SmartPool: practical decentralized pool mining

Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena
August 18, 2017
Mining pools
Miners’ role in cryptocurrencies

Definition: A cryptocurrency is a decentralized network which maintains a permanent, public ledger. The ledger is called a **blockchain**.

- Bitcoin’s blockchain contains financial transactions.
- Ethereum’s blockchain contains stateful programs called “smart contracts.”

Anonymous *miners* maintain the integrity of the blockchain in exchange for protocol-generated *block rewards*.
The mining process

Miners race to solve a hard, computational problem.

1. The first miner who successfully solves this problem broadcasts his answer to the network.
2. The miner appends a block of new transactions to the blockchain and receives a block reward.
3. The race begins again on top of this new block.

Block Problem: Let $D \geq 0$ be some fixed “difficulty.” Find a nonce such that

$$\text{hash}(\text{block, nonce, data}) \leq D$$

A block satisfying the above property is valid.

Bitcoin block rewards as of August 2017 are 12.5 BTC ($\sim 43,000$ USD).
Pooled mining

The probability of a given miner finding the next block is:

\[
\frac{\text{miner's CPU power}}{\text{network's total mining power}}.
\]

New blocks occur, on average, every 10 minutes on Bitcoin and 15--20 seconds on Ethereum, but:

- an ASIC hardware may take years to mine a single block, and
- most miners prefer more steady income.

Therefore miners “join hands.”

Mining pools:

- share CPU power and rewards among miners,
- reduce reward variance, and
- add security through increased participation.
Measuring pool member contributions

A valid share solves a Block Problem with relaxed difficulty ($d \gg D$).

<table>
<thead>
<tr>
<th>Valid block</th>
<th>hash(block, nonce, data) ≤ D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid share</td>
<td>hash(block, nonce, data) ≤ d</td>
</tr>
</tbody>
</table>

- Every valid block is a valid share.
- d/D fraction of valid shares are valid blocks.
- Pool (roughly) pays d/D block reward per share.
Mining network overview

Pool members must submit shares such that block rewards are payable to pool operator.
Centralization in Bitcoin and Ethereum

95% of Bitcoin’s hash power lies in 10 pools.

80% of Ethereum’s hash power lies in 6 pools.

Bitcoin’s mining power distribution

Ethereum’s mining power distribution
(https://etherscan.io, 28 Jul 2017)
Censorship

Centralized mining pool operators can:

- influence which transactions enter the blockchain,
- control Ethereum’s gas limit,
- inflate gas prices, and
- collude with each other (e.g. selfish mining, 51% attack).

F2Pool Allegedly Prevented Users From Investing in Status ICO

Why are miners not voting the gas limit up?

Submitted 1 month ago by Ignatius_G_Reilly

https://ethstats.net

We are still stuck at 4.7 million, which means enough miners aren’t voting to increase the gas limit.
Other single points of failure

- Geopolitical consolidation
- Pool members must trust their operator to pay fairly for shares
- Protocol upgrades (e.g. failure to activate Segwit)
Decentralized pool operators
Ethereum is a **decentralized platform that runs smart contracts**: applications that run exactly as programmed without any possibility of downtime, censorship, fraud or third party interference.

Diagram credit: Andrew Miller
Turning a smart contract into a pool operator

Miner’s Local environment

GPU1

GPU2

getWork()

Work responded

submitWork()

Pool’s Gateway

Ethereum Blockchain

submitShares

Pool Smart Contract

User’s address

Reward sent when a block mined

Miner uses the pool’s address as the “coinbase” address in their blocks.
SmartPool properties

Unique to SmartPool:

- **Decentralized.** No central point of failure.
- **No censorship.** Individual miners choose shares.
- **Low cost.** Miners pay only Ethereum transaction fees.
- **Trustless, automatic payouts.** Smart contracts eliminate social contracts.

Preserved from traditional mining pools:

- **Low variance.** Miners choose share difficulty.
- **Fair.** All participants receive rewards in proportion to their contributions.
- **Open.** Anyone can join or leave at any time.
- **Anonymous.** Mining addresses are untraceable.
- **Retrofitting.** SmartPool works in Ethereum.
- **No security deposits.** Switch on a computer and start mining!
Protocol idea #1: substitution

What’s wrong with this picture?

- Number of submitted shares is large.
- Ethereum network cannot handle high transaction volume.
- Cost to verify a share on-chain may exceed share reward.
Protocol idea #2: reduce the number of shares

P2Pool’s “sharechain” takes the following approach:

Adjust share difficulty so that shares occurs once every 30 seconds.

This scales poorly: more miners implies greater payout variance.

Other sharechain complications:
- High variance payouts (due to infrequent blocks)
- Many orphan shares (due to short block time)
- Poor security at small scale
- Need to check for redundant shares and incentivize block submission
Protocol idea #3: probabilistically sample shares

Problem: What about duplicate shares?

