
Vale: Verifying High-Performance
Cryptographic Assembly Code

Barry Bond1, Chris Hawblitzel1, Manos Kapritsos2, K. Rustan M. Leino1,
Jacob R. Lorch1, Bryan Parno3, Ashay Rane4, Srinath Setty1, Laure Thompson5

1Microsoft Research, 2University of Michigan,
3CMU, 4UT Austin, 5Cornell University

1

Cryptography for Information Security

Strong cryptography is critical for security in various domains.

Web traffic Data at rest Cryptocurrency

2

Cryptographic Implementation Requirements

3

Difficult to meet all three goals.

Correct control flow
and free from leakage

and side channels

Fast

Platform-agnostic
& platform-specific

optimizations

Correct

Formally prove that
implementation

matches specification

Secure

4

Verified but slow
crypto implementations

Fast but non-verified
crypto implementations

Result: Crypto implementations usually fall into one of two camps.

Perf gap

5

Verified
implementations

Non-verified
implementation

OpenSSL HACL* [ePrint ‘15] Appel et al.
[ACM TOPLAS ‘15]

sub BODY_00_15 {
 $code .= <<END
 #if __ARM_ARCH__>=7
 @ ldr $t1,[$inp],#4
 #if $i==15
 ...
 #endif
 END
}

C macros for
code specialization

C macros for target
instruction selection

OpenSSL Performance Tricks

6

Assembly code
is a Perl string

Mix of ASM + Perl

@V = (“r4”, “r5”, “r6”, “r7”, “r8”, “r9”, “r10”, “r11”);

for ($i=0; $i<16; $i++) {
 &BODY_00_15($i, @V);
 unshift(@V, pop(@V));
}

Perl variables for
register names

OpenSSL Performance Tricks

Code expansion
using loops

Register selection
using Perl arrays

7

sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<END if ($i<16);
#if __ARM_ARCH__>=7

@ ldr $t1,[$inp],#4
if $i==15

str $inp,[sp,#17*4]
endif

eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
add $a,$a,$t2
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]`

ifndef __ARMEB__
rev $t1,$t1

endif
#else

@ ldrb $t1,[$inp,#3]
add $a,$a,$t2
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16

if $i==15
str $inp,[sp,#17*4]

endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @

Sigma1(e)
#endif
END

8

Result: Code becomes difficult to
understand, debug, and formally
verify for correctness and security.

Flexible framework for writing high-performance,
proven correct and secure assembly code.

Our Contribution: Vale

9

Correct Secure Fast

Vale is a work in progress. Not a complete replacement to OpenSSL.

Flexible Syntax

Vale supports constructs for
expressing functionality as

well as optimizations.

High Assurance

Vale can be used to prove
functional correctness and
correct information flow.

High Performance

Code generated by Vale
matches or exceeds

OpenSSL’s performance.

Our Contribution: Vale

Flexible framework for writing high-performance,
proven correct and secure assembly code.

10

Key Language Constructs in Vale

11

Structured
Control Flow

e.g. if, while,
and procedure

Enable proof
composition

Vary according to
the target platform

Assembly
Instructions

e.g. Mov, Rev, and
AesKeygenAssist

Optimization
Constructs

Customize code
generation

Optimization Using inline if Statements

Vale supports inline if statements, which are evaluated
during code generation, not during code execution.

Useful for selecting instructions and for unrolling loops.

inline if(platform == x86_AESNI) {
 ...
}

Target Instruction Selection
(Platform-dependent optimization)

inline if (n > 0) {
 ...
 recurse(n - 1);
}

Loop Unrolling
(Platform-independent optimization)

12

13

Example
Vale Code

 procedure Incr_By_N(inline n:nat) {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

 Incr_By_N(100);

Example Vale Code

ADD(r5, r5, 1)
ADD(r5, r5, 1)
ADD(r5, r5, 1)
ADD(r5, r5, 1)

...

Total 100 ADD
instructions

14

Example
Vale Code

Expanded
Vale AST

 procedure Incr_By_N(inline n:nat) {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

 Incr_By_N(100);

Example Vale Code

add r5, r5, 1
add r5, r5, 1
add r5, r5, 1
add r5, r5, 1

...

Total 100 ADD
instructions

15

Example
Vale Code

Generated
Assembly Code

 procedure Incr_By_N(inline n:nat) {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

 Incr_By_N(100);

Example Vale Code

Code generated by
Vale matches or

exceeds OpenSSL’s
performance.

Cryptographic Implementation Requirements

16

Fast

Cryptographic Implementation Requirements

Correct

17

Fast

Code generated by
Vale matches or

exceeds OpenSSL’s
performance.

