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Scientific Discovery: Two-Step Process
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Traditional Scientific Simulation Setup

Simulation Nodes
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Large-scale leadership computing applications

Astrophysics, climate modeling, combustion and fusion applications

produce big-data

Application Analysis data genera- | Checkpoint data gener-
tion rate (per node) ation rate (per node)

CHIMERA 4400 KB/s 4400 KB/s

VULCUN/2D 2.28 KB/s 0.02KB/s

POP 16.3 KB/s 5.05KB/s

S3D 170 KB/s 85 KB/s

GTC 14 KB/s 476 KB/s

GYRO 14 KB/s 11.6 KB/s

GTC produces ~30TB output data per hour at-scale.




Traditional Scientific Data Analysis Approach

Simulation Nodes

Regex matching,

statistics collection,
clustering,
compression, etc.

Parallel File System Offline Data Analysis Cluster
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Problems and Challenges

Offline approach to data analysis involves " o o ) _
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Offline approach to data analysis involves
multiple rounds of I/0, causing

-Excessive data movement

-Extra energy cost



"Energy-cost for data movement at Exascale is
likely to be of the same order of computation
cost, if not more!"

-- Exascale Computing Study, 2008
Principle Investigator: Peter Kogge



Using simulation nodes for data analysis not
acceptable

- High CPU allocation cost on a Supercomputer
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Traditional Scientific Simulation Setup

Simulation Nodes
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Active Computation on SSDs

Staging ratio = 4

Q009099 &

Scientific data analysis performed on SSD controllers
in-parallel with simulation without affecting it
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Enabling Trends for Active Flash

g SSDs now being adopted in Supercomputers (e.g. Tsubame, Gordon)
higher 1/0 throughput and storage capability

SSD controllers becoming increasingly powerful

27

multi-core low-power processors

Idle cycles at SSD controllers

a7

I/0 behavior of scientific workloads bursty in nature

In-situ analysis inherently more energy efficient

07

reduction in data movement cost



An Alternative Approach (Analysis Node Approach)

Staging ratio = 4

‘

Data analysis performed on dedicated compute nodes
typically not preferred in Supercomputer setting

Parallel File System



This work answers the following:

If SSDs are deployed with only /0 performance in mind,
Y then is active computation even feasible?

Will additional SSD provisioning be required?
]

Will active computation slowdown the main simulation nodes?

How much energy and cost saving can Active Flash bring?
_
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Active Computation Feasibility

Modeling SSD Deployment without Active

Computation Support
Multiple constraints: E@J w
Capacity simulation nades sare cutgis
+ Enough S8Ds to sustain ene putput burst l::l.f. 'T.S?ﬁ,‘}'jfﬁ.'f.““f.‘.‘

Performance

+ High 1/0 bandwidth to 55D space i i> Ef‘ri
- Fast restart from application checkpoints i Ea.-m..-
write durability

+ 55D write endurance limits

Staging Ratio
How many simulation nodes share one common SSD?

g g 6 Staging ratio = 4

Staging ratio determined by the most restrictive constraint
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Modeled Jaguar Supercomputer consists of 18000 nodes
Staging ratio of 10 means1800 S5Ds
Active Flash Model

CHIMERA| VULCAN | POP | 83D | GTC | GYRO)|
Reapocin (32 GB) | L [ 3571 233 |18 [ 6 166
Regpueire (64 GR) | 1 4500 461 36 12 333
Rhanduidth 25 I 20 [ [29 |2
Rendusnce 1 2268 245 20 10 204
Revean 4 | 896218 4054 | 240 | 42 1758 |

Staging ratio 10 seems to work well for all
applications except CHIMERA

Modeling Active Computation Feasibility

Data Analysis Kernels
Statistics Collection

simulation Applications
CHIMERA
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oI r_ms_:erpr“mng An analysis kernel needs to meet a "threshold compute
GYRD Clustering

I 'E ilifﬁ throughput" to be placed on 55D controllers
Relatively less compute intensive kernels better suited (e.g. regex matching)
for active computation
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Less computation intensive -= high compute throughput

Dependent on multiple factors: simulation data production rate, staging ratio,
1/ 0 bandwidth, ete.

Feasibility of the Analysis Node Approach

Finding: Most data analysis kernels can be
placed on 55D controllers without
degrading simulation |::"'I'-.\|'*1|.

Finding: Additional S5Ds are not required

for supporting in-situ data analysis on SSDs. . . . .
pportine . Y Finding: Analysis node approach is feasible

at higher staging ratios, but at additional
infrastructure cost (see paper)




Modeling SSD Deployment without Active
Computation Support

Multiple constraints: G ’ ‘ ’

Capacity Simulation nodes store output
data to SSD equipped nod
- Enough SSDs to sustain one output burst (n;’;‘ . dai‘i?;ﬁ‘;ﬁ,sﬂ‘;e‘iﬁ
Performance
» High 1/0 bandwidth to SSD space /t[ﬂ
- Fast restart from application checkpoints s s
Parallel File System
Write durability

 SSD write endurance limits



Staging Ratio
How many simulation nodes share one common SSD?
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Staging ratio determined by the most restrictive constraint
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Modeled Jaguar Supercomputer consists of 18000 nodes

Staging ratio of 10 means1800 SSDs

Active Flash Model
CHIMERA| VULCAN | POP | S3D | GTC | GYRO
Reapacity(32GB) | 1 2571 233 18 6 166
Reapacity(64GB) | 1 4500 461 36 12 333
Rpandwidih 29 29 29 29 29 29
R ondurance 1 2268 245 20 10 204
Ryostart 896218 4054 | 240 42 1758

Staging ratio 10 seems to work well for all
applications except CHIMERA




Modeling Active Computation Feasibility

Simulation Applications g g 3 ? 5 3 3 Data Analysis Kernels
CHIMERA 0 & Statistics Collection
VULCUN PCA

POP Data analysis tasks need to finish before Grep

33D next wave of data arrives at SSDs GZip

GTC * Fingerprinting
GYRO o Clustering

iy

Relatively less compute intensive kernels better suited (e.g. regex matching)
for active computation

Less computation intensive -> high compute throughput

Dependent on multiple factors: simulation data production rate, staging ratio,
1/0 bandwidth, etc.



