
Constant-Time Callees
with Variable-Time Callers

Cesar Pereida Garcıá
Billy Bob Brumley

Tampere University of
Technology Finland

• Enabling Cache-Timing Attacks

Outline

2

• Motivation
– Brief History of Cache-Timing Attacks

• Recipe for Side-Channel Attacks
– Step 1, 2, 3, 4 and 5

• End-to-End Cache-Attack
– TLS & SSH
– Crypto libraries

• Conclusions

Enabling Cache-Timing Attacks

3

https://source.ggy.bris.ac.uk/mediawiki/index.php?title=File:Memory-Hierarchy.jpg&limit=500

 Brief History of
Cache-Timing Attacks

 for Public Key
Cryptography
 in OpenSSL

4

0.9.7

5

2002

0.9.8

1.0.1

1.0.2

2004
2006

2008
2010

2012
2014

2016
2018

1.1.0

ECDSA DSARSA

ECDSA

DSA
RSA

O
p

e
n
S

S
L

 V
e

rs
io

n

Year

Cryptosystem

2005 - Percival (E+R/L1-D)2009 - Brumley & Hakala (P+P/LI-I)

2007 - Aciicmez et al. (SBPA/L1-I)

2008 - Aciicmez & Schindler (SBPA/L1-D)

2010 - Aciicmez et al. (P+P/L1-I)

2016 - Pereida García et al.
(F+R/Perf. Deg./LLC)

2014 - Benger et al.
(F+R/LLC/secp256)
2014 - Yarom & Benger
(F+R/LLC/Binary Field)
2015 - van de Pol et al. (F+R/LLC)
2016 - Allan et al.(F+R/Perf. Deg./LLC)

Cache-Timing Attacks for Public Key Cryptography

2016 - Yarom et al. (Cache-Bank Collision L1)

0.9.7

6

2002

0.9.8

1.0.1

1.0.2

2004
2006

2008
2010

2012
2014

2016
2018

1.1.0

ECDSA

DSA
RSA

O
p

e
n

S
S

L
 V

e
rs

io
n

Year

Cryptosystem

Relevant Changes Introduced due to Cache-Timing Attacks

2005: RSA EXP
● BN_FLG_EXP_CONSTTIME
● BN_mod_exp_mont_consttime

2007: RSA INV
● BN_mod_inverse_no_branch
● BN_div
● BN_FLG_CONSTTIME2012: ECDSA POINT MULT

● EC_GFp_nistp256_method: Constant-time
scalar multiplication (fixed window & masking)

● Research shifts to secp256k1 (wNAF)

2015: ECDSA FAST & MOD INV
● EC_GFp_nistz256_method
● BN_mod_exp_mont_consttime + FLT

 Recipe for Side-Channel
Attacks on Digital

Signatures

7

8

Recipe for a Side-Channel Attack

1) Take an algorithm that
uses confidential data.

2) Measure the side-channel
leakage.

3) Run the leaked data
through a signal processing
machine.

4) Convert sequences to bits
and combine with message and
signature.

5) Let it rest in a lattice for
some time.

Et voilà, you have a private
key.

 Step 1
 Take a primitive and an

algorithm that uses
confidential data

9

10

Signing:

Given:

Constant-Time Scalar by Point Multiplication

ECDSA

Note: Nonce k is recoverable if at least 3 bits are leaked for each signature.

Modular Inversion?

Modular Inversion (OpenSSL 1.0.1)

11

12

Binary Extended Euclidean Algorithm

Fact
Cache-Attack

OpenSSL
BBEA

Number of right-shifts on v

Number of right-shifts on u

Number and order of subtractions on v

Number and order of subtractions on u

Only one loop per iteration

U loop is the only loop that can be
executed during the first iteration

k is protected, i.e. padded with modulus
n

BN_rshift1

BN_usub

 Step 2
 Measure the

Side-Channel Leakage

13

Flush+Reload[1] on the BEEA

14

[1] Yarom, Yuval, and Katrina Falkner. "FLUSH+ RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack." USENIX. 2014.

BN_rshift1

BN_usub

Improved Performance Degradation

15

Objective: Identify the addresses with the highest impact
● Better probing
● Better degradation

1) Identify the candidate methods
and their memory addresses.

BN_mod_inverse → 0xE7940
BN_rshift1 → 0xE48E0
BN_usub → 0xD7B00
BN_uadd → 0xD7800
BN_rshift → 0xDDFC0

2) Degrade one memory
address at a time.

3) Count cache-misses and CPU
cycles using performance

counters (perf).

16

Setup and Attack Scenario

Setup
● Intel Core i5-2400

Sandy Bridge 3.10
GHz

● 8 GB memory
● Ubuntu 16.04 LTS

“Xenial” 64-bits
● OpenSSL 1.0.1u

 Step 3
 Apply Signal Processing

17

18

Signal Processing
Trace
● Template &

Cross-correlation
● Apply moving average.
● Raw → Clean
● Translate to LS sequence

LSLLSLSL...

 Step 4
 Recover Bits

19

20

Bit Recovery

LSLLSLSL... 01001010...

SLLLLL... 100000...

21

Bit Recovery

226
Sequences

Bits >= 3
Length
L=5

22

Bit Recovery

 Step 5
 Lattice Attack

23

24

Lattice Attack
Input parameters to Lattice:
● Bits recovered
● Messages
● Signatures

Lattice information:
● Dimension d + 2
● Implemented in Sage
● BKZ reduction (block size 30)

[8] Cabrera Aldaya et al. "SPA vulnerabilities of the binary extended Euclidean algorithm." Journal of Cryptographic Engineering (2016):
1-13.

 End-to-End Protocol
Attack

25

26

End-to-End Protocol Attack

• Crypto libraries are a prime target for CTA!
• We offered a patch to the libraries
• OpenSSL 1.0.1 development reached EOL starting January 2017.
• OpenSSL 1.0.1 shipped with Ubuntu LTS 12.04 and 14.04; Debian

7.0 and 8.0; and SUSE.
• Upgrade to OpenSSL 1.0.2 or higher.
• Otherwise, apply the patch!

27

Cryptographic Libraries

• Constant-time implementations need to be tested.
• The BEEA modular inversion enables practical

cache-timing attacks.
• The performance degradation technique improves

trace quality.
• Different key bit recovery approaches are possible.
• Cache-Timing attacks are increasing in popularity and

complexity every year.

28

Conclusions

 Thank you
 Questions?

29

