cases, 9 out of 11 (82%) of the type selection cases
and 19 out of 31 (61%) of the shallow copy cases
occur in drivers.

2. 4 out of 5 (80%) of the double-fetch bugs we found
inside drivers and belong to the size checking cate-
gory.

Overall, this leads to the conclusion that most double
fetches do not cause double-fetch bugs and that double
fetches are more likely to occur in drivers. However, as
soon as a double fetch is due to size checking, developers
have to be careful: Four out of 22 size checking scenarios
in drivers turned out to be double-fetch bugs.

4.2 Analysis of Three Open Source Kernels
Based on the double fetch basic pattern matching and
manual analysis, we refined our double fetch pattern
and developed a new double-fetch bug detection analysis
based on the Coccinelle engine. In order to fully evalu-
ate our approach, we analyzed three popular open source
kernels, namely Linux, Android, and FreeBSD. Results
are shown in Table 2.

The Confirmed Bugs

•MIC VOP (Virtio Over PCIe) driver
•Linux-4.5/drivers/misc/mic/host/mic_virtio.cCVE-2016-5728

•IBM (z-Series) s390 platform driver
•Linux-4.5/drivers/s390/char/sclp_ctl.cCVE-2016-6130

•Auditing subsystem
•Linux-4.5/kernel/auditsc.cCVE-2016-6136

•Expose the Chrome OS Embedded Controller to user-space
•Linux-4.5/drivers/platform/chrome/cros_ec_dev.cCVE-2016-6156

•The aacraid driver (adds support for AdaptecRAID controllers)
•Linux-4.5/drivers/scsi/aacraid/commctrl.cCVE-2016-6480

•File system
•Android-6.0.1/fs/fhandle.cCVE-2015-1420

Findings

Double fetches have a long history
• Windows, Linux, Android, FreeBSD
• Some double-fetch bugs existed over 10 years (CVE-2016-6480).

Some double fetches are inevitable
• Size checking, type selection, shallow copy
• Size checking is more likely to cause true bugs (5/6)

Benign double fetches are not all safe
• Can turn into harmful ones by code update (CVE-2016-5728).
• Can cause performance issue.

Conclusion
• Double fetches occur in operating systems and can cause bugs

and vulnerabilities.

• With a static pattern-matching analysis, we analyzed the complete
kernel (all drivers) and categorized bug prone scenarios.

• We found 6 true bugs (vulnerabilities), all have been confirmed by
the maintainers and patched already.

Pengfei Wang E-mail: pfwang@nudt.edu.cn
National University of Defense Technology, China
Jens Krinke E-mail: j.krinke@ucl.ac.uk
University College London, UK

