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Local Search

Goal

To make popular queries and their 
corresponding URLs available locally on 
users’ devices

Why its needed?

Caching popular search data avoids many 
round-trips to a server

• Reduces latency in web-browsing
• Useful for temporary network 

disruptions
• Enables new browser features
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Local Search with Privacy

Why is privacy needed?

• Local search is generated from user data

• Want differential privacy guarantees
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Algorithm 𝒜 is 𝜖, 𝛿 -differentially private iff for all neighboring 
databases 𝐷 and 𝐷′ differing in the value of precisely one user’s 
data, the following inequality is satisfied for all possible sets of 
outputs 𝑌 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒜):

Pr 𝒜 𝐷 ∈ 𝑌 ≤ 𝑒𝜖Pr 𝒜 𝐷′ ∈ 𝑌 + 𝛿



Local Search with Privacy

Why is privacy needed?

• Local search is generated from user data

• Want differential privacy guarantees

Why is differentially private local search hard?
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Differential Privacy Models

trusted curator model local model

• Each user privatizes their own data, 
then sends it to a central curator

• Requires less trust from users

• Central curator collects the data from 
all users, then performs privatization

• Most differentially private algorithms 
are in this model

Requires the users to trust the curator 
with their private data

Harsh utility trade-offs compared to trusted 
curator model algorithms
[Chan et al 2012; Duchi et al 2013; Kairouz et al 2014, 2016]



Hybrid Model

a more realistic privacy model



Users Have Heterogeneous 
Privacy Preferences
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Hybrid 
Model for 
Differential 
Privacy
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“Clients”
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Why a Hybrid Model?
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BLENDER

local search in the hybrid model



BLENDER Architecture
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BLENDER Architecture
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BLENDER Architecture
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Opt-in Group Algorithm

Two-phase approach: Discovery and Estimation

Partition users into two disjoint groups

Group A – Discovery phase

Group B – Estimation phase
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Opt-in Group Data: Discovery of Head List

For each distinct <query, URL> record 
from Group A’s data:
• Compute empirical probability

• Add Laplace noise to form noisy 
empirical probability

• If noisy empirical probability exceeds 
threshold, add record to the head list

[Korolova et al, 2009] 
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Opt-in Group Data Usage: Estimation

For each distinct <query, URL> record 
from Group B’s data and using the 
privatized head list:
• Compute empirical probability

• Add Laplace noise to form noisy 
probability estimate

• Compute the sample variance of the 
probability estimate

[Dwork et al, 2006]
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BLENDER: Client Group
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Client Data Reporting

2-stage k-randomized response [Warner 
1965]

1. Report the query truthfully with 
probability 𝑡,

otherwise, report a query at random

2. Report the URL truthfully with

probability 𝑡𝑞,

otherwise, report a URL at random
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Server Aggregating Client Data

• Collects privatized reports from 
all users

• Aggregates the privatized reports 
into empirical probability 
estimates for each record

• Performs denoising procedure to 
generate unbiased probability 
estimates and variance estimates
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BLENDER: Blending Stage
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𝜖, 𝛿 -differentially
private

𝜖, 𝛿 -differentially
private

𝜖, 𝛿 -differentially
private



Evaluation
Measuring the utility of BLENDER
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Experimental Datasets

# Users # Unique Queries # Unique URLs 𝛿

AOL  (2006) 0.5M 4.8M 1.6M 10-5

Yandex  (2013) 4.9M 13.2M 12.7M 10-7
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Measuring Utility

Normalized Discounted Cumulative 
Gain (NDCG)

• Standard measure of ranking quality

• 𝐷𝐶𝐺 = σ𝑖
2𝑟𝑒𝑙𝑖−1

log(𝑖+1)

• 𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

Ideal 𝐷𝐶𝐺

NDCG of NDCGs

1. Compute the NDCG for each query’s 
URL list, 𝑁𝐷𝐶𝐺𝑞𝑖

2. Generalized DCG for the query list:        

σ𝑖
2𝑟𝑒𝑙𝑖−1

log(𝑖+1)
⋅ 𝑁𝐷𝐶𝐺𝑞𝑖

3. Normalize by analogous Ideal DCG
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Comparison with Local Model  [Qin et al, CCS 2016]
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Comparison with Local Model  [Qin et al, CCS 2016]
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Caveat: Slightly different versions
of NDCG. See paper.



Effect of Opt-in User Percentage on NDCG
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Effect of Privacy Budget on NDCG
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Conclusions
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Conclusions
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Proposed a hybrid model for differential 
privacy

Constructed a blended approach within 
the hybrid model for local search

Achieved significant improvement on real 
world datasets with the blended 

approach



Future Work

• Improve on the sub-components of BLENDER to utilize state-of-the-art 
privatization methods

• Derive theoretical guarantees for the utility of BLENDER

• Reduce BLENDER’s reliance on distributional assumptions

• Develop algorithms in the hybrid model for other applications
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