Oscar: A Practical
Page-Permissions-Based Scheme for
Thwarting Dangling Pointers

Thurston Dang?, Petros Maniatis?, David Wagner?

lUniversity of California, Berkeley
’Google Brain

IIIIIIIIIIIIIIIIIIIIII



Overview

Provides heap temporal memory safety for C/C++
with lowest overhead of any published scheme
and no source code required

1. Temporal memory safety

IIIIIIIIIIIIIIIIIIIIII



Temporal memory safety

aFuncPtr = malloc(..);

IIIIIIIIIIIIIIIIIIIIII



Temporal memory safety

Grouch () {
aFuncPtr = malloc(..);

&Grouch; // At 0x05CADA

*aFuncPtr

O5CADAOO®O

free (aFuncPtr);

userName = malloc(..);
fgets(..); // Type in &Elmo (0xE11770)

IIIIIIIIIIIIIIIIIIIIII



Temporal memory safety

ch(){

fre () {

IIIIIIIIIIIIIIIIIIIIII



Overview

Provides heap temporal memory safety for C/C++
with lowest overhead of any published scheme
and no source code required

2. Design Goals

IIIIIIIIIIIIIIIIIIIIII



Design Goals

* No requirement for source code
* Deterministic protection

* Compatibility with typecasts, pointer
arithmetic, and other common programming
idioms

* Low runtime and memory overhead

IIIIIIIIIIIIIIIIIIIIII



Overview

Provides heap temporal memory safety for C/C++
with lowest overhead of any published scheme
and no source code required

3. Defenses

IIIIIIIIIIIIIIIIIIIIII



What do these schemes do?

How can we put them in a
common framework?

IIIIIIIIIIIIIIIIIIIIII



abFuncPtr

aFuncPtr

IIIIIIIIIIIIIIIIIIIIII

Toy example

malloc(..);

someObject

10



abFuncPtr
callback

aFuncPtr

callback

Berkeley

UNIVERSITY OF CALIFORNIA

Toy example

malloc(..);
somelFuncPtr;

someObject

11



Scheme 1: lock-and-key schemes (change lock)
e.g., CETS

aFuncPtr = malloc(..); // Change lock

callback = someFuncPtr;

lock:42

aFuncPtr

someObject

callback
1f (callback key != callback lock)

abort ()
free (aFuncPtr);

Berkeley .

UNIVERSITY OF CALIFORNIA



Scheme 1: lock-and-key schemes (change lock)
e.g., CETS

aFuncPtr = malloc(..); // Change lock

callback = someFuncPtr;

lock:43

aFuncPtr

someObject

callback
1f (callback key != callback lock)

abort ()

free (aFuncPtr);
userName = malloc (..);
// Change lock

Berkeley -

UNIVERSITY OF CALIFORNIA




Scheme 1: lock-and-key schemes (change lock)
e.g., CETS

aFuncPtr = malloc(..); // Change lock
callback

aFuncPtr s
s someObject

callback key != callback lock)
£ ()

someluncPtr;

lock:43

free (aFuncPtr);
userName = malloc (..);

userName // Change lock
Berkeley FEvzE ’

UNIVERSITY OF CALIFORNIA




Scheme 2: lock-and-key schemes (revoke keys)
[works, but slow]

aFuncPtr = malloc(..);
callback

aFuncPtr s

key:- -
: s someObject

callback key != callback lock)
£ ()

someluncPtr;

lock:42

free (aFuncPtr);
// Revoke keys for

userName // aFuncPtr and callback

E&%k§k§7|@yﬂ2 userName = malloc (..); "



Scheme 3: dangling pointer nullification
e.g., DangNull, FreeSentry, DangSan

aFuncPtr = malloc(..);
callback = someFuncPtr;

aFuncPtr

someObject

callback

// No pointer dereference checks

// added
free (aFuncPtr);

Berkeley

UNIVERSITY OF CALIFORNIA

16



Scheme 3: dangling pointer nullification
e.g., DangNull, FreeSentry, DangSan

aFuncPtr = malloc(..);
callback = someFuncPtr;

aFuncPtr

someObject

callback

// No pointer dereference checks
// added

free (aFuncPtr);
aFuncPtr = NULL;

callback = NULL;

Berkeley

UNIVERSITY OF CALIFORNIA



Scheme 3: dangling pointer nullification
e.g., DangNull, FreeSentry, DangSan

abFuncPtr
callback

aFuncPtr

= malloc(..);

= someluncPtr;

-
-
-
-
-,
-
-
-
-
-
-,
-
-,
-
.
-
-
Ca aC ’

// No pofnter dereference checks

Berkeley

UNIVERSITY OF CALIFORNIA

// added

userName

someObject

free (aFuncPtr);

aFuncPtr = NULL;
callback = NULL;
userName = malloc

(...

