
vTZ: Virtualizing ARM TrustZone

IPADS, Shanghai Jiao Tong University

Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, Haibing Guan

OTP

fTPM

Security systems
with TrustZone

Server SoC
With Virtualization

Can VMs use
TrustZone?

2

ARM TrustZone
3

Normal World Secure World

Monitor Mode

OS
T-OS

(Trust OS)

TA
(Trusted APP)

APP DRAM

CPU core

smcsmc

APP

Devices

• Two isolated execution
environments

• Different worlds switch to each
other by “smc” instruction

• Hardware resources can be
partitioned into secure/non-
secure part dynamically

– Secure world can access all

– Normal world can only access
non-secure part

Bu
s

TrustZone Usage

• TrustZone on mobile phone
– Secure storage, key protection, kernel integrity checker,

malware detector, etc.

• TrustZone on ARM server
– Has similar scenarios and requirements

4

TrustZone + Virtualization
5

Requirements Ideal Reality

Each guest VM has a secure world ✓

Guest VM can choose its own trust OS ✓

Isolation between different guests’ secure worlds ✓

Hardware resources partition between guest’s

normal world and secure world
✓

TrustZone + Virtualization
5

Requirements Ideal Reality

Each guest VM has a secure world ✓ ✗

Guest VM can choose its own trust OS ✓ ✗

Isolation between different guests’ secure worlds ✓ ✗

Hardware resources partition between guest’s

normal world and secure world
✓ ✗

The OS in secure world becomes single point of failure
– cve-2015-4421, cve-2015-4422, cve-2015-6639

Goals

• Multiplexing the secure world for guest VMs
– Each guest VM can choose its own trust OS

– Isolate each guest’s secure world

– Provide hardware resources partition for each guest

• Compatibility for existing software in secure world
– Provide same functionalities and interfaces with real TrustZone

– Support existing trust OS

• Minimizing TCB of the new architecture

6

Alternative Designs

Normal
World

VMM

T-VMMOS

VMN VMS

T-OSuser

svc

hyp

Secure
World

Design Choice I

mon

: TCB

APP TA

• Large TCB

• No compatibility

• Bad performance

• T-VMM (trusted VMM) in the secure world
– Virtualize guest secure world with VMS

• VMM in the normal world

– Virtualize guest normal world with VMN

• No virtualization extension in secure world
– Both guest’s trust OS and TA run in user mode

– ARM has virtualization unfriendly instructions
• Trust OS needs to be modified

• System TCB
– T-VMM (~10K of LoC)

– VMM (millions of LoC)

7

Alternative Designs

Normal
World

VMM

T-VMMOS

VMN VMS

user

svc

hyp

Secure
World

Normal World

OS

VMN

Secure
World

VMS

T-OS

Design Choice I Design Choice II

mon
VMM

: TCB

APP TAAPP TA

• Large TCB

• No compatibility

• Bad performance

• Large TCB

• Has compatibility

• Good performance

• Virtualize guest secure
world in real normal world

• Secure world is not used

• System TCB

– VMM (millions of LoC)

7

T-OS

Alternative Designs

Normal
World

VMM

T-VMMOS

VMN VMS

user

svc

hyp

Secure
World

Normal World

OS

VMN

Secure
World

VMS

T-OS

Design Choice I Design Choice II

mon
VMM

: TCB

APP TAAPP TA

• Large TCB

• No compatibility

• Bad performance

• Large TCB

• Has compatibility

• Good performance

Normal World

VMM

OS

…

VMN

Secure
World

…

VMS

T-OS

Design Choice III

CIEEs

Secured
Modules

CFLock

• Small TCB

• Has compatibility

7

T-OS

Threat Model

• Any guest may be an attacker

• VMM is buggy, can be compromised

• Code integrity is protected during
system boot by secure boot
technology

• Side-channel attacks and physical
attacks are not considered

8

VMN VMS

Normal World

VMM

OS

Secure World

T-OS

Control Flow
Lock

CIEEs Secured
Modules

SMM SWS

user
mode

svc
mode

hyp
mode

mon
mode

APP TA

VMN VMS

Overview

Normal World

VMM

OS

Secure World

T-OS

Control Flow
Lock

CIEEs Secured
Modules

SMM SWS

• Emulate guest normal world/secure
world with different VMs

– World switching is performed by switching
between two VMs

• SMM (Secured Memory Mapping)
– Memory mapping

• SWS (Secured World Switching)
– CPU Context

• CIEE (Constrained Isolated Execution
Environment)

– Protect critical logic in hyp mode

• CFLock (Control Flow Lock)

user
mode

svc
mode

hyp
mode

mon
mode

9

APP TA

TrustZone Features System Properties

Secure Boot SW must boot before NW.

