On the effectiveness of mitigations against floating-point timing channels

David Kohlbrenner Hovav Shacham UC San Diego

How effective are On the effectiveness of mitigations against floating-point timing channels

David Kohlbrenner Hovav Shacham UC San Diego

Safari CVE-2017-7006 Firefox CVE-2017-5407 Chrome CVE-2017-5107

Safari CVE-2017-7006 Firefox CVE-2017-5407 Chrome CVE-2017-5107

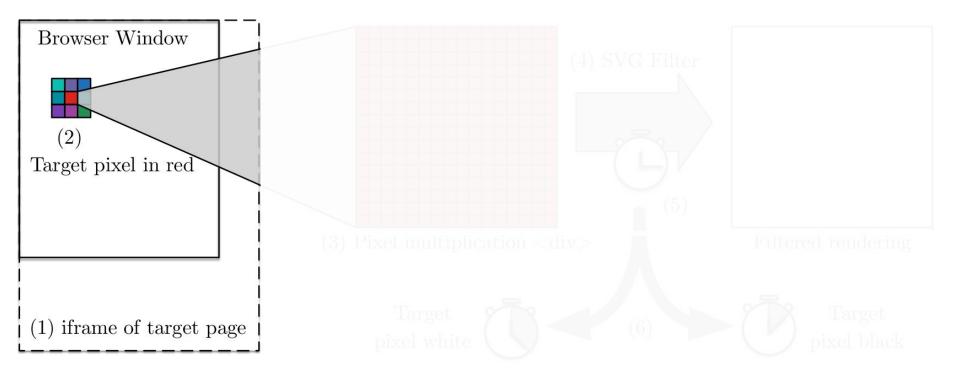
Pixel-stealing attacks on browsers Using floating-point side-channels

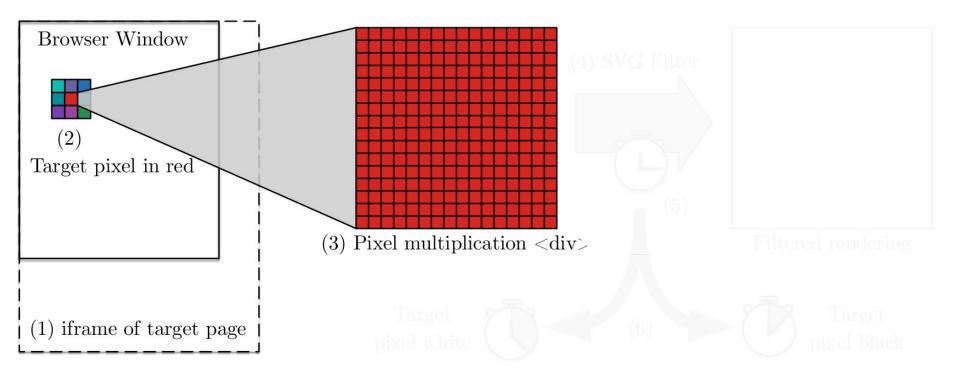
Outline

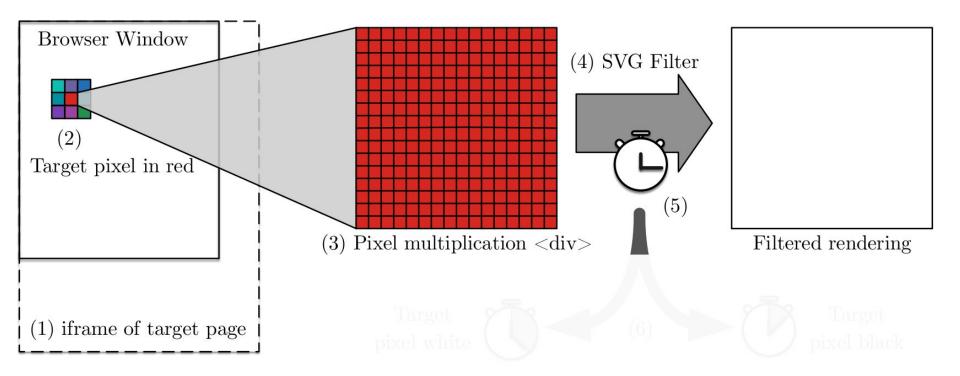
- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
- Conclusions