) ;

18



Software *ptr checks

Hardware *ptr checks

lock:42

someFuncPtr Q

callback

someObject

key:-

Works,
but slow

userName

Revoke the keys

Key = pointer
Revoke keys %L[[lfy pointers

callback gf

someObject

DangNull
FreeSentry
DangSan

userName

erkeley

UNIVERSITY OF CALIFORNIA

19



Software *ptr checks

“Hardware *ptr checks >

Key = pointer
Revoke keys = pullify pointers

someObject

DangNull
FreeSentry
— DangSan

someFuncPtr ~\e

key:42
_____ someObject

Change the@ Revoke the keys

UNIVERSITY OF CALIFORNIA

Object = lock
Change the lock = ??7?

Pagé?e?s ons-
based schemes

20



Recall that objects are accessed via
virtual addresses

 We can mark a virtual
page as inaccessible

— 4KB-page granularity

— Many objects per page

IIIIIIIIIIIIIIIIIIIIII

21



Scheme 4: page table protections
e.g., Electric Fence, PageHeap

* One object per page

o ...
Physical page
frames | | |

Berkeley .

IIIIIIIIIIIIIIIIIIIIII




Scheme 4: page table protections
e.g., Electric Fence, PageHeap

* One object per page

= NN
~' b b= b ]

e Drawbacks:

— Inefficient use of physical memory (+ cache)

— Many system calls (to update virtual page mappings)
— TLB pressure

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Scheme 4+: page table protections revisited
e.g., Dhurjati & Adve

Aliased virtual page 1

* Drawbacks:
n affici :
physicalmemory
— Many system calls (to
update aliased page
mappings)
— TLB pressure

Aliased virtual page 2

Aliased virtual page 3

Canonical virtual page

Physical page frame

Berkeley »

IIIIIIIIIIIIIIIIIIIIII



Dealing with freed objects

* Vanilla approach keeps memory
mappings (PROT NONE) for
“freed” objects

X memory leak (vm_area structs)

* Dhurjati & Adve use “automatic pool
allocation”

X requires source code analysis

x can suffer from long-lived pools

IIIIIIIIIIIIIIIIIIIIII

25



Software *ptr Hardware *ptr checks
——+—checks
g
)
=
Q
E
2
Page-permissions-based schemes e.g.,
%‘) Electric Fence, PageHeap, Dhurjati & Adve
O
o Theoretically: best approach
Y Conventional wisdom: impractical
0o
©
e
5 Oscar

IIIIIIIIIIIIIIIIIIIII

26



Overview

Provides heap temporal memory safety for C/C++
with lowest overhead of any published scheme

and no source code required

4. Our scheme and compatibility improvements

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Our Design

* Builds upon core idea of page permissions
with aliased virtual pages, with:

a) no requirement for source code

b) less stateholding of kernel metadata for
freed objects

c) better compatibility with fork()
d) optimizations to reduce runtime overhead

IIIIIIIIIIIIIIIIIIIIII



Handling long-lived applications (b)

 We keep a high water mark for
allocations

— will never allocate new objects in
address space of old objects

* Lower memory overhead: no
vm_area structs for freed objects

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Correct semantics for fork() (c)

* We need “MAP_SHARED” to create aliases

 Unwanted “side-effect”: parent and child will
share physical memory

Virtual ‘ parent: parent:
addresses aliasl alias2

o ‘
frames trash”

— To our knowledge, not discussed in prior work

* We solve this with a fork() wrapper that weans

the child from the parent’s physical frames
Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Making large allocations faster (d)

* We need MAP_SHARED to create aliases

* Another unwanted side-effect of
MAP_SHARED: slows down some programs

— e.g., on ‘mcf’, this has ~30% overhead
* Very large objects are placed by malloc() on
their own physical page frames

— i.e., no aliases required
* We use MAP_PRIVATE for those large objects

n ‘mcf’: < 1% overhead

Berke

IIIIIIIIIIIIIIIIIIIIII



Reducing syscalls by refreshing aliases (d)

syscall: create alias

syscall: destroy alias

— ‘ syscall: refresh alias

syscall: create alias

syscall: destroy alias

- ‘ syscall: refresh alias

syscall: create alias

syscall: destroy alias

— ‘ syscall: refresh alias

}

syscall: create alias

Berkel y'

UNIVERSITY OF CALIFORNIA

32



Overview

Provides heap temporal memory safety for C/C++
with lowest overhead of any published scheme
and no source code required

5. Empirical and theoretical evaluation

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Overhead vs. CETS* (2010)

40%

30%

20%

10%

0%

*actually, SoftBoundCETS temporal-only, which is faster than CETS

2R 9/
JL /0

31.8%

3.7%

Runtime overhead Memory overhead

M CETS (reported) M Oscar

N.B. CETS includes stack use-after-free protection
Berkeley Memory overhead not reported by CETS ”

IIIIIIIIIIIIIIIIIIIIII



Overhead vs. FreeSentry (2015)

40% 34.0%

30%
18%

20%

10% -

4.2%

Runtime overhead Memory overhead

0% -

M FreeSentry (reported) M Oscar
Memory overhead not reported by FreeSentry

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Overhead vs. DangNull (2015)

160%
° 127%
110%
. 16%
10% -
Runtime overhead Memory overhead
-40%

B DangNull (reported) M Oscar
N.B. DangNull provides weaker protection (pointers stored on heap)

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Overhead vs. DangSan (2017)

150% 140%

100%

0o, | 41.0%40.5%

Runtime overhead Memory overhead

B DangSan (reported) M Oscar
DangSan and Oscar report all non-Fortran SPEC CPU2006 benchmarks

Berkeley .

