Cosh

Clear OS data sharing in an incoherent world

Andrew Baumann'’ Chris Hawblitzel® Kornilios Kourtis®
Tim Harris? Timothy Roscoe?

" Microsoft Research SETH Zurich *Oracle Labs

Motivation: heterogeneous multicores

* Accelerators, co-processors, offload engines
— Discrete GPGPUs
— AMD Fusion
— Intel MIC
— ARM big.LITTLE

Intel MIC prototype

e 32 cores x 4 threads

e X86 + extensions

Target platform

Nehalem m Knights Ferry
(8 cores) (32 cores)

Knights Ferry
(32 cores)

Nehalem
(8 cores)

)

e 4 NUMA domains
3 “islands” of cache-coherence

Breaks existing OS assumptions

* Core uniformity
— Performance properties
— Instruction set architecture

* Global, cache-coherent shared memory
— Used for OS data structures

* How can we extend one OS across all cores?

Possible OS models

Cluster-on-a-chip

Avoid changing the OS

Treat as “devices”,
hide behind driver API

One OS per island

Paper over the gaps at
application/runtime level
— CUDA, OpenCL, etc.

Multikernel

It’s a distributed system!
Base OS on message passing

— Don’t assume shared memory

Single OS across all cores

— Process management

— File system

— Networking

— Inter-process communication

e.g. Barrelfish

... but sharing data is useful!

e Particularly for bulk data
— |/0O buffers, networking, etc.
— Computations on large data

e Platform specific — don’t want to expose it
* Need an abstraction: Cosh

Why is this hard?

* Between any pair of cores, may have:
— Cache-coherent shared memory
— Non-cache-coherent shared memory

— No shared memory

* Different mechanisms to transfer data
— Page remapping (sharing)
— DMA controllers (copies)

Sender
requires

RW

R*

R*

Transfers

Sender
retains

NO
access

RO

Same

RW: Read/Write, RO: Read-Only, R*

Receiver
gains

RW

RO

RW
copy

: RW or RO

Design Principles:

* Rights never upgraded
— No RW sharing

e All transfers can be

implemented as copies
— Permits DMA
— Fast small transfers

* Page mappings
established through

transfer
— Permits optimizations

Making it practical

1. Weak transfers
— Permit efficient use of shared memory

2. Aggregates

— Avoid page-granularity restrictions

Weak transfers

* Changing memory permissions is costly
— Update page tables, TLB shootdown, etc.

* Not always necessary (e.g., trusted services)

 Weak transfers permit implementation to
defer permission changes

— e.g. sender of a weak share may retain write
permissions, but is trusted not to do so

Aggregates

* Page-granularity doesn’t work for everything
— Byte-oriented APIs (e.g., POSIX read/write)
— Differing page sizes

* Cosh adds high-level aggregate abstraction
— Byte-granularity buffer access, transfers
— Derived from 10-Lite

* Aggregate structure is not maintained across
transfers

Trivial example: pipes

void pipe write(wpipe *pipe, cosh_agg *agg) cosh_agg *pipe_read(rpipe *pipe)
{ {
cosh_agg transfer(agg, pipe->dest, ce
COSH_MOVE, cosh_agg receive(pipe->src, &agg,
COSH_TRANSFER_STRONG) ; &mode, &flags);
cosh_agg decref(agg);
} if (mode != COSH_MOVE

|| (flags & COSH_TRANSFER_WEAK)) {
// protocol error by sender

}

return agg;

}

* Untrusted sender: strong transfer
e Zero-copy (where permitted)

Real example: file system

* Aggregates for POSIX read()/write()

— Zero-copy wWhere appropriate

. READ
FS service (WEAK SHARE)

WRITE

FS service (STRONG SHARE) [Eeti ~ Client

* Works exactly the same on MIC cores

14

Prototype implementation

Ported Barrelfish OS to MIC
Heterogeneous system of x86 and MIC cores

— Sharing where possible
— DMA between MIC and PC

“Asynchronous C” (AC) language [00PSLA’11]
— Lightweight extensions to C for asynchrony

Simple user-space implementation
— Not performant

Latency (kcycles)

w b U
o O O

Transfers between host cores

——Copy
—*-Strong move

——\Veak move

Wi+ -

0 20 40 60 80 100 120
Size (kB)

16

Latency (kcycles at host)

DMA transfer to Knights Ferry

800

o O
o O

o
o

*—o & & o—

N W b U1
)
o

o
S
&

—*—(0One-way transfer latency

=
o
o

—*—Pipelined mean inter-arrival time

o

0 20 40 60 80 100 120
Size (kB)

17

Panorama stitching

* Capture trace on Linux, replay it on Barrelfish

— RamFS

— CoshFS
File System M Co-processor (ms)
RamFS 145 ;
CoshFS 144 49742

CoshFS + cache 2464

18

Related work

* High-performance I/O systems

— Shared-memory optimisations are similar to
previous bulk data transport systems

— |O-Lite inspired our aggregate API
* OS support for specialised cores

— Research OSes picked message-like semantics;
e.g. Copy [Hydra, Barrelfish] or move [Helios]

— Other work has been driven by limitations of GPUs
[PTask, GPUfs]

Conclusion

* Cosh: new abstraction for managing bulk data

e Used within OS for:

— Shared file system
— Inter-process communication

— Networking, etc.

* Can exploit shared memory; doesn’t rely on it

BACKUP SLIDES

Aggregate API

alloc(len, flags) -> agg

incref(agg)

decref(agg)

getlen(agg) -> length

getrights(agg) -> rights

iter start(agg, read|write, offset) -> iter
iter_next(iter) -> addr, length

iter _end(iter)

concat(aggl, agg2) -> agg

select(agg, offset, length) -> agg

find related(agg, minrights) -> [agg]
downgrade(agg, rights)

transfer(agg, dest, transfer_mode, flags)
receive(src) -> agg, transfer_mode, flags