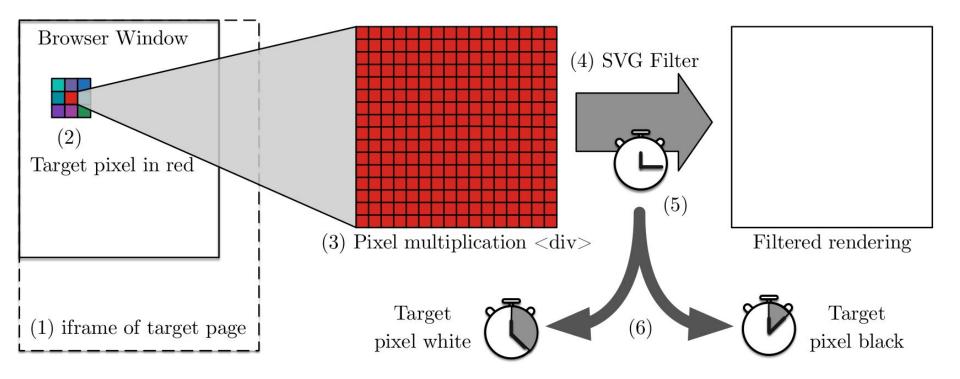
Background on pixel-stealing

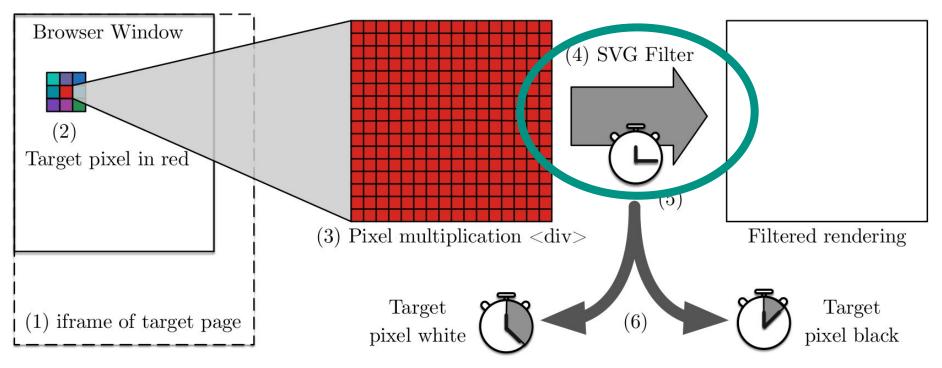
- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
- Conclusions

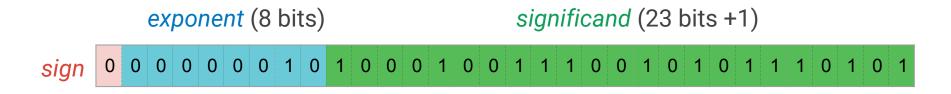

Pixel-stealing attacks - Terminology


- Attacker:
 - Hosts webpage
- Victim:
 - Visits attacker
 - Logged into target
- Target:
 - Website hosting private visual information


- Impact*:
 - Attacking page learns pixel information from target
 - **Ex**:
 - Bank information
 - Login status
 - Usernames

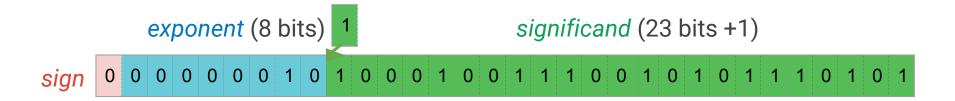

See Paul Stone's "Pixel Perfect Timing Attacks with HTML5"


* Ask me about history sniffing!


See Paul Stone's "Pixel Perfect Timing Attacks with HTML5" and Andrysco et al's "On subnormal floating point and abnormal timing"

Floating point format and performance

- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
- Conclusions



Value = $(-1)^{sign} \times significand \times 2^{(exponent - bias)}$

Value = $(-1)^{sign} \times significand \times 2^{(exponent - bias)}$

Normal values have nonzero exponent, implicit leading 1. before significand

Value = $(-1)^{sign} \times significand \times 2^{(exponent - bias)}$

Normal values have nonzero exponent, implicit leading 1. before significand

Value = $(-1)^{sign} \times significand \times 2^{(exponent - bias)}$

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand

Value = $(-1)^{sign} \times significand \times 2^{(exponent - bias)}$

Normal values have nonzero exponent, implicit leading 1. before significand

Subnormal values have all-zero exponent, implicit leading 0. before significand

Single precision normal minimum: 1.18e–38!

					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
					Cycle cou	nt			
0.0	6.56	6.59	6.58	6.55	6.57	6.58	6.57	6.57	6.59
1.0	6.58	6.58	12.19	12.17	12.22	12.24	6.57	12.24	165.76
1e10	6.58	6.55	12.25	12.20	12.23	12.25	6.57	12.22	165.81
1e+200	6.60	6.60	12.25	12.20	12.22	12.22	6.58	12.24	165.79
1e-300	6.59	6.57	175.22	12.24	12.17	12.22	6.52	12.23	165.83
1e-42	6.60	6.53	12.23	12.22	12.21	12.24	6.58	12.21	165.79
256	6.57	6.55	12.24	12.20	12.20	12.20	6.53	12.22	165.79
257	6.55	6.58	12.24	12.22	12.24	12.23	6.56	12.21	165.80
1e-320	6.56	150.73	165.79	6.59	165.78	165.76	150.66	165.80	165.78

,					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
	Cycle count								
0.0	6.56	6.59	6.58	6.55	6.57	6.58	6.57	6.57	6.59
1.0	6.58	6.58	12.19	12.17	12.22	12.24	6.57	12.24	165.76
1e10	6.58	6.55	12.25	12.20	12.23	12.25	6.57	12.22	165.81
1e+200	6.60	6.60	12.25	12.20	12.22	12.22	6.58	12.24	165.79
1e-300	6.59	6.57	175.22	12.24	12.17	12.22	6.52	12.23	165.83
1e-42	6.60	6.53	12.23	12.22	12.21	12.24	6.58	12.21	165.79
256	6.57	6.55	12.24	12.20	12.20	12.20	6.53	12.22	165.79
257	6.55	6.58	12.24	12.22	12.24	12.23	6.56	12.21	165.80
1e-320	6.56	150.73	165.79	6.59	165.78	165.76	150.66	165.80	165.78

					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
					Cycle cou	nt			
0.0	6.56	6.59	6.58	6.55	6.57	6.58	6.57	6.57	6.59
1.0	6.58	6.58	12.19	12.17	12.22	12.24	6.57	12.24	165.76
1e10	6.58	6.55	12.25	12.20	12.23	12.25	6.57	12.22	165.81
1e+200	6.60	6.60	12.25	12.20	12.22	12.22	6.58	12.24	165.79
1e-300	6.59	6.57	175.22	12.24	12.17	12.22	6.52	12.23	165.83
1e-42	6.60	6.53	12.23	12.22	12.21	12.24	6.58	12.21	165.79
256	6.57	6.55	12.24	12.20	12.20	12.20	6.53	12.22	165.79
257	6.55	6.58	12.24	12.22	12.24	12.23	6.56	12.21	165.80
1e-320	6.56	150.73	165.79	6.59	165.78	165.76	150.66	165.80	165.78