Solution: Force miners to “sort” their shares using “augmented Merkle trees!”

SmartPool batch submission:

- 4 valid shares
- 2 invalid shares
- Sample one share!
- Get 6 rewards with 4/6 probability
- Get 0 rewards with 2/6 probability
- Error detected
- Passed

Adding invalid shares to submission does not change expected rewards.

\[
\left(\frac{4}{6}\right) \cdot 6 + \left(\frac{2}{6}\right) \cdot 0 = 4\text{ expected rewards}
\]
Augmented Merkle trees
Definition: In a Merkle tree, every child is the hash of its parents.

Data at the root forces commitment at the leaves.
Definition: An *augmented Merkle tree* contains additional min and max values at each non-leaf node where min is the minimum of its parent’s min (and similarly for max).

The root witnesses a “sorting error.”
An augmented Merkle tree is sorted if its leaves occur in strictly ascending order from left to right.

In SmartPool, leaves are shares. **Share batches are ordered by timestamp.**
Submitting share batches in SmartPool

Protocol steps: The Miner and Smart contract interact as follows:

- **M → S:** Root of sorted, augmented Merkle tree (batch submission).
- **S → M:** Request for a random leaf (containing a share).
- **M → S:** Path to leaf.
Security analysis
Sorting error example

Definition: An element x in an array is *out of order* if
- there exists a witness to the left which is greater than or equal to x, or
- there exists a witness to the right which is less than or equal to x.

Example: An array with 4 elements out of order.
Proposition: For any augmented Merkle tree A, the following are equivalent:

(i) A is sorted.

(ii) For every node $x \in A$, the max of x’s left parent is less than the min of x’s right parent.

Definition: A node which satisfies (ii) is called *valid*. A path from a root to a leaf is *valid* if all its constituents are valid. A path which is not *valid* is *invalid*.

Proof:

(i) \Rightarrow (ii): Induction on tree depth.

(ii) \Rightarrow (i): $\text{min}(x)$ takes the minimum among all nodes above x.

(i) \Rightarrow (ii): Induction on tree depth.
Counting sorting errors

Theorem: Let A be an augmented Merkle tree.

(i) If A is sorted, then all paths in A are valid (see previous slide).

(ii) If A is not sorted, then every leaf which is out of order lies on an invalid path.

Corollary: Every augmented Merkle tree has at least as many invalid paths as leaves out of order. In particular, there are at least as many invalid paths as there are duplicate values among the leaves.

Sampling works :)
Attack strategies

An adversary who deviates from intended claim submission behavior does not obtain greater rewards.

- **Block withholding.** Sampling two shares per submission suffices to deter rational miners (with < 50% power) from dropping blocks.
- **Rearrangements.** Permuting leaves does not increase expected profits.
- **Bogus nodes.** Falsifying nodes in the augmented Merkle tree submission does not provide an advantage.
- **Repeating shares across submissions.** Later submissions must have later timestamps.
Implementation
Verifying the unverifiable: Ethash

Problem: Ethereum has a memory-hard proof-of-work puzzle.
- Each Ethash instance queries 64 random elements from a 1GB dataset.
- Smart contract storage costs \(\approx 2,500,000 \) USD per GB (July 2017).
- 1 GB dataset changes every week.
- Infeasible to store dataset on-chain!

Solution: Store the Merkle root of each (precomputable) 1 GB dataset in SmartPool’s smart contract!
- Miners can verify the roots before joining the pool.
- Miner include a “Merkle proof” of the 64 element set in submissions.
Operating in Bitcoin

Ethereum-based SmartPool protocol supports Bitcoin mining.

- Bitcoin “coinbase” transactions specify whom to pay block reward.
- SmartPool shares indicate coinbase payees.
- SmartPool maintains an ever-growing list of recent pairs: (accepted batch, payee Bitcoin address)

- Accepted SmartPool share must reference payees from recent pairs in its coinbase field.
- Recent pairs list updates periodically.
- SmartPool miners submit blocks directly to Bitcoin, and payees from recent pairs receive reward in Bitcoin.
SmartPool is LIVE!

- **ETH mined**: 86 blocks ≈ 2200 USD/day (June - July 2017)
- **SmartPool operating cost**: 0.6% fee (compared to 3% for F2Pool)
- **Number of miners**: 5 (not yet open to public)
- **Hashrate**: 30 GHs (200 mining rigs, 6 GPU each)
- **Ethereum gas cost per submission**: 2.6 million gas
 (gasLimit ≈ 6.7 million, Aug. 2017)
Project website:
http://smartpool.io

Interested in building Web 3.0? TrueBit is hiring! jt@truebit.io