Proof Assistant

Vale Architecture

18

Vale Tool

AST +
Proofs

Crypto Specification

Verified?
(Yes / No)

Crypto code in
Vale language

Lemmas

Machine Semantics
(x86, x64, ARMv7)

Dafny Verifier
(based on Z3 solver)

Vale Architecture

19

Vale Tool

AST +
Proofs

Crypto Specification

Verified?
(Yes / No)

Crypto code in
Vale language

Lemmas

Machine Semantics
(x86, x64, ARMv7)

Or any other proof assistant
e.g. Coq, ACL2, Lean, F*

Vale Architecture

20

Vale Tool

AST +
Proofs

Crypto Specification

Crypto code in
Vale language

Lemmas

Assembly Printer

Assembly
Code

Assembler
(e.g. GAS / MASM)

AST

Machine Semantics
(x86, x64, ARMv7)

Verified?
(Yes / No)

Dafny Verifier
(based on Z3 solver)

21

Vale Tool

AST +
Proofs

Machine Semantics
(x86, x64, ARMv7)

Crypto Specification

Crypto code in
Vale language

Lemmas

Assembly Printer

Assembler
(e.g. GAS / MASM)

Handwritten
Libraries

Trusted
Components

Verified
Components

Untrusted
Components

Verified?
(Yes / No)

Dafny Verifier
(based on Z3 solver)

22

{p} C {q}

23

 procedure Incr_By_N(inline n:nat)
 requires r5+n < 0x1_0000_0000

 {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

Example Vale Code

Pre-Conditions
‘requires’ keyword

{p} C {q}

24

 procedure Incr_By_N(inline n:nat)
 requires r5+n < 0x1_0000_0000
 ensures r5 == old(r5) + n

 {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

Example Vale Code

Pre-Conditions
‘requires’ keyword

Post-Conditions
‘ensures’ keyword

{p} C {q}

25

 procedure Incr_By_N(inline n:nat)
 requires r5+n < 0x1_0000_0000
 ensures r5 == old(r5) + n
 modifies r5
 {
 inline if (n > 0) {
 ADD(r5, r5, 1);
 Incr_By_N(n - 1);
 }
 }

Example Vale Code

Pre-Conditions
‘requires’ keyword

Post-Conditions
‘ensures’ keyword

State Manipulation
‘modifies’ keyword

{p} C {q}

Code is verified before expansion of inline-if statement.

Cryptographic Implementation Requirements

Correct

Vale supports
assertions that are
checked by Dafny

26

Fast

Code generated by
Vale matches or

exceeds OpenSSL’s
performance.

Cryptographic Implementation Requirements

Correct

Vale supports
assertions that are
checked by Dafny

Secure
(Leakage Free)

27

Fast

Code generated by
Vale matches or

exceeds OpenSSL’s
performance.

Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

➔ Residual Program State: Secrets left in registers or memory after
termination of program

Secret Information Leakage

28

Secrets should not leak through:

➔ Digital Side Channels: Observations of program behavior through
cache usage, timing, memory accesses, etc.

Secret Information Leakage

29

Crypto Program

Secret
Input

Output

Public
Input

Should NOT
be correlated

Side Channel
Observations

Information Leakage Specification

Crypto Program

Secret #1

Digital Side Channel
Observations #1

Crypto Program

Secret #2

Digital Side Channel
Observations #2

30

Public Inputs

=

Based on Non-Interference

Information Leakage Specification

31

Based on Non-Interference

 Formally, for a crypto program C,

 ∀ pairs of secrets s1 and s2

 ∀ public values p,

 obs(C, p, s1) = obs(C, p, s2)

32

AST Analyzer

(in the Dafny
language)

AST

Specification

Proof

Output
(Yes / No)

Solution: Verified Analysis

One-Time
Verification

Trustworthy Output
(because of proof)

33

Verified
Leakage
Analyzer

Leakage Free?
(Yes / No)

Verified Leakage Analysis

AES AST / Poly-1305 AST / SHA-256 AST

 procedure foo(public :nat,
 secret :nat) {
 // r5 := secret + 1
 ADD(r5, secret, 1);

 if (r5 < 10) {
 bar();
 }
 }

Step 1: Developer marks regs and mem
 that contain non-secret information.

Leakage Analysis Using Taint Tracking

34

 procedure foo(public :nat,
 secret :nat) {
 // r5 := secret + 1
 ADD(r5, secret, 1);

 if (r5 < 10) {
 bar();
 }
 }

Step 1: Developer marks regs and mem
 that contain non-secret information.

Step 2: Analysis conservatively assumes
 that all other locations contain secrets.

Leakage Analysis Using Taint Tracking

35

 procedure foo(public :nat,
 secret :nat) {
 // r5 := secret + 1
 ADD(r5, secret, 1);

 if (r5 < 10) {
 bar();
 }
 }

Step 1: Developer marks regs and mem
 that contain non-secret information.

