
Post Ops:
A Non-Surgical[1] Tale of Software,
Fragility and Reliability

Todd Underwood, Google

[1] No Systems or Software Engineers were harmed during the production of this presentation. Void in Guam, Alaska, Hawai’i, Puerto
Rico and the USVI or where prohibited. Engineer Subjects Review Board approved all procedures, all subjects were appropriately
consented.

Personal

Post Ops:
A Quirky, Cranky Call to Action
Systems Administration is finished. DevOps is a helpful band
aid. We need to move beyond the entire notion of
“Administration” and “Operations” in the field of computing
(software, systems and networking).

Let us stop doing the machines’ work for them.

Let us stop feeding the machines with human blood.

[For Internet-centric, software-built infrastructures. This probably doesn’t apply to factories, but then
factories never really applied to software, either.]

http://www.shorpy.com/node/4324 Multi-processing computing division, Bonus Bureau, Computing Division. Washington, D.C.,
USA. 1924. Shall we glorify this set of responsibilities, too?

T

O

I

L

http://www.shorpy.com/node/4324

http://themanicramblingsofaswede.wordpress.com/2009/07/16/upcoming-military-robot-could-feed-on-dead-bodies/
This blog may be more terrifying than the picture lets on.

http://themanicramblingsofaswede.wordpress.com/2009/07/16/upcoming-military-robot-could-feed-on-dead-bodies/
http://themanicramblingsofaswede.wordpress.com/2009/07/16/upcoming-military-robot-could-feed-on-dead-bodies/

http://billzeman.blogspot.com/2006/05/pretty-girls-and-robots.html

http://billzeman.blogspot.com/2006/05/pretty-girls-and-robots.html
http://billzeman.blogspot.com/2006/05/pretty-girls-and-robots.html

http://thegrumpyowl.com/2008/05/11/robots-will-eat-you/

http://thegrumpyowl.com/2008/05/11/robots-will-eat-you/
http://thegrumpyowl.com/2008/05/11/robots-will-eat-you/

A Bold and Surprising Set of Claims
…to make at a conference of/by/for SysAdmins. Apologies in
advance. I was asked to present. Angering or annoying the
audience is a happy coincidence. :-)

● I got my first systems gig in the mid-1990s.
● Grew up running Internet Services at an ISP (AS2901 anyone?)
● I’ve swapped tapes and run cable, I’ve written crontabs and automated

account creation across 5 Unices and WNT.
● I assembled datagrams by hand and calculated checksums on my fingers
● I did some good work and had fun! I think….

Acknowledged:
● Many of you lived through this time and similar environments
● We should re-look at that history with something other than nostalgia and

reverence

A Word About Google and Relevance
Google has challenges presenting at operations-centric
gatherings. We work on interesting stuff, but, there are always
questions:

● Too big?: Google scale is not your scale
● Talent-rich?: Massive amounts of software engineering

expertise per m2. Solutions may be impossible/irrelevant for
you.

● Privilege?: Already solved all the problems that you need to
solve

The truth:
We are generally engineers trying hard to solve interesting problems that
many others will face soon. Our successes, our failures and our
reasoning are generally useful, if applied judiciously.

Site Reliability
Engineering
A brief diversion into Googleland Production Engineering. This is
one useful way to approach these sets of problems, organizationally.

Site Reliability Engineering: A Mythical History
(This is not exactly what happened, but it’s somewhat True anyway)

● Google was (still is) cheapfrugal: costs that scale linearly (or
super-linearly) are bad when things get big
○ Applies to hardware
○ Applies to people: no “NOC”, no “sysops” in production where

possible.
● Software developers run their own code in production
● They hatedislike it, so they automate everything:

○ build, push, monitoring,
○ task restarting, task configuration and location,
○ distributed debugging, etc.

● Some are more production-oriented than others. These
become the first “Site Reliability Engineers.”

SRE is systems and software engineers who solve
production problems with software.

We are constructive cynics. Productive pessimists. Creative cranks. Alliterative as……. Nevermind.

SRE Basics
Keep the site up—whatever it takes
● "Site" == google.com
● Site unavailable? Our problem, whatever the reason
Work at a Large Scale
● Many services, lots of data, many machines
● Not so many people. People must scale sub-linearly to

services.

Balance competing demands
● Improve availability and reliability.
● Improve efficiency
● Take on new services (post-launch)
Solve production problems with software. It’s all just
software.