					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
					Cycle cou	nt			
0.0	6.56	6.59	6.58	6.55	6.57	6.58	6.57	6.57	6.59
1.0	6.58	6.58	12.19	12.17	12.22	12.24	6.57	12.24	165.76
1e10	6.58	6.55	12.25	12.20	12.23	12.25	6.57	12.22	165.81
1e+200	6.60	6.60	12.25	12.20	12.22	12.22	6.58	12.24	165.79
1e-300	6.59	6.57	175.22	12.24	12.17	12.22	6.52	12.23	165.83
1e-42	6.60	6.53	12.23	12.22	12.21	12.24	6.58	12.21	165.79
256	6.57	6.55	12.24	12.20	12.20	12.20	6.53	12.22	165.79
257	6.55	6.58	12.24	12.22	12.24	12.23	6.56	12.21	165.80
1e-320	6.56	150.73	165.79	6.59	165.78	165.76	150.66	165.80	165.78

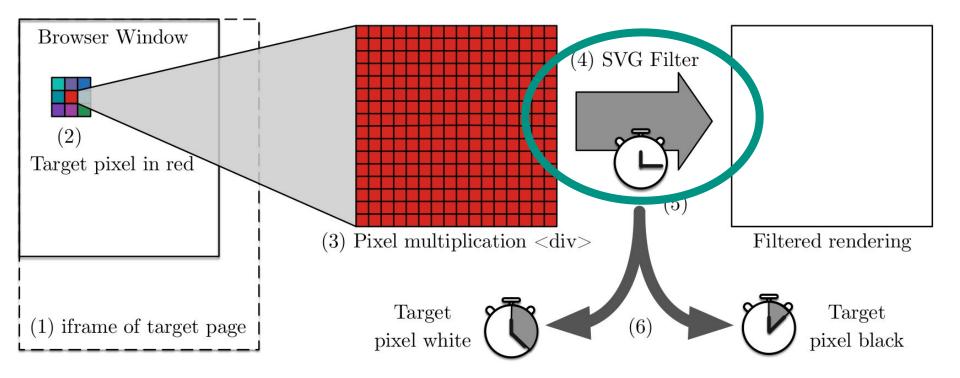
					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
					Cycle cou	nt			
0.0	6.56	6.59	6.58	6.55	6.57	6.58	6.57	6.57	6.59
1.0	6.58	6.58	12.19	12.17	12.22	12.24	6.57	12.24	165.76
1e10	6.58	6.55	12.25	12.20	12.23	12.25	6.57	12.22	165.81
1e+200	6.60	6.60	12.25	12.20	12.22	12.22	6.58	12.24	165.79
1e-300	6.59	6.57	175.22	12.24	12.17	12.22	6.52	12.23	165.83
1e-42	6.60	6.53	12.23	12.22	12.21	12.24	6.58	12.21	165.79
256	6.57	6.55	12.24	12.20	12.20	12.20	6.53	12.22	165.79
257	6.55	6.58	12.24	12.22	12.24	12.23	6.56	12.21	165.80
1e-320	6.56	150.73	165.79	6.59	165.78	165.76	150.66	165.80	165.78

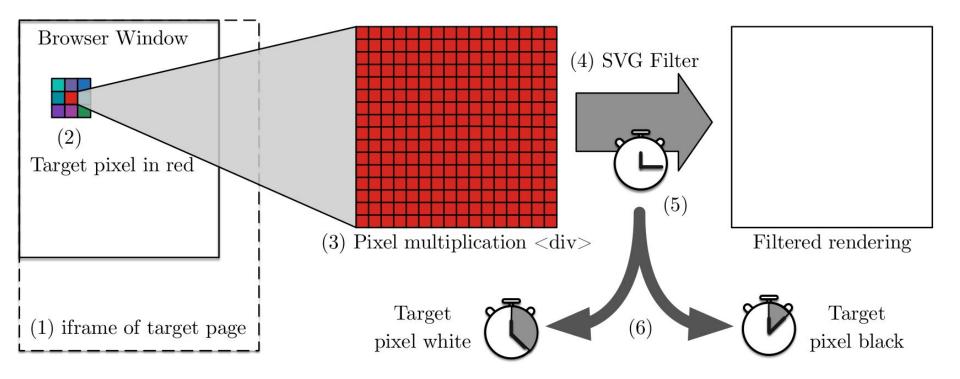
* Ask me why it is 175 cycles

Operation	Default
Single Precision	
Add/Sub	-
Mul	Slow subnormal
Div	Slow subnormal
Sqrt	Many effects
Double Precision	
Add/Sub	_
Mul	Slow subnormal
Div	Many effects
Sqrt	Many effects

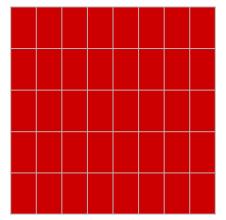
Intel i5-4460

• Slow subnormals: Subnormal operands induce slowdowns

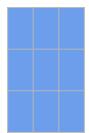

• Fast zero: All zero significands cause speedups

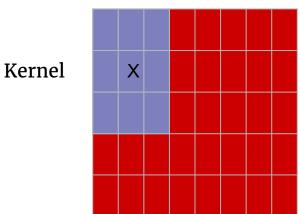

• Many effects: Analog combinations of previous effects

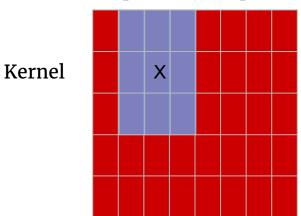
Summary of floating-point performance variations