IIIIIIIIIIIIIIIIIIIIII



Oscar’s runtime overhead, memory overhead
(and VMA exhaustion: not shown) are correlated

450

perlbench

400
/ ¢ omnetpp

/ Allocation-intensive

( @ xalancbmk

Not alloc \

w
(O
o

w
o
o

N
(%)
o

Runtime overhead (%)
N
o
(@)

o Lintensive ~
160
0 e, / Special
¢ @ sphinx3
O ﬁ“l ’ T T T T T T T 1 case
] 50 100 150 200 250 300 350
0 Memory overhead (%) N.B. Baseline memory

usage is “45MB

* Apps with few malloc calls generally have low
runtime overhead, low memory overhead,

IIIIIIIIIIIIIIIIIIIIII



Intuition

e Oscar’s overhead is proportional to the
number of objects

— other classes of schemes have memory and
runtime overhead proportional to the number of
pointers or pointer operations

e Oscar doesn’t need nor instrument the source
code, so it avoids edge cases (e.g., typecasts)

— other classes of schemes need source and have
some compatibility issues

IIIIIIIIIIIIIIIIIIIIII



Additional details in paper

 Sources of overhead

* Server support: fork(), custom memory
allocators

* Theoretical comparison of schemes

IIIIIIIIIIIIIIIIIIIIII



Conclusion

e Oscar provides heap temporal memory safety
for C/C++ with lowest overhead of any
published scheme

— no source code required

* Bring about page-permissions
based schemes to be worthy of
consideration once more

IIIIIIIIIIIIIIIIIIIIII

41



References

 [CETS] NAGARAKATTE, S. G. Practical low-overhead enforcement of
memory safety for C programs. University of Pennsylvania, 2012. Doctoral
dissertation.

* [DangNull] LEE, B., SONG, C., JANG, Y., WANG, T, KIM, T., LU, L., AND LEE,
W. Preventing Use-after-free with Dangling Pointers Nullification. In NDSS
(2015).

e [DangSan] VAN DER KOUWE, E., NIGADE, V., AND GIUFFRIDA, C. DangSan:
Scalable Use-after-free Detection. In EuroSys (2017), pp. 405-419.

e [Dhurjati & Adve] DHURIJATI, D., AND ADVE, V. Efficiently detecting all
dangling pointer uses in production servers. In Dependable Systems and
Networks (2006), IEEE, pp. 269-280.

» [Electric Fence] Electric Fence.
http://elinux.org/index.php?title=Electric_Fence&oldid=369914, January
2015.

* [FreeSentry] YOUNAN, Y. FreeSentry: protecting against use-after-free
vulnerabilities due to dangling pointers. In NDSS (2015).

 [PageHeap] How to use Pageheap.exe in Windows XP, Windows 2000, and
Windows Server 2003. https://support.microsoft.com/en-us/kb/286470.

Berkeley

UNIVERSITY OF CALIFORNIA



MAP_SHARED

mcf

MAP_PRIVATE

te copy-on-write

IVa

“Create a pr

”

mapping
e ‘perf’ hardware performance counters

43

swil

S9401s-9pou
S9SSIW-940315-9pou
sayad3aja4d-apou
S9sSIW-Y233424d-apou
Speo|-apou
S9SSIW-peo|-apou
Speol-gil!
sossiw-peo|-giL!
$9401s-g11p
S9SSIW-24035-971p
Speo|-d11p
S9sslW-peol-g1.1p

niA

speo|-youeliq
S9SSIW-peo|-youeuq
$91015-)71
S9SSIW-31015-071
sayd1a4a4d-O1
S9sSIW-Y231a4a4d-I17
SPeo|-OT1
S9SSIW-peo|-J7]
Speo|-aydedi-17
S9SSIW-Peo|-aydedl-17]
$94035-9Y2e0p-T7
S9SSIW-240315-9Y2edp-T7]
saydiaja4d-ayoedp-17
*-yd39j94d-ayoeap-17
Speo|-ayoeap-11
S9SSIW-Peo|-aydeIp-17 V/
SERIVEIETEECTT o] %)
S9sSIW-ayded

—~

U

o g=
0

as

LN < on (@ — o

(QIYVHS dVIN "SA) SIUIA3 Jo oney

UNIVERSITY OF CALIFORNIA