Post-Deployment Evolution

● Most of a system's
life is spent after
release

● Systems evolve
○ emergent behaviour

and interactions
with other systems

○ environment
changes

○ desired functionality
changes

SRE Organizational Structure
The SRE Organization is independent of business
units/divisions.

SRE teams are organized around a single service or a collection
of related services or technologies:

● Search Ads Serving
● Bigtable[1] Storage Service
● Payments
● Geo Serving
● Search

Services are jointly owned by development engineering and
SRE. Both can choose to extend or end SRE work on the
service.
SREs are in short supply and can easily work on other services.
[1] http://research.google.com/archive/bigtable.html

http://research.google.com/archive/bigtable.html

SRE—A New Role
● Unlike some other approaches, this is a role.
● To build an organization of scale you have to hire and train

people at scale.
● There were no SREs in the market—not a job yet.
● There were few SREs hidden among thousands of software

developers and senior sysops already at Google.
● None of them knew they might be SREs (or that they might

want to be SREs).
● We weren’t positive we knew what we were doing:

○ organizationally
○ culturally
○ structurally within google

● This has all taken some time. Things are somewhat sorted
now.

SRE Catches On
Linkedin has over 800 postings for a “Site Reliability Engineer” at

● Apple
● Akamai
● Best Buy
● Salesforce
● VMWare
● Twitter
● Tumblr
● Microsoft
● Facebook

This is obviously a popular role now.

Hold That Thought
More on SRE shortly.

Let’s look at the world outside of Google that may seem more
familiar.

Whither DevOps?
Isn’t SRE just DevOps. Also, doesn’t the name “DevOps” just sound
way better and more clear than SRE? Is this just more evidence that
Google hasn’t always marketed our technology as well as we do
now? :-)

What About DevOps?
● Devops: a cultural and professional movement.[1]

● A buzzword
● Automation, solving production problems with software
● Communication, collaboration between application

developers and infrastructure/operations/IT

Real problem: Siloed software development and production.
Solution: Break down the silo:

● Embed operations in software development
● Establish cultural value of communications
● Build software skills on the operations side
● Solve production problems with software, not labor

[1] Adam Jacob, Velocity 2010, http://www.youtube.com/watch?v=Fx8OBeNmaWw

DevOps and the Validation of Operations

DevOps dramatically improves practices and organizational
structure around operations. But it does not forcefully eliminate
operations.

Look at two issues:
● Organizational Structure
● Role of Operations

Each of these contributes to the success, and limitations of
DevOps

Organizational Structure
Classical: (http://dev2ops.org/2010/02/what-is-devops/)

DevOps:

(http://dev2ops.org/2010/11/devops-is-not-a-technology-problem-devops-is-a-business-problem/)

http://dev2ops.org/2010/11/devops-is-not-a-technology-problem-devops-is-a-business-problem/

Organizational Structure
DevOps is a way of being and doing. Not a role.

Organizations that practice DevOps have a variety of structures,
including, traditional:

● Application Development
● Operations
● Test
● Security

...And a variety of different integrations

Operations: Valued or Vilified
Valued.

DevOps strives to improve operations as a discipline, function
and role.

DevOps strives to integrate operational concerns into business
practices and software skills/capabilities into operations.

Operations is where the software meets the users. Operations
staff working closely with (and integrated into) development
teams.
Operations is central.

Shout Out: Adrian Cockcroft’s “NoOps”
Adrian Cockcroft’s “NoOps”[1]

Principle: Software developers work directly with production. No
operations organization. Automation removes operational tasks
entirely.

Platform as a Service: PaaS ; No operations required.

Implicit assumption (me, not Cockcroft):
● Services/jobs not VMs/machines
● scalable/programmable cluster OS that works
● [machine] configuration is the wrong level of abstraction
● configuration management is one right problem

[1] http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html

http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html

Operations Research,
{Sys|Net}Ops
The historical, academic part of the talk you can ignore, perhaps with
some useful tidbits.

A Brief Diversion in History:
Operations Research / Operations Management

● Basic principles:
○ statistical and process expertise to improve some

process (often manufacturing).
○ maximum yield of some metric given a set of constraints

● Widespread application outside of manufacturing:
○ War
○ Critical path analysis
○ Network fault analysis
○ Scheduling
○ Project Management

Software-based production? What are the constraints?