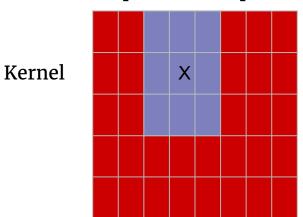

Using floats for pixel-stealing

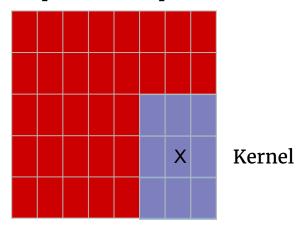
- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
- Conclusions











Pixel-stealing on 3 major browsers

- Floating-point benchmarking
- Attacking with floats
- Beating defenses
 - Browsers
 - Escort
- Conclusions

- No response to previous attacks
- feConvolveMatrix still a target

Safari

- No response to previous attacks
- feConvolveMatrix still a target

- Attack modifications
 - Frame counting
 - Pixel-expansion

Safari

- No response to previous attacks
- feConvolveMatrix still a target

- Attack modifications
 - Frame counting
 - Pixel-expansion

• Most stable of all attacks!

Firefox

- Switch to *fixed-point* in Firefox 28
 - feConvolveMatrix no longer vulnerable

Firefox

- Switch to *fixed-point* in Firefox 28
 - feConvolveMatrix no longer vulnerable

- We can use other filters!
 - feSpecularLighting
 - Not ported to fixed point yet

```
int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;
```

```
IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);
```

```
int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;
```

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

```
int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;
```

```
IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.01;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);
```

```
int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;
```

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.01;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Chrome + FPU Flags

- Disable subnormals with *FTZ/DAZ*
 - FPU state flags
 - Difficult to manage

Chrome + FPU Flags

- Disable subnormals with *FTZ/DAZ*
 - FPU state flags
 - Difficult to manage
 - Not always effective!

					Divisor				
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320
	Cycle count								
0.0	6.58	6.59	6.58	6.55	6.59	6.54	6.54	6.56	6.56
1.0	6.55	6.55	12.23	12.19	12.22	12.22	6.56	12.25	6.56
1e10	6.58	6.59	12.22	12.22	12.21	12.21	6.59	12.23	6.59
1e+200	6.57	6.59	12.22	12.20	12.17	12.21	6.58	12.17	6.57
1e-300	6.59	6.57	12.18	12.23	12.24	12.22	6.59	12.24	6.57
1e-42	6.58	6.56	12.21	12.25	12.23	12.18	6.56	12.21	6.58
256	6.57	6.60	12.20	12.22	12.24	12.24	6.57	12.23	6.54
257	6.57	6.58	12.22	12.23	12.25	12.20	6.57	12.23	6.58
1e-320	6.57	6.58	6.60	6.51	6.59	6.57	6.58	6.55	6.58

Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

FTZ/DAZ benchmarking – Bad news

					Divisor					
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320	
	Cycle count									
0.0	6.58	6.59	6.58	6.55	6.59	6.54	6.54	6.56	6.56	
1.0	6.55	6.55	12.23	12.19	12.22	12.22	6.56	12.25	6.56	
1e10	6.58	6.59	12.22	12.22	12.21	12.21	6.59	12.23	6.59	
1e+200	6.57	6.59	12.22	12.20	12.17	12.21	6.58	12.17	6.57	
1e-300	6.59	6.57	12.18	12.23	12.24	12.22	6.59	12.24	6.57	
1e-42	6.58	6.56	12.21	12.25	12.23	12.18	6.56	12.21	6.58	
256	6.57	6.60	12.20	12.22	12.24	12.24	6.57	12.23	6.54	
257	6.57	6.58	12.22	12.23	12.25	12.20	6.57	12.23	6.58	
1e-320	6.57	6.58	6.60	6.51	6.59	6.57	6.58	6.55	6.58	

Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

FTZ/DAZ benchmarking – Bad news

					Divisor				
Dividend	0.0	1.0	1e10	1e+30	1e-30	1e-41	1e-42	256	257
	Cycle count								
0.0	5.66	5.59	5.62	5.64	5.64	5.62	5.66	5.65	5.60
1.0	5.66	5.66	5.65	5.66	5.65	5.63	5.65	5.66	5.65
1e10	5.65	5.65	5.62	5.63	5.62	5.64	5.64	5.62	5.63
1e+30	5.65	5.62	5.62	5.59	5.65	5.65	5.64	5.65	5.65
1e-30	5.62	5.63	5.61	5.58	5.63	5.65	5.60	5.64	5.64
1e-41	5.64	5.66	5.64	5.63	5.65	5.65	5.65	5.65	5.66
1e-42	5.65	5.61	5.65	5.62	5.63	5.62	5.64	5.64	5.64
256	5.66	5.63	5.64	5.64	5.64	5.65	5.63	5.60	5.61
257	5.65	5.64	5.65	5.57	5.63	5.65	5.65	5.63	5.63

