Capacity vs Efficiency

Building a Globally Scalable Cloud Database

SRECon 2022, Sydney Daniel Marshall <djmarshall@google.com>

\Y[=

Electrical engineer turned SRE at
Google Sydney

| work on Google Cloud Firestore

If you want to chat more about this
topic, come find me after

Capacity vs Efficiency

Capacity — provisioning sufficient resources to handle incoming request load

Efficiency — minimising the total cost of the system

Case Study: Google Cloud Firestore

Google Cloud Firestore is a fully scalable NoSQL
database where you only pay for what you use.

Corollaries

e Fully scalable = we must be able to serve any
amount of traffic, at any time

e Pay for use = we pay for everything else

Capacity

Autoscale Everything

Autoscaling is the first step

Improves reliability and toil

— —

Autoscale horizontally and vertically

Autoscaling Signals

Choose one metric to scale on
Align your bottlenecks with your scaling signal

(Marginally) overprovision everything else

Traffic Patterns

Flat Diurnal Slow ramp-up

AVAVAV

Traffic spike Bulk workload

Where possible, control the ramp-up speed

Choosing Your Headroom

Reaction
Window :<—>-
|
| 1 Headroom
:
|
|
I
|
|
1
Capacity
Load

Efficiency = 100% — max(traffic_spike)

Stockout Resilience

Stockout: underlying platform runs
out of capacity

Use as many availability zones and
regions as you can

Build capacity agility

Provisioning For Failover

Active/passive N+1
Zone 1 Zone 2 Zone 1 Zone 2 Zone 3
100% 0% 66% 66% 66%

All failover models are wrong. Test your failovers!

Efficiency

Tuning The Autoscaling

Autoscaling Target

Tuning The Autoscaling

Reaction Window Stabilization / decay period
-« <
|

Capacity
Load

Tuning The Autoscaling

Reaction Window Stabilization / decay period
-« <
|

1
|
|
M ienc

Capacity
Load

Load Balancing

Good load balancing Poor load balancing

Max

Load

Servers

Efficiency = 100% — max(traffic_spike) - load_imbalance__

Probability Distributions

Efficiency = 100% — max(traffic_spike) + load_imbalance _

Efficiency = 100% - P__ (traffic_spike + load_imbalance _)

Efficient Failovers

)
N+1: Increase the N!
o N=1 50% efficiency loss
. 80% 80% 80% 80% 80%
e N=4 20% efficiency loss
Active/Passive
e Use lower SLO / spot instances A

e Underprovision and scale 100/100 0/80

Efficiency = 100% — P__ (traffic_spike + load_imbalance
failover capacity)

max-mean

Batch Traffic

Key observation: Batch traffic is latency tolerant

e Splitit out

User-facing
capacity

e Uselower SLO
/ spot instances

___________ - = = - Batch capacity

e Run it hotter

Finding The Right Shape

Instance Type

RAM

CPU

Bigger Is Better

Job with fewer, bigger tasks

h Headroom

Variable

Headroom

Variable

Headroom

Variable

L f =

~ <2h

— 2V

Savings

Resource Tradeoffs

Byte/$: HDD > SSD > RAM
10/$: HDD < SSD < RAM

For GC languages: CPU vs RAM

Bytes

IOPS

Icons by Smashlcons from www.flaticon.com

Handling Overload

Overload And Efficiency

P mmmm T T T T T T i 1 Headroom
A -

Capacity
Capacity (overload tolerant)
Load

Understand Your Limits

Peak
efficiency ~ ————

Efficiency
<~ breakdown

Successful requests / sec

'Safe’' CPU < Increased latency, errors

0% 25% 50% 75% 100%

CPU Utilization

Efficiency = safe_cpu% — P__ (traffic_spike + load_imbalance
failover_capacity)

max-mean

Loadshedding

Rejecting 1 request is better than Loadbalancing via loadshedding

deadlining 2
Client Overloaded Overloaded Server
Server Server

Reject fast, reject early

. OVERLOADED
Can be done client side: throttle .
on latency/errors, exponential 8 OVERLOADED
backoff

. OK

Loadbalancing via loadshedding

Quality Of Service

| High > High >
| Medium > Ovserloaded Medium >
erver
| Low >
_
(@]
2
e Use tiered traffic ﬂ,
\’

e Serve degraded results

Fairness Under Overload

Maintain performance for as many
users as possible

Choose the right scheduler

Load shed proportionally

Shed load

The Efficiency Formula

Efficiency = safe_cpu% - P__ (
traffic_spike
+load_imbalance
+ failover_capacity

Efficiency = safe_cpu% - PErrorBudget(
traffic_spike
+ load_imbalance

max-mean

+ failover_capacity

Probability

P

ErrorBudget Max

| |

Headroom required

Takeaways

Efficiency = safe_cpu% — P (traffic_spike + load_imbalance + failover_capacity)

ErrorBudget

e Autoscale everything.
e Expand your footprint to minimise N+1 overheads.
e Test your failovers regularly.

e Understand your resource needs. Reshape your servers to fit. Trade off
resources.

e Being more reliable under overload improves efficiency.

Questions?

#22apac-day2-track