OR: Probably Irrelevant for Software
● “Production” in software systems simply lacks the constraints

of factory production
● OR critically relevant for the physical infrastructure stack

○ Warehouse-scale computing
○ External adjacencies (power, fibre, other companies)

unamenable to quick change
○ That’s a different talk

● Relevant for maximizing SLAs in the short run
○ System has constraints (for now)
○ Small changes can make big differences
○ Constraints shouldn’t be enshrined in costly analysis

It’s all a simple matter of software engineering. Many software developers make mistakes and
make them slowly. We should type the right stuff faster.

Software Organizations Should Nix Operations

● Operations comes from the notion of extracting value out of a
fixed set of assets.

● System/network operations:
○ Fixed asset (minicomputer, mainframe, RS6k, BFR, T640

name your poison)
○ Depreciating rapidly
○ Extract value by keeping it running

What is the fixed asset being depreciated in EC2? As a cluster
application service engineer at Google, what am I
“administering”?

Abstractions/software changes the cost of change.[1]

[1] 3D printing will ultimately make factories more like software. It’s more important to try figure this out for our world than to roll out OR to our
world.

Production vs. Operations
...of babies and bathwater

Operations culture and practice has many admirable
characteristics we must not lose:

● Fast, careful troubleshooting
● Ethic of caring about production, availability, users
● Ethic of privacy, security
● Constructive pessimism brought to capacity planning,

outage prediction, scaling, future failures in general
● <Insert your best “why I’m proud of being a sysadmin”

here>

Production engineering practices and systems should recreate
these values effortlessly.
Organizations that move post-Ops should embody these values.

Ops->DevOps->{NoOps|PostOps}

● Ops separate from everything else is terrible (wall of
confusion).

● Embedded ops into other teams is a good start but not far
enough.

● Clueful Management is mandatory
○ Some companies clearly have very technical

management
○ If your management cannot understand your job, then

either your job or your management don’t matter.
● Need just enough operations to identify new problems and

prioritize development. Cap ops work (50% or less?).
● Every other aspect of operations should be eliminated. With

prejudice.

Burden of proof: Operations. Why do we want to preserve this specialty and expertise?

Clusters, Jobs, Tasks
Oh, my! What does a systems engineer or software engineer do in
the PostOps/NoOps age?

A Possible Future for Production
Platforms

● hardware selection/custom building
● datacenter selection/building/operations
● power work, physical infrastructure, hardware operations

Infrastructure Software Engineering
● server/custer OS development/testing
● network/storage/naming/shared services development

<Insert SRE/Production Software Engineer here>

Application Development / Application Administration

Job/Role Counts
● Platforms

○ Bimodal distribution: large numbers of unskilled
operators, tiny numbers of superskilled platforms
engineers

● Infrastructure Software Engineering
○ It depends… are we going to innovate?
○ Likely: Huge opportunities here for people who have

excellent systems software skills
● Systems Administration: The middle that gets squeezed
● Production Software Engineering/SRE

○ Small, real niche. Important but unlikely to grow
● (Distributed) Application Development

○ Huge. You might think it’s a long way down the road to
the chemists, but that’s just peanuts compared to this.

Infrastructure: Google datacenter computer in Iowa

Infrastructure: Cooling systems in Google Datacenter in
Georgia

Systems/Production/Operations
Babies
● Production ethic
● Troubleshooting / problem

solving
● Building Automation Systems
● Job/system/intent-based

configuration management
● Monitoring systems and

implementations
● Release engineering /

canarying / testing / roll-out
● Capacity planning
● SLA definition/monitoring
● Constructive cynicism

Bathwater
● Rote/repeatable work
● Automatable work
● One-offs
● (OS) configuration

management
● Logging in to machines
● Processing individual files
● Heroism

SRE as a Separate Organization/Role
Reliability engineering should pervade your entire
software/infrastructure/IT/operations organizations. No one
disagrees.

Hegelian Dialectics
Thesis: New Version Shipped!
Antithesis: Current Version Fixed!
Synthesis: New Version Fixed and Shipped!

We found that independence of SRE matters and works. Other
organizational solutions may work.

TL;DR
● LifeThe industry moves pretty fast. If you don't stop and look

around once in a while, you could miss it.[1]

● Operations tasks for sys admins are, and should be, going
away.

● Sys admins should massively improve software skill/attention
and either:
○ Build software for infrastructure, or
○ Do production software engineering (SRE)
○ Do something else they love

● Drop the nostalgia of the earlier days. We didn’t know what
we were doing, no matter how fun it was. We should not
want to go back.

● Let’s invent a better future.

[1] Ferris Bueller’s Day Off. But you knew that, already, obviously.

A cute kitten to distract the audience.

Questions? Kvetches?
Rotten Tomatoes?