Division timing for single precision floats on Intel i5-4460+FTZ/DAZ

FTZ/DAZ benchmarking - Good news

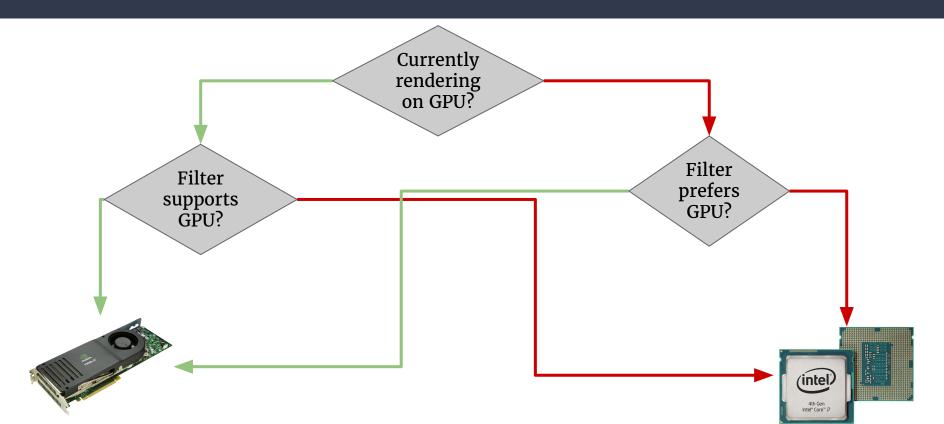
-

Operand	Cycle count
0.0	8.85
1.0	8.85
1e10	11.60
1e+30	11.68
1e-30	11.63
1e-41	8.84
1e-42	8.84
256	8.84
257	11.62

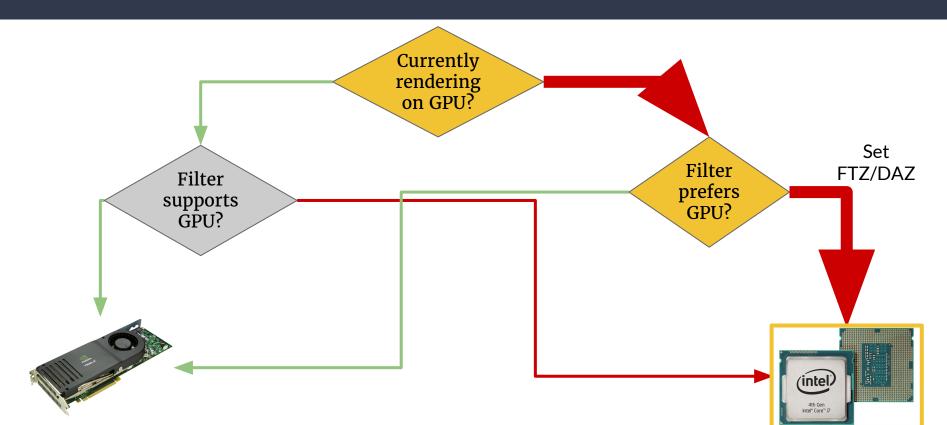
Square root timing for single precision floats on Intel i5-4460+FTZ/DAZ

FTZ/DAZ benchmarking – Bad news

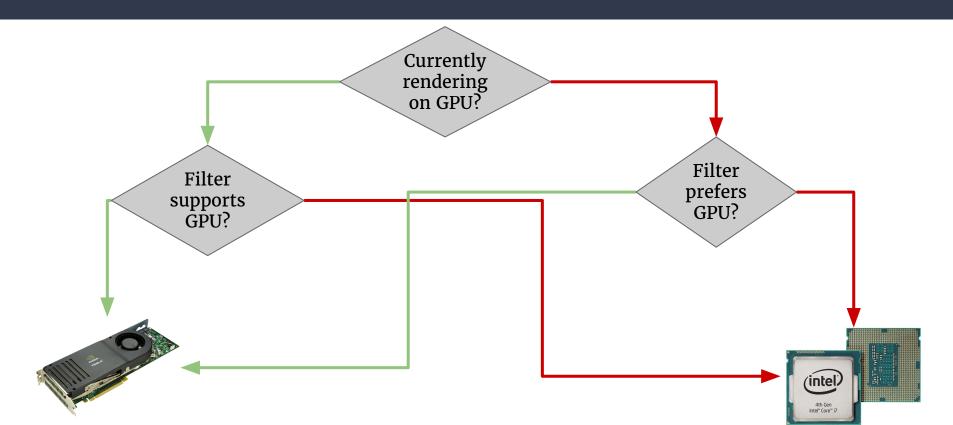
Chrome + FPU Flags

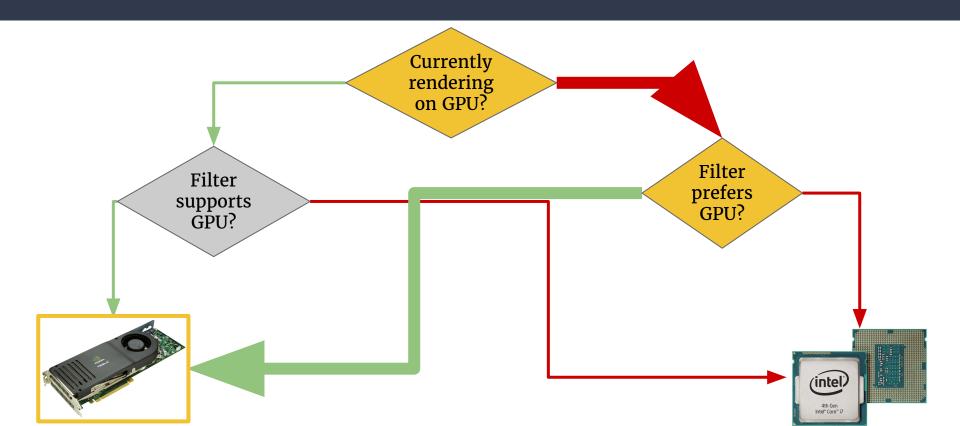

- Disable subnormals with *FTZ/DAZ*
 - FPU state flags
 - Difficult to manage
 - Not always effective!