Simulation Nodes Active Flash Nodes Simulation Nodes
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Feasibility of Active Flash Approach
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Feasibility of Active Flash Approach
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Feasibility of Active Flash Approach
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Feasibility of Active Flash Approach

Ll Liliy

1]

L lllll|n a1

Ll llll]'.l

L aauul

1000
. 100 E
= -
.
=
20
=
2
=
F
2
=
o,
g
o
U |
0.01
0.001

20 40 60 80

Staging Ratio

100

Mean

Grep

Transpose
PCA ——
Gzip

Fingerprint

Kmeans
S3D —-B—




Feasibility of Active Flash Approach
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Finding: Most data analysis kernels can be
placed on SSD controllers without
degrading simulation performance




Finding: Additional SSDs are not required
for supporting in-situ data analysis on SSDs,

beyond what is needed for sustaining the /0
requirements of scientific applications
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Feasibility of Analysis Node Approach
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Finding: Analysis node approach is feasible
at higher staging ratios, but at additional
infrastructure cost (see paper)



Active Computation Feasibility

Modeling SSD Deployment without Active

Computation Support
Multiple constraints: E@J w
Capacity simulation nades sare cutgis
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Performance

+ High 1/0 bandwidth to 55D space i i> Ef‘ri
- Fast restart from application checkpoints i Ea.-m..-
write durability

+ 55D write endurance limits

Staging Ratio
How many simulation nodes share one common SSD?
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Staging ratio determined by the most restrictive constraint
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Active Flash Model
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applications except CHIMERA

Modeling Active Computation Feasibility

Data Analysis Kernels
Statistics Collection

simulation Applications
CHIMERA
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Less computation intensive -= high compute throughput

Dependent on multiple factors: simulation data production rate, staging ratio,
1/ 0 bandwidth, ete.

Feasibility of the Analysis Node Approach

Finding: Most data analysis kernels can be
placed on 55D controllers without
degrading simulation |::"'I'-.\|'*1|.

Finding: Additional S5Ds are not required

for supporting in-situ data analysis on SSDs. . . . .
pportine . Y Finding: Analysis node approach is feasible

at higher staging ratios, but at additional
infrastructure cost (see paper)




Energy and Cost Saving Analysis

"Active Flash" Energy Modeling

Modeled after Samsung PM830 SSD

Total energy consists of multiple components

SSD energy during 1/0, compute, and idle periods
Data movement energy cost in the interconnect

Application: POF Applicaton: 1t
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Finding: Active Flash is more energy and cost efficient
than other approaches in many cases

"Offline" and "Analysis Node"
Approach Energy Modeling

Modeled after Inter Core i7 processors
Assumed idle when not doing data analysis

Optimistic modeling
cooling, assembling and installation costs ignored
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"Active Flash" Energy Modeling

Modeled after Samsung PM830 SSD

Total energy consists of multiple components

SSD energy during 1/0, compute, and idle periods
Data movement energy cost in the interconnect



"Otfline" and "Analysis Node"
Approach Energy Modeling

Modeled after Inter Core i7 processors
Assumed idle when not doing data analysis

Optimistic modeling
cooling, assembling and installation costs ignored



Application: POP

Energy Expense
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SSD deployment, even without active computation, saves energy
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Infrastructure and Energy cost:
All five applications run continuously for 2 years (each application for 146 times, 24
hour long simulation time) Staging ratio of 10: 1800 SSDs in our 18000 node system

Staging Infrastructure | Energy Total Feasible
Ratio Cost ($) Bill ($) Cost ($) Applications
Active Flash Model
10 180,000 —19,131 | 160,866 all
30 & 300 | — — — none
Analysis Node Model
10 1,818,000 566,375 | 2,384,375 | all
30 606,000 158,193 | 642,993 all, w/o GTC
300 60,600 31,072 67,432 all, w/o GTC, S3D

Finding: Active Flash is more energy and cost efficient
than other approaches in many cases
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"Active Flash" Energy Modeling

Modeled after Samsung PM830 SSD

Total energy consists of multiple components

SSD energy during 1/0, compute, and idle periods
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ActiveFlash Prototype based on OpenSSD Platform

Prototype demonstrates the viability of our approach
Changes only in the FTL, no hardware changes

Preemption based scheduling

See paper for the details and evaluation results

read / write

data analysis SSD
requests v

SSD controller

Y, data analysis
Host // LBA on Flash FTL



Conclusion

Active computation on SSDs enables energy-efficient in-situ data-analysis in
Supercomputing

In most cases, Active Flash does not require extra SSDs
Active Flash may even help cut SSD deployment cost by reducing electricity bill

Active Flash for scientific data analytics viable with OpenSSD



Thank Youl!
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