Boot image of SW must be checked.

SW cannot be replaced.

CPU States Protection “smc” must switch to the correct world.

Protect the integrity of NW CPU states during switching.

Protect SW CPU states.

Memory Isolation Only SW can access secure memory.

Only SW can configure memory partition.

Peripheral Assignment Secure interrupts must be injected into SW.

NW cannot access secure peripherals.

Secure peripherals are trusted for SW

Only SW can partition interrupt/peripherals.

Properties need to be enforced by vTZ

10

TrustZone Features System Properties

Secure Boot SW must boot before NW.

Boot image of SW must be checked.

SW cannot be replaced.

CPU States Protection “smc” must switch to the correct world.
Protect the integrity of NW CPU states during switching.

Protect SW CPU states.

Memory Isolation Only SW can access secure memory.

Only SW can configure memory partition.
Peripheral Assignment Secure interrupts must be injected into SW.

NW cannot access secure peripherals.

Secure peripherals are trusted for SW

Only SW can partition interrupt/peripherals.

Properties need to be enforced by vTZ.

10

P1. Only secure world can access secure memory

• Challenge
– Untrusted VMM controls all memory mappings

– Map one guest’s secure memory to its normal world or to another guest

– Map one guest’s secure memory to VMM’s address space

• Solution
– SMM exclusively controls all memory mappings to physical memory

– SMM checks memory mappings

11

• Two kinds of mappings to the physical memory
– Stage-2 page table maps guest physical address to

physical address

– Hyp page table maps virtual address to physical
address for VMM

• Three ways memory mapping can be modified
– Enabling a page table

– Disabling the address translation

– Changing the entries of page table

P1. Only secure world can access secure memory

.text
enable_guest_pt:
ldr x1, [x0]
// load page table
MSR VTTBR_EL2, x1
// enable table table

enable_hyp_pt:
ldr x1, [x0]
// load page table
MSR TTBR0_EL2, x1
// enable table table

set_pte:
str x1, [x0]
// change table entry

hypervisor
page table

Stage-2
page table

12

SMM (Secured Memory Mapping)

• SMM exclusively controls the mapping
– Replace all page table maintain instructions

– Enforce hypervisor’s code as read-only (R.O.)

– Enforce page table as read-only

• SMM enforces memory mapping policy
– E.g., one guest’s secure memory can only be

mapped to its own secure world

P1. Only secure world can access the secure memory

.text
enable_guest_pt:
ldr x1, [x0]
// load page table
MSR VTTBR_EL2, x1
// enable table table

enable_hyp_pt:
ldr x1, [x0]
// load page table
MSR TTBR0_EL2, x1
// enable table table

set_pte:
str x1, [x0]
// change table entry

hypervisor
page table

Stage-2
page table

Invoke_SMM

Invoke_SMM

Invoke_SMM

13

P2. “smc” must switch to the correct world

• Challenge
– Untrusted VMM controls the scheduleing of all VMs

– “smc” may switch to a malicious VM

– “smc” may switch to a wrong entry of guest secure world

– Untrusted VMM may tamper with the CPU context during switching

• Solution
– SWS hooks all switching between a VM and the VMM

– SWS checks all switching

14

SWS (Secured World Switching)

• SWS Interposes switching between a VM and the VMM
– VM_exit is triggered by exception, hooked by CFLock

– VM_enter is performed by special instructions, replacing all of them

• E.g., eret

• SWS binds each guest’s secure world and normal world
– Identify VMs presenting guest’s two worlds by VMID

15

• CFLock: hooks the control flow of exception handling

• Ensure the integrity of vector table containing exception handlers
– Replace instructions which modify

vector table base register

– Mark vector table as read-only

• Add hook in each exception handler

CFLock (Control Flow Lock)

