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Pixel-stealing attacks on browsers
Using floating-point side-channels
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● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private 

visual information

Pixel-stealing attacks - Terminology

● Impact*:
○ Attacking page learns pixel 

information from target
○ Ex:

■ Bank information
■ Login status
■ Usernames

See Paul Stone’s “Pixel Perfect Timing Attacks with HTML5” * Ask me about history sniffing!
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Pixel-stealing attack overview

See Paul Stone’s “Pixel Perfect Timing Attacks with HTML5” and
Andrysco et al’s “On subnormal floating point and abnormal timing”
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IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand
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IEEE-754 Floating point format (single/float)

Value = (−1)sign ✕ significand ✕ 2(exponent − bias)

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand

Single precision normal minimum: 1.18e−38 !

sign

exponent (8 bits) significand (23 bits +1)
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Floating point performance variation

double-precision SSE scalar division on Intel i5-4460
* Ask me why it is 175 cycles



Summary of floating-point performance variations

Intel i5-4460

● Slow subnormals: Subnormal 
operands induce slowdowns

● Fast zero: All zero significands 
cause speedups

● Many effects: Analog 
combinations of previous effects
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Safari

● No response to previous attacks
● feConvolveMatrix still a target

● Attack modifications
○ Frame counting
○ Pixel-expansion

● Most stable of all attacks!



Firefox
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○ feConvolveMatrix no longer vulnerable



Firefox

● Switch to fixed-point in Firefox 28
○ feConvolveMatrix no longer vulnerable

● We can use other filters!
○ feSpecularLighting

○ Not ported to fixed point yet



Firefox lighting code - Core loop

      int32_t sourceIndex = y * sourceStride + x;
      int32_t targetIndex = y * targetStride + 4 * x;

      Point3D normal = GenerateNormal(sourceData, sourceStride,
                                      x, y, mSurfaceScale,
                                      aKernelUnitLengthX, aKernelUnitLengthY);

      IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
      Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
      Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
      Point3D rayDir = mLight.GetVectorToLight(pt);
      uint32_t color = mLight.GetColor(lightColor, rayDir);
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Firefox lighting code - Core loop
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Chrome + FPU Flags

● Disable subnormals with FTZ/DAZ
○ FPU state flags
○ Difficult to manage
○ Not always effective!

● Filter on GPU then bail to CPU
○ Doesn’t set FPU flags correctly
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Chrome filter rendering flow - default
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Chrome attack flow - feConvolveMatrix

Currently 
rendering 
on GPU?

Filter 
supports 

GPU?

Filter 
prefers 
GPU?

Filter 
small 

enough?

No
FTZ/DAZ!
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Escort - Rane, Lin and Tiwari

● New hardware-based approach

● Run (some) FP ops on SIMD unit 
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Escort - Rane, Lin and Tiwari

● New hardware-based approach

● Run (some) FP ops on SIMD unit 

● dummy “escort” op, runs worst-case 

● Conjecture: real, dummy ops run in parallel

slow
case

always

fast
case

dummyreal op

time 
observed

by program
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Escort benchmarking summary

Intel i5-4460

● Slow subnormals: Subnormal 
operands induce slowdowns

● Fast zero: All zero significands 
cause speedups

● Many effects: Analog 
combinations of previous effects
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Escort - SIMD Implementation

● All evidence points to:

○ Sequential execution

○ Execution in microcode

○ Slowdown on non-subnormals

● Examined inputs

● Backed up by performance counters

● Potentially useful

○ Tricky to use safely

slow
case

fast
case

dummy

real op

time 
observed

by program

slow
case

always
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Fixes deployed

● Firefox 52 - CVE-2017-5407
○ Restricted range of surfaceScale operand

● Chrome 60 - CVE-2017-5107
○ Ensured FTZ/DAZ scope includes GPU bail

● Safari 10.1.2 - CVE-2017-7006
○ Removed cross-origin SVG filters!*

* Ask me about history sniffing!



Future

● Other browsers should remove cross-origin SVG

● Fixed-point still very promising
○ libftfp proved constant time*

● GPUs, ARM, etc
○ Also probably vulnerable

* Almeida et al USENIX 2016
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Questions?

● Pixel-stealing attacks

● Floating-point benchmarking

● Attacking with floats

● Beating defenses

○ Browsers

○ Escort

● Conclusions Tools/Results available:
https://cseweb.ucsd.edu/~dkohlbre/floats


