
Dead Store Elimination (Still)
Considered Harmful

Zhaomo Yang1, Brian Johannesmeyer1, Anders Trier Olesen2,
Sorin Lerner1 and Kirill Levchenko1

1 UC San Diego
2 Aalborg University

Motivation
- Concerns over memory disclosure vulnerabilities in C and C++ programs

have led developers to explicitly scrub sensitive data from memory.

- However, Dead Store Elimination (DSE) removes stores that have no effect
on the program result.

- Security-conscious developers have been aware of this phenomenon and
have devised ways to circumvent it.

Outline
Goal. Understanding the current state of the dead store elimination problem and
developers’ attempts to circumvent it.

Existing Techniques. A survey of existing techniques used to scrub memory
found in open source security projects.

Case Studies. An analysis of eleven projects to understand the use of
memory scrubbing in real world programs.

Our solutions. A single best-of-breed scrubbing function and a
scrubbing-safe dead store elimination optimization pass.

Existing Techniques
For each technique, I will first describe how it is intended to work, its availability on
different platforms, and its effectiveness.

We rate the effectiveness of a technique on a three-level scale:

● Effective. Guaranteed to work (barring flaws in implementation).
● Effective in practice. Works with all compilation options and on all the

compilers we tested (GCC, Clang, and MSVC), but is not guaranteed in
principle.

● Flawed. Fails in at least one configuration.

Existing Techniques: Platform-Supplied Functions
Platform-supplied scrubbing functions that guarantee the desired behavior:

- SecureZeroMemory (on Windows)
- explicit_bzero (on OpenBSD and NetBSD and in glibc)

● Used in: Kerberos’s zap, Libsodium’s sodium_memzero, Tor’s
memwipe, Libsodium’s sodium_memzero, Tor’s memwipe,
OpenSSH’s explicit_bzero.

● Availability: only on certain platforms or in certain versions of a
specific library

● Effectiveness: effective

Existing Techniques: Platform-Supplied Functions
The latest C standard (ISO/IEC 9899-2011) introduced memset_s, declared as

memset_s is considered as a secure version of memset because

- It does some runtime checking of its parameters, and
- Calls to it can never be optimized out.

Existing Techniques: Platform-Supplied Functions
Possible reasons for the absence of implementation of memset_s:

- memset_s is part of the optional Annex K
- In addition, C11 treats all the functions in the Annex K as a unit. That is, if a C

library wants to implement memset_s in a standard-conforming fashion, it has
to implement all of the functions defined in this annex.

- Library developers also argued that some functions are poorly designed
[1].

[1] https://sourceware.org/ml/libc-alpha/2014-12/msg00506.html

Existing Techniques: Using -fno-builtin-memset
In a thread that requests a glibc implementation of memset_s, a glibc developer
suggested the requester to use the -fno-builtin-memset option instead [1].

[1] https://sourceware.org/bugzilla/show_bug.cgi?id=17879

Existing Techniques: Using -fno-builtin-memset
How developers expect it to work:

- To improve performance, compilers replaces calls to memset with its built-in
equivalent.

- Compilers only knows the semantics of the built-in memset, not the memset
from the C standard library.

Why this technique is not guaranteed to work (in theory):

- Disabling the built-in memset does not prevent the compiler from knowing the
semantics of the C library memset, which is specified by the C standard.

Existing Techniques: Using -fno-builtin-memset
Why this technique is not guaranteed to work (in practice):

Staring from glibc >= 2.3.4, when the optimization level > O0 and the macro
_FORTIFY_SOURCE > 0, the fortified version of memset is enabled, regardless
of whether -fno-builtin-memset is used or not.

Existing Techniques: Using -fno-builtin-memset

parameter
checking

Existing Techniques: Using -fno-builtin-memset

Existing Techniques: Using -fno-builtin-memset
In summary:

This technique is flawed not only in theory but also in practice.

● Availability: Widely available
● Effectiveness: flawed

Existing Techniques

Hiding Semantics. If the compiler doesn’t recognize that an operation is clearing
memory, it will not remove it.

Hiding Semantics: Separate Compilation
The simplest way to hide the semantics from the compiler is to implement the
scrubbing operation in a separate compilation unit.

zap.c

aes.c

des.c

cbc.c

zap.c from Kerberos

Hiding Semantics: Separate Compilation
How developers expect it to work:

Defining the scrubbing function in a separate compilation unit will prevent the
compiler from inlining and understanding it in the calling function.

When it is not guaranteed to work:

When Link-Time Optimization (LTO) is enabled, this technique will not work.

Link-Time Optimization (LTO)
Link-Time Optimization (LTO) can merge all compilation units into one and then
perform regular optimizations (including DSE) on the single compilation unit.

With LTO enabled, such a scrubbing function can be inlined in a calling function,
and the call to memset will be subject to DSE.

Hiding Semantics: Separate Compilation
How developers expect it to work:

Defining the scrubbing function in a separate compilation unit will prevent the
compiler from inlining and understanding it in the calling function.

Why it is not guaranteed to work:

When Link-Time Optimization (LTO) is enabled, this technique will not work.

● Used in: Kerberos’ zap
● Availability: Universal
● Effectiveness: flawed

Existing Techniques: Volatile Function Pointer
OPENSSL_cleanse (since OpenSSL 1.0.2) is one of the implementations based
on this idea.

Existing Techniques: Volatile Function Pointer
How developers expect it to work:

- The call to memset via a volatile function pointer is a volatile access, which
the compiler cannot optimize out.

Why it is not guaranteed to work:

- This behavior is not guaranteed by the C standard.

