BLENDER: Enabling Local Search with a Hybrid Differential Privacy Model

Brendan Avent¹, Aleksandra Korolova¹, David Zeber², Torgeir Hovden², Benjamin Livshits³

University of Southern California¹ Mozilla² Imperial College London³

Local Search

Goal

To make popular queries and their corresponding URLs available *locally* on users' devices

Why its needed?

Caching popular search data avoids many round-trips to a server

- Reduces latency in web-browsing
- Useful for temporary network disruptions
- Enables new browser features

Local Search with Privacy

Why is privacy needed?

- Local search is generated from user data
- Want differential privacy guarantees

Local Search with Privacy

Why

Algorithm \mathcal{A} is (ϵ, δ) -differentially private iff for all neighboring databases D and D' differing in the value of precisely one user's data, the following inequality is satisfied for all possible sets of outputs $Y \subseteq Range(\mathcal{A})$:

$$\Pr[\mathcal{A}(D) \in Y] \le e^{\epsilon} \Pr[\mathcal{A}(D') \in Y] + \delta$$

Local Search with Privacy

Why is privacy needed?

- Local search is generated from user data
- Want differential privacy guarantees

Why is differentially private local search hard?

Differential Privacy Models

trusted curator model

local model

- Central curator collects the data from all users, then performs privatization
- Most differentially private algorithms
 are in this model

- Each user privatizes their own data, then sends it to a central curator
- Requires less trust from users

Requires the users to trust the curator with their private data

Harsh utility trade-offs compared to trusted curator model algorithms
[Chan et al 2012; Duchi et al 2013; Kairouz et al 2014, 2016]

Hybrid Model

a more realistic privacy model

Users Have Heterogeneous Privacy Preferences

Firefox Browser Privacy Notice

Our pre-release versions (Beta/Developer Edition, Nightly, and TestFlight) may have different privacy characteristics. Pre-release versions automatically send Telemetry data to Mozilla.

Microsoft reminds privacy-concerned Windows 10 beta testers that they're volunteers

If you don't like it, don't participate

Allows some users to contribute in the Trusted Curator Model; others in the Local Model

Deta users we call "Opt-in" users users

Regular users we call "Clients"

Hybrid Model for Differential Privacy

BLENDER

local search in the hybrid model

BLENDER Architecture

BLENDER Architecture

BLENDER Architecture

Opt-in Group Algorithm

Two-phase approach: Discovery and Estimation

Partition users into two disjoint groups

Group A – Discovery phase

Group B – Estimation phase

Opt-in Group Data: Discovery of Head List

For each distinct <query, URL> record from Group A's data:

- Compute empirical probability
- Add Laplace noise to form noisy empirical probability
- If noisy empirical probability exceeds threshold, add record to the *head list*

[Korolova et al, 2009]

Opt-in Group Data Usage: Estimation

For each distinct <query, URL> record from Group B's data and using the privatized head list:

- Compute empirical probability
- Add Laplace noise to form noisy probability estimate
- Compute the sample variance of the probability estimate

[Dwork et al, 2006]

BLENDER: Client Group

Client Data Reporting

2-stage k-randomized response [Warner 1965]

- 1. Report the query truthfully with probability t, otherwise, report a query at random
- 2. Report the URL truthfully with probability t_q , otherwise, report a URL at random

Server Aggregating Client Data

- Collects privatized reports from all users
- Aggregates the privatized reports into empirical probability estimates for each record
- Performs denoising procedure to generate unbiased probability estimates and variance estimates

BLENDER: Blending Stage

 (ϵ, δ) -differentially

Evaluation

Measuring the utility of BLENDER

Experimental Datasets

	# Users	# Unique Queries	# Unique URLs	δ
AOL (2006)	0.5M	4.8M	1.6M	10 ⁻⁵
Yandex (2013)	4.9M	13.2M	12.7M	10 ⁻⁷

Measuring Utility

Normalized Discounted Cumulative Gain (NDCG)

Standard measure of ranking quality

•
$$DCG = \sum_{i} \frac{2^{rel_{i-1}}}{\log(i+1)}$$

•
$$NDCG = \frac{DCG}{\text{Ideal } DCG}$$

NDCG of NDCGs

- 1. Compute the NDCG for each query's URL list, $NDCG_{q_i}$
- 2. Generalized DCG for the query list:

$$\sum_{i} \frac{2^{rel_{i-1}}}{\log(i+1)} \cdot NDCG_{q_i}$$

3. Normalize by analogous Ideal DCG

Comparison with Local Model [Qin et al, CCS 2016]

How does BLENDER compare to having all users use the Local Model?

AOL dataset

Head list size: 10

Comparison with Local Model [Qin et al, CCS 2016]

How does BLENDER compare to having all users use the Local Model?

AOL dataset

Head list size: 10

BLENDER

- 5% "opt-in" users
- 95% "client" users

Caveat: Slightly different versions of NDCG. See paper.

Effect of Opt-in User Percentage on NDCG

How does BLENDER's utility depend on the size of the opt-in user group?

Yandex dataset

 $\epsilon = 4$

Head list sizes: 50, 100, 500

Effect of Privacy Budget on NDCG

How does BLENDER's utility depend on the privacy budget ϵ ?

Yandex dataset 2.5% opt-in, 97.5% client Head list sizes: 10, 50, 100, 500

Conclusions

Conclusions

Proposed a hybrid model for differential privacy

Constructed a blended approach within the hybrid model for local search

Achieved significant improvement on real world datasets with the blended approach

Future Work

• Improve on the sub-components of BLENDER to utilize state-of-the-art privatization methods

Derive theoretical guarantees for the utility of BLENDER

Reduce BLENDER's reliance on distributional assumptions

Develop algorithms in the hybrid model for other applications

BLENDER: Enabling Local Search with a Hybrid Differential Privacy Model

Brendan Avent¹, Aleksandra Korolova¹, David Zeber², Torgeir Hovden², Benjamin Livshits³

¹University of Southern California

²Mozilla

³Imperial College London