
On the effectiveness of mitigations
against floating-point timing channels
David Kohlbrenner
Hovav Shacham
UC San Diego

On the effectiveness of mitigations
against floating-point timing channels
David Kohlbrenner
Hovav Shacham
UC San Diego

How effective are

?

Safari CVE-2017-7006
Firefox CVE-2017-5407
Chrome CVE-2017-5107

Safari CVE-2017-7006
Firefox CVE-2017-5407
Chrome CVE-2017-5107

Pixel-stealing attacks on browsers
Using floating-point side-channels

Outline

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

● Conclusions

Background on
pixel-stealing

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

● Conclusions

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private

visual information

Pixel-stealing attacks - Terminology

● Impact*:
○ Attacking page learns pixel

information from target
○ Ex:

■ Bank information
■ Login status
■ Usernames

See Paul Stone’s “Pixel Perfect Timing Attacks with HTML5” * Ask me about history sniffing!

Pixel-stealing attack overview

Pixel-stealing attack overview

Pixel-stealing attack overview

Pixel-stealing attack overview

Pixel-stealing attack overview

See Paul Stone’s “Pixel Perfect Timing Attacks with HTML5” and
Andrysco et al’s “On subnormal floating point and abnormal timing”

Floating point
format and

performance

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

● Conclusions

IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

sign

exponent (8 bits) significand (23 bits +1)

IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

sign

exponent (8 bits) significand (23 bits +1)

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1

IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

sign

exponent (8 bits) significand (23 bits +1)

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1

1

IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand

sign

exponent (8 bits) significand (23 bits +1)

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1

0

IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand

Single precision normal minimum: 1.18e−38 !

sign

exponent (8 bits) significand (23 bits +1)

Floating point performance variation

double-precision SSE scalar division on Intel i5-4460

Floating point performance variation

double-precision SSE scalar division on Intel i5-4460

Floating point performance variation

double-precision SSE scalar division on Intel i5-4460

Floating point performance variation

double-precision SSE scalar division on Intel i5-4460

Floating point performance variation

double-precision SSE scalar division on Intel i5-4460
* Ask me why it is 175 cycles

Summary of floating-point performance variations

Intel i5-4460

● Slow subnormals: Subnormal
operands induce slowdowns

● Fast zero: All zero significands
cause speedups

● Many effects: Analog
combinations of previous effects

Using floats for
pixel-stealing

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

● Conclusions

Pixel-stealing attack overview

Pixel-stealing attack overview

feConvolveMatrix as a target

Input Pixel (copied)

Kernel

feConvolveMatrix as a target

Input Pixel (copied)

Kernel X

feConvolveMatrix as a target

Input Pixel (copied)

Kernel X

feConvolveMatrix as a target

Input Pixel (copied)

Kernel X

feConvolveMatrix as a target

Input Pixel (copied)

KernelX

Pixel-stealing on 3
major browsers

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

○ Browsers

○ Escort

● Conclusions

Safari

● No response to previous attacks
● feConvolveMatrix still a target

Safari

● No response to previous attacks
● feConvolveMatrix still a target

● Attack modifications
○ Frame counting
○ Pixel-expansion

Safari

● No response to previous attacks
● feConvolveMatrix still a target

● Attack modifications
○ Frame counting
○ Pixel-expansion

● Most stable of all attacks!

Firefox

● Switch to fixed-point in Firefox 28
○ feConvolveMatrix no longer vulnerable

Firefox

● Switch to fixed-point in Firefox 28
○ feConvolveMatrix no longer vulnerable

● We can use other filters!
○ feSpecularLighting

○ Not ported to fixed point yet

Firefox lighting code - Core loop

 int32_t sourceIndex = y * sourceStride + x;
 int32_t targetIndex = y * targetStride + 4 * x;

 Point3D normal = GenerateNormal(sourceData, sourceStride,
 x, y, mSurfaceScale,
 aKernelUnitLengthX, aKernelUnitLengthY);

 IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
 Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
 Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
 Point3D rayDir = mLight.GetVectorToLight(pt);
 uint32_t color = mLight.GetColor(lightColor, rayDir);

Firefox lighting code - Core loop

 int32_t sourceIndex = y * sourceStride + x;
 int32_t targetIndex = y * targetStride + 4 * x;

 Point3D normal = GenerateNormal(sourceData, sourceStride,
 x, y, mSurfaceScale,
 aKernelUnitLengthX, aKernelUnitLengthY);

 IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
 Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
 Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
 Point3D rayDir = mLight.GetVectorToLight(pt);
 uint32_t color = mLight.GetColor(lightColor, rayDir);

Firefox lighting code - Core loop

 int32_t sourceIndex = y * sourceStride + x;
 int32_t targetIndex = y * targetStride + 4 * x;

 Point3D normal = GenerateNormal(sourceData, sourceStride,
 x, y, mSurfaceScale,
 aKernelUnitLengthX, aKernelUnitLengthY);

 IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
 Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
 Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
 Point3D rayDir = mLight.GetVectorToLight(pt);
 uint32_t color = mLight.GetColor(lightColor, rayDir);

Firefox lighting code - Core loop

 int32_t sourceIndex = y * sourceStride + x;
 int32_t targetIndex = y * targetStride + 4 * x;

 Point3D normal = GenerateNormal(sourceData, sourceStride,
 x, y, mSurfaceScale,
 aKernelUnitLengthX, aKernelUnitLengthY);

 IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
 Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
 Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
 Point3D rayDir = mLight.GetVectorToLight(pt);
 uint32_t color = mLight.GetColor(lightColor, rayDir);

Chrome + FPU Flags

● Disable subnormals with FTZ/DAZ
○ FPU state flags
○ Difficult to manage

Chrome + FPU Flags

● Disable subnormals with FTZ/DAZ
○ FPU state flags
○ Difficult to manage
○ Not always effective!

FTZ/DAZ benchmarking - Bad news

FTZ/DAZ benchmarking - Bad news

FTZ/DAZ benchmarking - Good news

FTZ/DAZ benchmarking - Bad news

Chrome + FPU Flags

● Disable subnormals with FTZ/DAZ
○ FPU state flags
○ Difficult to manage
○ Not always effective!

Chrome + FPU Flags

● Disable subnormals with FTZ/DAZ
○ FPU state flags
○ Difficult to manage
○ Not always effective!

● Filter on GPU then bail to CPU
○ Doesn’t set FPU flags correctly

Chrome filter rendering flow

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Chrome filter rendering flow - default

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Set
FTZ/DAZ

Chrome attack flow

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Chrome attack flow - Force to GPU

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Chrome attack flow - feConvolveMatrix

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Chrome attack flow - feConvolveMatrix

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Filter
small

enough?

Chrome attack flow - feConvolveMatrix

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Filter
small

enough?

Chrome attack flow - feConvolveMatrix

Currently
rendering
on GPU?

Filter
supports

GPU?

Filter
prefers
GPU?

Filter
small

enough?

No
FTZ/DAZ!

Examining Escort:
a proposed

hardware-based
defense

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

○ Browsers

○ Escort

● Conclusions

Escort - Rane, Lin and Tiwari

● New hardware-based approach

● Run (some) FP ops on SIMD unit

● dummy “escort” op, runs worst-case time
observed

by program

slow
case

fast
case

Escort - Rane, Lin and Tiwari

● New hardware-based approach

● Run (some) FP ops on SIMD unit

● dummy “escort” op, runs worst-case time
observed

by program

slow
case

fast
case

slow
case

Escort - Rane, Lin and Tiwari

● New hardware-based approach

● Run (some) FP ops on SIMD unit

● dummy “escort” op, runs worst-case

● Conjecture: real, dummy ops run in parallel

slow
case

always

fast
case

dummyreal op

time
observed

by program

Escort libdrag benchmarking

Escort libdrag benchmarking

Escort benchmarking summary

Intel i5-4460

● Slow subnormals: Subnormal
operands induce slowdowns

● Fast zero: All zero significands
cause speedups

● Many effects: Analog
combinations of previous effects

Escort benchmarking summary

Escort benchmarking summary

slow
case

Escort - Rane, Lin and Tiwari

slow
case

always

fast
case

dummyreal op

time
observed

by program

slow
case

Escort - Rane, Lin and Tiwari

slow
case

always

fast
case

dummyreal op

time
observed

by program slow
case

fast
case

dummy

real op

time
observed

by program

slow
case

always

Escort - SIMD Implementation

● All evidence points to:

○ Sequential execution

○ Execution in microcode

○ Slowdown on non-subnormals

● Examined inputs

● Backed up by performance counters

● Potentially useful

○ Tricky to use safely

slow
case

fast
case

dummy

real op

time
observed

by program

slow
case

always

Fixes deployed
and the future

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

○ Browsers

○ Escort

● Conclusions

Fixes deployed

● Firefox 52 - CVE-2017-5407
○ Restricted range of surfaceScale operand

Fixes deployed

● Firefox 52 - CVE-2017-5407
○ Restricted range of surfaceScale operand

● Chrome 60 - CVE-2017-5107
○ Ensured FTZ/DAZ scope includes GPU bail

Fixes deployed

● Firefox 52 - CVE-2017-5407
○ Restricted range of surfaceScale operand

● Chrome 60 - CVE-2017-5107
○ Ensured FTZ/DAZ scope includes GPU bail

● Safari 10.1.2 - CVE-2017-7006
○ Removed cross-origin SVG filters!*

* Ask me about history sniffing!

Future

● Other browsers should remove cross-origin SVG

● Fixed-point still very promising
○ libftfp proved constant time*

● GPUs, ARM, etc
○ Also probably vulnerable

* Almeida et al USENIX 2016

Floating point performance variation - extra

Floating point performance variation - extra

Questions?

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

○ Browsers

○ Escort

● Conclusions Tools/Results available:
https://cseweb.ucsd.edu/~dkohlbre/floats