Step 2: Analysis conservatively assumes
 that all other locations contain secrets.

Step 3: Analysis tracks secrets through
 registers and memory locations.

Leakage Analysis Using Taint Tracking

36

 procedure foo(public :nat,
 secret :nat) {
 // r5 := secret + 1
 ADD(r5, secret, 1);

 if (r5 < 10) {
 bar();
 }
 }

Leakage Analysis Using Taint Tracking

37

Step 1: Developer marks regs and mem
 that contain non-secret information.

Step 2: Analysis conservatively assumes
 that all other locations contain secrets.

Step 3: Analysis tracks secrets through
 registers and memory locations.

Step 4: Report violation if secret used in
 branch predicate, memory address, or
 as input to variable-latency instruction.

 store [rbx] <- 0

 load rcx <- [rbx]

 store [rbx] <- 0

 store [rax] <- 10

 load rcx <- [rbx]

Problems Caused by Aliasing

Does rcx contain 0 or 10?

Difficult to answer without knowing whether rax = rbx.

38

Alias Analysis is a Difficult Problem

Existing alternatives:

1. Analyze source code in a high level language but compiler may introduce
new side channels.

2. Implement pointer analysis for assembly code but imprecise analysis.

3. Assume no aliases, but this is an unsafe assumption.

Vale is uniquely suited to use a different approach:

Reuse developer’s effort from proof of correctness.

39

Functional verification requires precisely identifying information flow.

Reusing Effort from Proof of Correctness

40

 store [rbx] <- 0

 store [rax] <- 10

 load output <- [rbx]

To prove that output = 0 and not 10, developer should prove that rax ≠ rbx.

‘output’
should be
equal to 0

Specification Implementation

Vale requires the developer to mark memory operands that contain secrets:

Easy for developer since proving correctness requires identifying all information flows.

Since these annotations are checked by the verifier, they are untrusted.

Lightweight Annotations for Memory Taint

41

 load rax <- [rdx] @secret

Cryptographic Implementation Requirements

Correct

Vale supports
assertions that are
checked by Dafny

Secure

42

Vale checks for
leakage via state and
digital side channels.

Fast

Code generated by
Vale matches or

exceeds OpenSSL’s
performance.

Case Studies Using Vale

Using Vale, we developed four verified cryptographic programs:

1. SHA-256 on ARMv7 (ported from OpenSSL)

2. Poly1305 on x64 (ported from OpenSSL)

3. SHA-256 on x86

4. AES-CBC (with AESNI) on x64

After fixing the issues, all four programs were proved correct and secure using Vale.

Discovered leakage on stack.

Confirmed a previously known bug.

43

1. Vale’s specifications + lemmas were reusable across platforms (x86, x64,
ARM).

2. Porting OpenSSL’s Perl tricks required understanding and proving invariants.

Some of OpenSSL’s optimizations were automatically proved by Dafny.

Key Lessons

44

Vale versus OpenSSL: SHA-256

45

x64 assembly code

Throughput
(KBps)

Vale versus OpenSSL: Poly-1305

46

64-bit non-SIMD assembly code

Throughput
(MBps)

Vale versus OpenSSL: AES-CBC-128

47

AES-NI assembly code

Throughput
(MBps)

Vale Leakage Analysis AES CBC Poly1305 1st SHA SHA Port

12 6 5 0.5 6 0.75

48

Verification Effort
In person-months

Tool Development

Crypto Implementations

The Big Picture: Project Everest
Goal: Build and deploy a verified HTTPS stack.

Untrusted Network (TCP, UDP)
49

TLS

Crypto Algorithms
(RSA, ECDH, SHA, etc.)

HTTPS

X.509

Network
Buffers

ASN.1

Servers Clients P2P

Vale’s
contribution

The Big Picture: Project Everest

Research Goals:

● Prove the security of new protocols.

● Make verified systems as fast as unverified systems.

● Defend against advanced threats such as side channels.

● Make verification accessible to non-experts.

50

Conclusion

● Vale is a framework for generating and verifying crypto implementation that is
correct, secure, and fast for arbitrary architectures.

● Vale’s flexible syntax allows writing assembly code that OpenSSL expresses
using ad-hoc Perl scripts, C preprocessor macros, and custom interpreters.

● Vale supports verified analysis of code, e.g., information leakage analysis.

● Vale demonstrates that verified code can be as fast as highly-optimized,
unverified code.

51

Future Work

52

● Verify other crypto implementations and components in the HTTPS stack.

● Build Vale on top of other proof assistants. Ongoing work on using F*.

Vale

A flexible framework for writing high-performance,
proven correct, and proven secure assembly code.

https://github.com/project-everest/vale
https://project-everest.github.io

53