.text
Init_vector:
ldr x1, [x0]
// load vector table
MSR VBAR_EL2, x1
// enable vector table

handler1:
…

b handler1

vector
table

Invoke_SMM
b handler2
b handler3
b handler4
b handler5

…
b CFLock
…

16

P2. “smc” must switch to the correct world

• Untrusted VMM registers guest’s two VMs in SWS
– SWS only allows entering a registered VM

• Untrusted VMM schedules all VMs

• SWS checks all VM_enter / VM_exit operations

17

P3. Only secure world can partition memory

• Guest configures memory partition in its secure world by
accessing a memory partition device (TZASC)

• Challenge
– There is only one TZASC

– Cannot control TZASC by the untrusted VMM

• Solution
– Providing trusted virtual TZASC by “trap and emulate”

18

P3. Only secure world can partition memory

• CFLock traps memory accesses of virtual TZASC
– Memory mapped device

– Accessing triggers page fault exception

• SWS identifies current VM
– Only guest secure world can do the partitioning

• Need an isolated execution environment to emulate device

– Reuse some structure of the VMM

– Protected from VMM

– Not included in system TCB

19

P3. Only secure world can partition memory

• CIEE (Constrained Isolated Execution Environment)

• Protects a piece of code in the hyp mode

• Excluded from system TCB

20

CIEE (Constrained Isolated Execution Environment)

• Located in the hyp mode

• Prevent against the untrusted VMM
– Single entry point

– Run-to-completion

– No dependence on the hypervisor’s data

– No data exposure to the hypervisor

– Unforgeable to the secure world

• Exclude CIEE from system TCB
– Isolated privilege

20

CIEE (Constrained Isolated Execution Environment)

• CIEE components
– CIEE-Code

– Stack page

– Secure object

• Enforce five security policies

• Isolated privilege
– Diff privilege for each CIEE

– Diff copy of secure obj. for each guest

smc

smc

stack
page

r/w

CIEE-code

CIEE

write

request

Normal World Secure World

secure obj.

secured
modules

read

21

P3. Only secure world can partition memory

• CFLock traps memory accesses of virtual TZASC
– Memory mapped device

– Accessing triggers page fault exception

• SWS identifies current VM
– Only guest secure world can do the partitioning

• Emulate TZASC in an CIEE

22

Evaluation

• Can vTZ support existing trust OS?

• How is the performance of server applications on vTZ?

• How is the performance of application with multiple VMs?

23

Evaluation

• Hardware platform
– Hikey (ARMv8) with eight 1.2 GHz cores

– Exynos (ARMv7) with one 1.7GHz core

• Software environment
– Xen 4.4 + Linux 4.1

24

Compatibility

• Port two existing trust OSes on vTZ
– seL4 [SOSP’2009]

– OP-TEE [https://github.com/OP-TEE/]

• Porting effort
– Add description file to describe the device base addresses

• Base addresses of memory and devices

• Same as porting an OS on an ARM SoC

25

Application Overhead

 12

 13

 14

 15

 16

 17

4k 8k 16k 32k

Th
ro

ug
hp

ut
 o

f A
pa

ch
e

(M
B/

s)

Size of TCP buffer (Bytes)

Native
TZ

Xen
vTZ

 1

 2

 3

 4

 5

 6

128 256 512 1k 2k 4k 8k

Th
ro

ug
hp

ut
 o

f M
on

go
D

B
(K

op
s/

s)

Size of item value (Bytes)

Native
TZ

Xen
vTZ

26

Application Overhead

(a) (b)

GoHttps on ARMv7(a) and ARMv8(b) with different VMs.

N. :Native
TZ :TrustZone
X :Xen
vTZ :Our system

27

Conclusion
• Analyze security properties of TrustZone

• Combine TrustZone and virtualization to multiplex secure world for each guest
– SMM exclusively controls the memory mapping

– CFLock hooks all exceptions in the hyp mode

– SWS checks all switching between a VM and the VMM

– CIEEs to protect pieces of code in the hyp mode and exclude them from system TCB

• Small system TCB

• Compatible with existing trust OS
– Porting two trust OSes on vTZ

• Acceptable performance overhead

28

29

Thanks

Institute	of	Parallel	And	Distributed	Systems	(IPADS)
http://ipads.se.sjtu.edu.cn