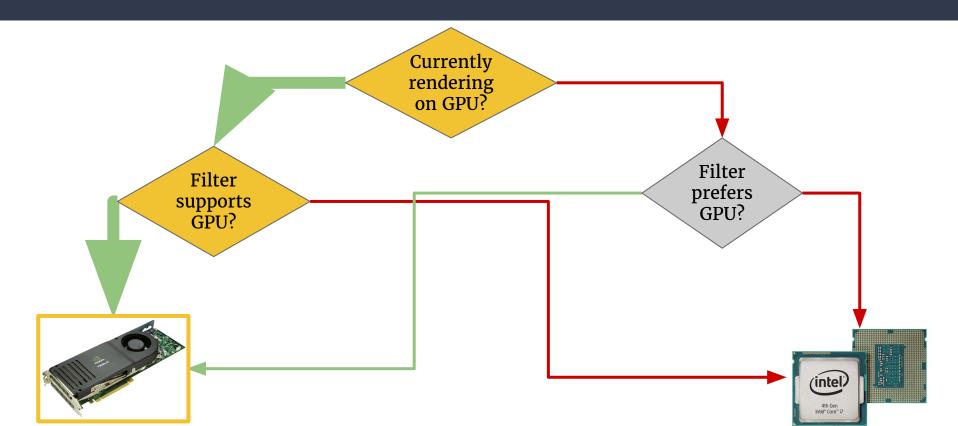
Chrome + FPU Flags

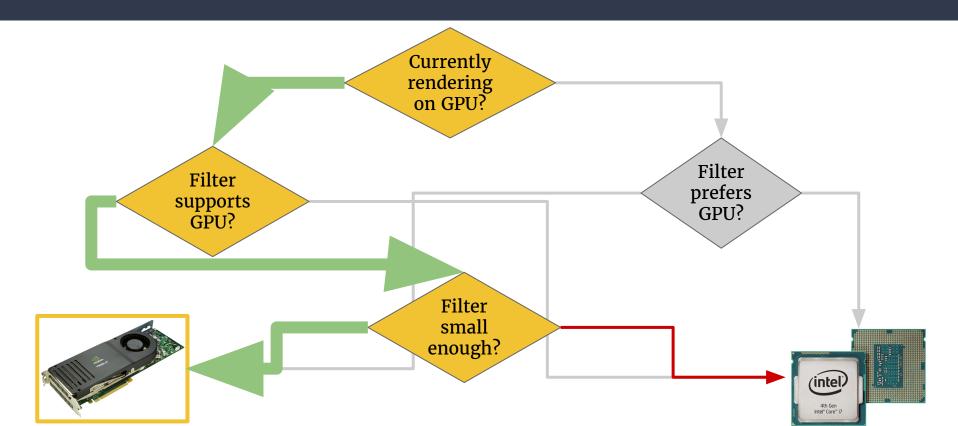

- Disable subnormals with *FTZ/DAZ*
 - FPU state flags
 - Difficult to manage
 - Not always effective!

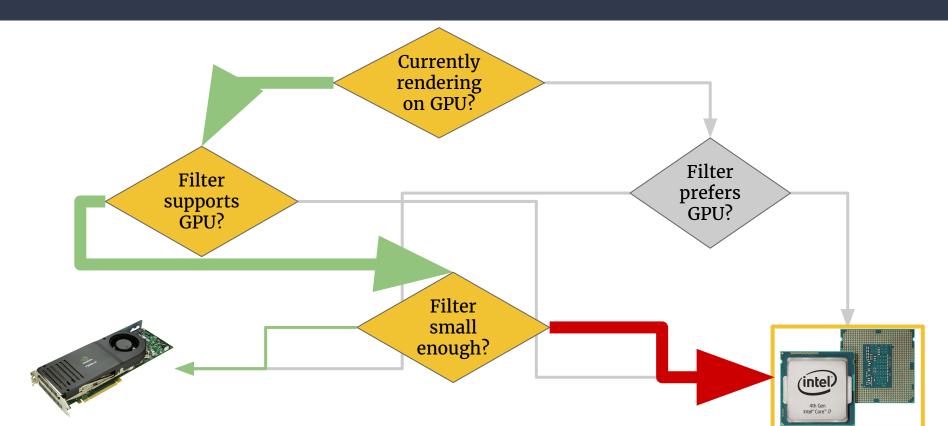
- Filter on GPU then bail to CPU
 - Doesn't set FPU flags correctly