Existing Techniques: Volatile Function Pointer
The C11 standard defines an object of volatile-qualified type as follows:

“An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3.
Furthermore, at every sequence point the value last stored in the object shall agree with that
prescribed by the abstract machine, except as modified by the unknown factors mentioned
previously. What constitutes an access to an object that has volatile-qualified type is
implementation-defined.”

In summary,

- A compliant compiler cannot optimize out any volatile access.
- A compliant compiler is free to decide what constitutes a volatile access.

Existing Techniques: Volatile Function Pointer

Line 5 consists of two steps:

- Reading the volatile pointer memset_func
- Calling the function pointed by memset_func

Existing Techniques: Volatile Function Pointer
In theory, such a compiler may inline each call to OPENSSL_cleanse as:

● Used in: OpenSSL 1.0.2’s OPENSSL_cleanse (also used in Tor
and Bitcoin); OpenSSH’s explicit_bzero, quarkslab’s memset_s

● Availability: Universal
● Effectiveness: effective in practice

Existing Techniques

Forcing Memory Writes. Attempts to force the compiler to include the scrubbing
operation without hiding its nature.

Existing Techniques: Pointer To Volatile Char
A popular way to force the compiler to perform a store is using a pointer to
volatile char.

Existing Techniques: Pointer To Volatile Char
How developers expect it to work:

- Memory writes via pointer to volatile char p are volatile access, which the
compiler cannot optimize out.

Why it is not guaranteed to work:

- This behavior is not guaranteed by the C standard.

Is accessing a non-volatile object via a pointer to volatile char a volatile access?

Existing Techniques: Pointer To Volatile Char

● Used in: sodium_memzero from Libsodium, insecure_memzero from
Tarsnap, wipememory from Libgcrypt, SecureWipeBuffer from
Crypto++, burn from Cryptography Coding Standard, ForceZero from
wolfSSL, sudo_memset_s from sudo, and CERT’s C99-compliant solution.

● Availability: Universal
● Effectiveness: effective in practice

Existing Technique: Using memory barrier
GCC supports a memory barrier expressed using an inline assembly statement.

According to GCC’s documentation, the clobber argument "memory" tells the
compiler that the inline assembly statement may read or write memory that is not
specified in the input or output arguments.

clobber argument

Forcing Memory Writes: Using memory barrier
memzero_explicit from Linux uses memory barrier to force writes

● Used in: zap from Kerberos, memzero_explicit from Linux.
● Availability: GCC and Clang.
● Effectiveness: effective

How difficult to create a reliable scrubbing function

GCC’s documentation indicates that the following inline assembly should work as
a memory barrier. In practice, it does work with GCC.

Since Clang also supports barriers with the same syntax, and in general it mimics
GCC’s behaviors, one would expect that the barrier above would also work with
Clang.

How difficult to create a reliable scrubbing function
However, it does not work with Clang.

A more reliable and portable memory barrier is shown below (which is also used
used in memzero_explicit):

Reliable

Unreliable with
CLang

Outline
Goal. Understanding the current state of the dead store elimination problem and
developers’ attempts to circumvent it.

Existing Techniques. A survey of existing techniques used to scrub memory
found in open source security projects.

Case Studies. An analysis of eleven security projects to determine whether
a memory scrubbing function is available, effective, and used consistently.

Our solutions. A single best-of-breed scrubbing function that combines the
most reliable techniques found in use today, and a scrubbing-safe dead store
elimination optimization pass.

Case Studies
To understand the use of memory scrubbing in practice, we examined the eleven
open source libraries and applications: NSS, OpenVPN, Kerberos, Libsodium,
Tarsnap, Libgcrypt, Crypto++, Tor, Bitcoin, OpenSSH and OpenSSL.

For each project, we set out to determine whether a memory scrubbing function is
available, effective and used consistently.

Case Studies: Methodology
Our methodology consists of two parts:

● we manually analyzed each project to determine whether a memory
scrubbing function is available and whether it is effective.

● we instrumented the Clang 3.9 compiler to report instances of dead store
elimination where a write is eliminated because the memory location is not
used afterwards. For each project, we used this compiler to determine
whether the memory scrubbing function was effective and used consistently.

Case Studies: Results

Case Studies: Results

Case Studies: Results

zap from Kerbros

Case Studies: Results

invert_key from Libgcrypt

Case Studies: Discussion
Our case studies lead us to two observations.

● There is no single accepted scrubbing function. Each project mixes its
own cocktail using existing scrubbing techniques, some of which are flawed or
unreliable

● Even when a project has a reliable scrubbing function, the developers may
not use it consistently.

Our Solutions
● Library-based solution. secure_memzero
● Compiler-based solution. Scrubbing-aware DSE

Our Solutions: Library-based solution
Library-based solution. secure_memzero

- This function combines the effective scrubbing techniques we found in a
simple implementation.

- Developers can specify an order of preference in which an implementation will
be chosen by defining macros.

- We have released our implementation into the public domain, and we plan to
keep our implementation updated to ensure it remains effective as compilers
evolve.

https://compsec.sysnet.ucsd.edu/secure_memzero.h

https://compsec.sysnet.ucsd.edu/secure_memzero.h

Our Solutions: Compiler-based solution
Compiler-based solution. Scrubbing-aware DSE

This DSE pass considers a memory write satisfying the following conditions as a
scrubbing operation:

● The stored value is a constant,
● The number of bytes stored is a constant, and
● The store is subject to elimination because the variable is about to be out of

scope without being read

Conclusion
● We surveyed the existing solutions to circumvent the dead store elimination

problem.
● Our case studies show that real world programs still have unscrubbed

sensitive data, due to incorrect implementation of scrubbing function as well
as from developers simply forgetting to use the secure scrubbing function.

● To solve the problem, we developed a scrubbing-aware DSE pass that
preserves all scrubbing operations and secure_memzero, a best-of-breed
scrubbing function.

Questions

