
Adaptive Android Kernel Live Patching

Yue Chen1, Yulong Zhang2, Zhi Wang1, Liangzhao Xia2, Chenfu Bao2, Tao Wei2

Florida State University1

Baidu X-Lab2

USENIX Security Symposium 2017

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Android Kernel Vulnerabilities

2

Apps

Java API Framework

Native C/C++ Libraries

Linux Kernel

Android Runtime

Hardware Abstraction Layer

TrustZone

Number of Disclosed Android Kernel Vulnerabilities

3

Problem: Old Exploits Remain Effective

Number of devices vulnerable to two root exploits as of Nov. 2016

4

ÅAndroid 5.0 released in November 2014
Å46.3% of devices run an older version in September 2016

Challenges

ÅOfficially patching an Android device is a long process Ą Third-party

Å Delayed/non-existing kernel source code Ą Binary-based

5

Challenges

Å Severely fragmented Android ecosystem Ą Adaptive

6

http://d.ibtimes.co.uk/en/full/1395443/android-fragmentation-2014.png

Solution

Third-party Binary-based Adaptive Kernel Live Patching

7

Key requirements:

Å Adaptiveness

ï It should be adaptive to various device kernels

Å Safety

ï Patches should be easy to audit

ï Their behaviors must be technically confined

Å Timeliness

ï Response time should be short, after disclosed vulnerability or exploit

Å Performance

ï The solution should not incur non-trivial performance overhead

Feasibility Study: Dataset

ÅStudied 1139 Android kernels

8

ÅMost kernel functions are stable across devices and Android
releases

ÅMost vulnerabilities triggered by malicious inputs

ÅMany functions return error codes
ïReturn a pointer Ą ERR_PTR

Gracefully return

Feasibility Study: Observations

9

Filter them

Overall Approach: Input Validation

10

KARMA

KARMA: Kernel Adaptive Repair for Many Androids

V Adaptive ς Automatically adapt to various device kernels

VMemory-safe ς Protect kernel from malicious (misused) patches

VMulti -level ς Flexible for different vulnerabilities

11

KARMA Design: Safety

ÅPatches are written in Lua, confined by Lua VM at runtime

ÅA patch can only be placed at designated locations

ÅPatched functions must return error codes or void
ïUse existing error handling to recover from attacks

ÅA patch can read but not write the kernel memory
ïConfined by KARMA APIs

ïPrevent malicious (misused) patches from changing the kernel

ïPrevent information leakage

12

KARMA Design: Multi-level Patching

ÅA patch can only be placed at designated locations
Level 1: Entry or return point of a (vulnerable) function

Level 2: Before or after the call site to a callee

e.g., copy_from_user

Level 3: Binary-based patch

Å76 critical Android kernel vulnerabilities
Level 1: 49/76 (64.5%)

Level 2: 22/76 (28.9%)

Level 3: 5/76 (6.6%)

13

KARMA Patch Example

Part of the official patch of CVE-2014-3153 (Towelroot)

14

KARMA Patch Example

15

-EINVAL

More complex examples in the paper

KARMA API

Available to patches

16

KARMA Architecture

17

Offline Patch Generation and Verification

Online Live Patching by KARMA Client

Offline Patch Adaptation

Patch A

18