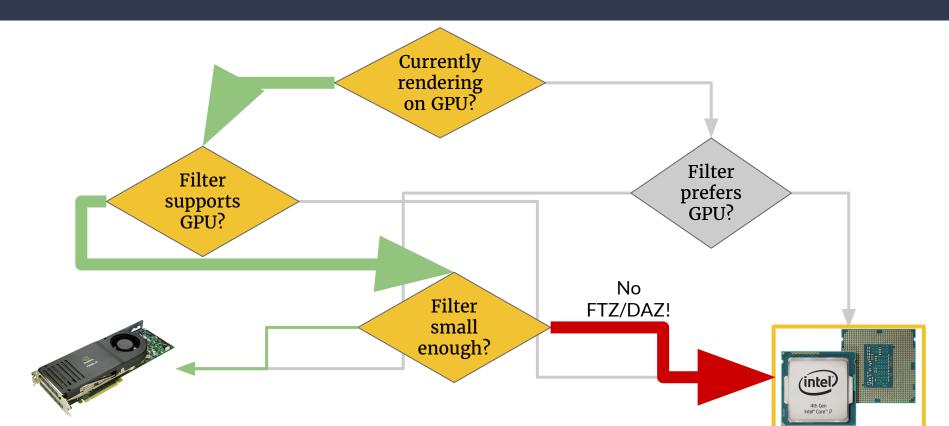

Chrome filter rendering flow

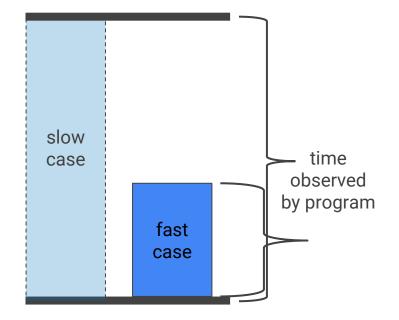

Chrome filter rendering flow – default




Chrome attack flow

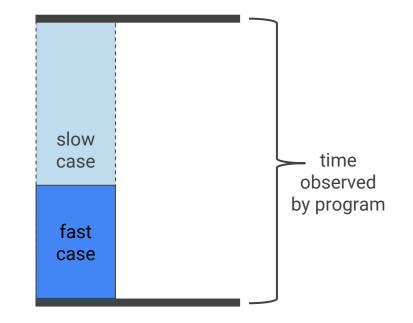



Chrome attack flow – Force to GPU

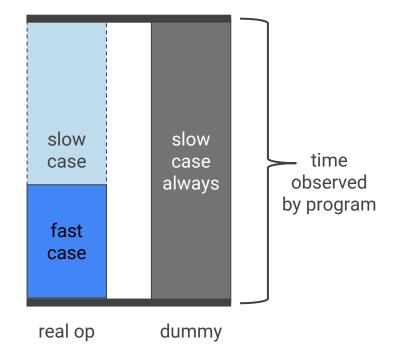


Examining Escort: a proposed hardware-based defense

- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
 - Browsers
 - Escort
- Conclusions


Escort - Rane, Lin and Tiwari

- New hardware-based approach
- Run (some) FP ops on SIMD unit
- dummy "escort" op, runs worst-case


Escort - Rane, Lin and Tiwari

- New hardware-based approach
- Run (some) FP ops on SIMD unit
- dummy "escort" op, runs worst-case

Escort - Rane, Lin and Tiwari

- New hardware-based approach
- Run (some) FP ops on SIMD unit
- dummy "escort" op, runs worst-case
- Conjecture: real, dummy ops run in parallel

					Divisor					
Dividend	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320	
	Cycle count									
0.0	186.46	186.48	186.50	186.44	186.42	186.49	186.50	186.48	186.51	
1.0	186.45	186.48	195.93	195.94	195.93	195.86	186.48	195.87	186.48	
1e10	186.51	186.49	195.92	195.90	195.92	195.87	186.47	195.86	186.46	
1e+200	186.50	186.50	195.90	195.94	195.89	195.91	186.46	195.90	186.50	
1e-300	186.48	186.44	195.91	195.88	195.93	195.92	186.53	195.95	186.44	
1e-42	186.44	186.51	195.92	195.94	195.87	195.89	186.51	195.93	186.47	
256	186.49	186.49	195.91	195.91	195.87	195.89	186.45	195.91	186.44	
257	186.46	186.47	195.96	195.92	195.92	195.96	186.49	195.98	186.45	
1e-320	186.49	186.49	186.43	186.48	186.49	186.49	186.50	186.52	186.46	

Division timing for double precision floats on Intel i5-4460+Escort

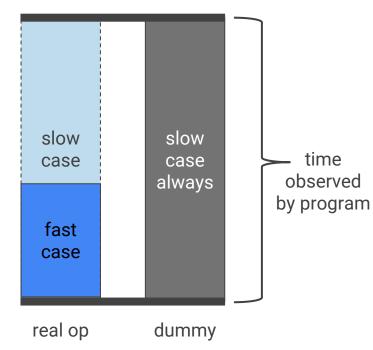
Escort libdrag benchmarking

	0.0	1.0	1e10	1e+200	1e-300	1e-42	256	257	1e-320		
	Cycle count										
0.0	136.55	136.59	136.45	136.60	136.55	136.55	136.58	136.43	136.56		
1.0	136.55	136.56	136.58	136.61	136.63	136.57	136.60	136.57	136.64		
1e10	136.58	136.52	136.59	136.58	136.51	136.58	136.58	136.52	136.60		
1e+200	136.59	136.51	136.59	136.57	136.57	136.57	136.58	136.59	136.52		
1e-300	136.57	136.58	136.55	136.59	136.59	136.60	136.57	136.56	136.55		
1e-42	136.52	136.57	136.54	136.57	136.57	136.58	136.53	136.56	136.55		
256	136.57	136.56	136.57	136.48	136.57	136.59	136.60	136.53	136.51		
257	136.58	136.54	136.61	136.59	136.59	136.57	136.57	136.57	136.64		
1e-320	136.60	136.58	136.64	136.58	136.59	136.55	136.59	136.59	136.63		

Multiplication timing for double precision floats on Intel i5-4460+Escort

Operation	Default	Escort	Intel i5-4460
Single Precision Add/Sub	_	_	 Slow subnormals: Subnormal operands induce slowdowns
Mul	Slow Subnormals		
Div	Slow Subnormals	Fast Zero	
Sqrt	Many effects	Fast Zero	• Fast zero: All zero significands
Double Precision			cause speedups
Add/Sub		—	
Mul	Slow Subnormals		Many effects: Analog
Div	Many effects	Fast Zero	combinations of previous effects
Sqrt	Many effects	Fast Zero	

