On Controller Performance in Software-Defined Networks

Amin Tootoonchian
Sergey Gurbanov
Yashar Ganjali

Martin Casado
Rob Sherwood
Background

Why Controller Performance Matters?

Reactive flow-based proposals have tiny per-event computation.
- e.g., Ethane, NOX forwarding.
- Controller is in the way...

Poor performance motivated:
- DIFANE: proactively push state.
- DevoFlow: reduce ctrl load.

Ideally:
overhead(req. handling) << compute(app)
Software-Defined Networks

Decouple control plane from forwarding elements.

Control apps run on top of controller(s).
 • e.g., routing on NOX.

Apps perform & scale differently.
Controller Performance

How fast controller delivers:
 • requests to app.
 • responses to datapath.

How many requests it handles.
 • assuming negligible per-request computation.

Controller overhead regardless of control logic.
Why Controller Performance Matters?

Reactive flow-based proposals have tiny per-event computation.

- e.g., Ethane, NOX forwarding.
- Controller is in the way...

Poor performance motivated:

- DIFANE: proactively push state.
- DevoFlow: reduce ctrl load.

Ideally
overhead(req. handling)<<compute(app)
Background

Software-Defined Networks
- Decouple control plane from forwarding elements.
- Control apps run on top of controller(s):
 - e.g., routing on NOX.
- Apps perform & scale differently.

Controller Performance
- How fast controller delivers:
 - requests to app.
 - responses to datapath.
- How many requests it handles,
 assuming negligible per-request computation.
- Controller overhead regardless of control logic.

Why Controller Performance Matters?
- Reactive flow-based proposals have tiny per-event computation.
 - e.g., Ethane, NOX forwarding.
 - Controller is in the way...
- Poor performance motivated:
 - DIFANE: proactively push state.
 - DevoFlow: reduce ctrl load.

Ideally
overhead(req. handling) << compute(app)
Cbench: Flow Setup Benchmark
Cbench
Modes of Operation

Delay:
- Minimum response time
- One packet on the fly

Throughput:
- Maximum throughput
- No limit on packets on the fly

Hybrid:
- Tunable # of packets on the fly
Throughput and delay are related (Little's law)

$$\text{avg}(\text{delay}) = \frac{\text{avg}(\text{onfly}_\text{req})}{\text{avg}(\text{xput})}$$

We use it to verify our results.
Benchmark Setup

Machines:
 • 8x2GHz CPU
 • 4GB DDR2 RAM

Tests:
 • Packet size: 82 bytes
 • Control bandwidth: 2Gbps
 • 32 switches, 4 threads

Controllers:
 • NOX, NOX-MT, Beacon, Maestro
Cbench:
Flow Setup Benchmark

Modes of Operation:
- Delay: Minimum response time
- Throughput: One packet on the fly
- Maximum throughput: No limit on packets on the fly
- Hybrid: Tunable # of packets on the fly

Benchmark Setup:
- Machines: 8x2GHz CPU, 4GB DDR2 RAM
- Tests: Packet size: 82 bytes, 2Gbps
- Controllers: NOX, NOX-IMT, Beacon, Maestro

Cbench
NOX performs poorly.
 • 30k rps with 10ms delay.

NOX-MT: attempt to fix NOX.
 • Batch I/O handling.
 • Multi-threaded.
 • ... leaves many issues.

NOX-MT is far from perfect!
Controller Throughput & Response Time

Minimum Response Time
(i.e., pkt on fly=1)

Between 10-15 microseconds
Minimum Response Time (i.e., pkt on fly=1)

Between 10-15 microseconds
Best Xput & Worst Delay For Various Ctrlrs (i.e., unlimited outstanding requests)

Largest gain from batching.

Large buffers make this happen!
Largest gain from batching.
Worst-case Delay

Large buffers make this happen!
Best Xput & Worst Delay For Various Ctrlrs (i.e., unlimited outstanding requests)

Largest gain from batching.

Large buffers make this happen!
NOX-MT's Performance Under Different Load Levels

Throughput

Delay CDF with 8 Threads

Doubling reqs: slightly better xput

Doubling reqs: doubles delay
Doubling reqs: slightly better xput
Delay CDF with 8 Threads

Doubling reqs: doubles delay
NOX-MT's Performance Under Different Load Levels

Throughput

Doubling reqs: slightly better xput

Delay CDF with 8 Threads

Doubling reqs: doubles delay
Controller Throughput & Response Time

- Minimum Response Time (i.e., pkt on fly=1)
 - Between 10-15 microseconds

- Best Xput & Worst Delay For Various Ctrlrs (i.e., unlimited outstanding requests)

- NOX-MT's Performance Under Different Load Levels
On Controller Performance in Software-Defined Networks

Amin Tootoonchian
Sergey Gurbanov
Yashar Ganjali

Martin Casado
Rob Sherwood
SDN controllers are no longer in the way of control apps.

Throughput and response time should be reported together.

Latency is the important metric.

The new NOX release is based on NOX-MT.
Thanks!

On Controller Performance in Software-Defined Networks

Amin Tootoonchian
Sergey Gurivanov
Yashar Ganjali

Martin Casado
Rob Sherwood

NOX-MT

NOX performs poorly.
- 30k rps with 10ms delay.

NOX-MT: attempt to fix NOX.
- Batch I/O handling.
- Multi-threaded.
- ... leaves many issues.

NOX-MT is far from perfect.