Escort benchmarking summary

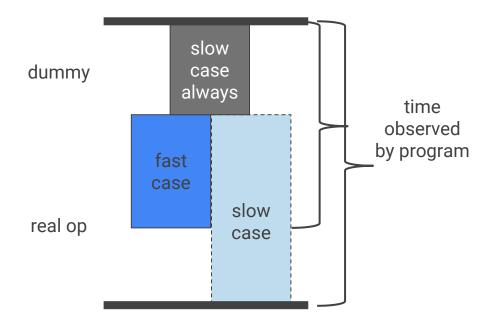

Operation	Escort Intel	Escort AMD
Single Precision		
Add/Sub	-	Slow Subnormals
Mul	_	_
Div	Fast zero	—
Sqrt	Fast zero	_
Double Precision		
Add/Sub	-	Slow Subnormals
Mul	-	—
Div	Fast zero	—
Sqrt	Fast zero	—

Escort benchmarking summary

Operation	Escort Intel	Escort AMD
Single Precision		
Add/Sub	-	Slow Subnormals
Mul	—	_
Div	Fast zero	_
Sqrt	Fast zero	_
Double Precision		
Add/Sub	-	Slow Subnormals
Mul	—	_
Div	Fast zero	_
Sqrt	Fast zero	—

Escort benchmarking summary

Escort – Rane, Lin and Tiwari



Escort – Rane, Lin and Tiwari

Escort - SIMD Implementation

- All evidence points to:
 - Sequential execution
 - Execution in microcode
 - Slowdown on non-subnormals
- Examined inputs
- Backed up by performance counters
- Potentially useful
 - Tricky to use safely

Fixes deployed and the future

- Floating-point benchmarking
- Attacking with floats
- Beating defenses
 - Browsers
 - Escort
- Conclusions

Fixes deployed

- Firefox 52 CVE-2017-5407
 - Restricted range of surfaceScale operand

Fixes deployed

- Firefox 52 CVE-2017-5407
 - Restricted range of surfaceScale operand

- Chrome 60 CVE-2017-5107
 - Ensured FTZ/DAZ scope includes GPU bail

Fixes deployed

- Firefox 52 CVE-2017-5407
 - Restricted range of surfaceScale operand

- Chrome 60 CVE-2017-5107
 - Ensured FTZ/DAZ scope includes GPU bail

- Safari 10.1.2 CVE-2017-7006
 - Removed cross-origin SVG filters!*

Future

• Other browsers should remove cross-origin SVG

Fixed-point still very promising

 libftfp proved constant time*

📮 kmower	kmowery / libfixedtimefixedpoint									
<> Code	() Issues ()	ື່ 1 Pull requests 🛛 🛛	Projects 0							

A library for doing constant-time fixed-point numeric operations

- GPUs, ARM, etc
 - Also probably vulnerable

* Almeida et al USENIX 2016

					Divisor					
Dividend	0.0	1.0	1e10	1e+30	1e-30	1e-41	1e-42	256	257	
	-	Cycle count								
0.0	5.17	5.85	5.85	5.85	5.85	5.89	5.89	5.85	5.85	
1.0	6.19	2.59	2.59	2.59	2.59	8.64	8.64	2.59	2.59	
1e10	6.19	2.59	2.59	2.59	5.96	8.64	8.64	2.59	2.59	
1e+30	6.19	2.59	2.59	2.59	5.96	8.64	8.64	2.59	2.59	
1e-30	6.19	2.59	7.82	6.51	2.59	8.40	8.40	2.59	2.59	
1e-41	6.19	10.21	8.92	8.92	8.13	8.41	8.41	10.23	10.23	
1e-42	6.19	10.21	8.92	8.92	8.13	8.41	8.41	10.23	10.23	
256	6.19	2.59	2.59	2.59	2.59	8.64	8.64	2.59	2.59	
257	6.19	2.59	2.59	2.59	2.59	8.64	8.64	2.59	2.59	

Division timing for single precision floats on Nvidia GeForce GT 430

Floating point performance variation – extra

	0.0	1.0	1e10	1e+30	1e-30	1e-41	1e-42	256	257		
	Cycle count										
0.0	7.01	7.01	7.01	7.01	7.01	216.22	216.16	7.01	7.01		
1.0	7.01	7.01	7.01	7.01	7.01	48.07	48.06	7.01	7.01		
1e10	7.01	7.01	7.01	7.01	7.01	48.06	48.06	7.01	7.01		
1e+30	7.01	7.01	7.01	7.01	7.01	48.06	48.06	7.01	7.01		
1e-30	7.01	7.01	7.01	7.01	7.01	48.07	48.06	7.01	7.01		
1e-41	216.17	48.05	48.05	48.06	48.06	216.20	216.17	48.05	48.05		
1e-42	216.22	48.06	48.05	48.05	48.05	216.16	216.16	48.05	48.05		
256	7.01	7.01	7.01	7.01	7.01	48.06	48.06	7.01	7.01		
257	7.01	7.01	7.01	7.01	7.01	48.06	48.06	7.01	7.01		

Addition timing for single precision floats on AMD Phenom II X2 550

Floating point performance variation – extra

Questions?

Tools/Results available: https://cseweb.ucsd.edu/~dkohlbre/floats

- Pixel-stealing attacks
- Floating-point benchmarking
- Attacking with floats
- Beating defenses
 - \circ Browsers
 - Escort
- Conclusions