
Capacity vs Efficiency
Building a Globally Scalable Cloud Database

SRECon 2022, Sydney Daniel Marshall <djmarshall@google.com>

Me

Electrical engineer turned SRE at
Google Sydney

I work on Google Cloud Firestore

If you want to chat more about this
topic, come find me after

Capacity vs Efficiency

Capacity – provisioning sufficient resources to handle incoming request load

Efficiency – minimising the total cost of the system

Case Study: Google Cloud Firestore

Google Cloud Firestore is a fully scalable NoSQL
database where you only pay for what you use.

Corollaries

● Fully scalable ⇒ we must be able to serve any
amount of traffic, at any time

● Pay for use ⇒ we pay for everything else

Capacity

Autoscale Everything

Autoscaling is the first step

Improves reliability and toil

Autoscale horizontally and vertically

Autoscaling Signals

Choose one metric to scale on

Align your bottlenecks with your scaling signal

(Marginally) overprovision everything else

Traffic Patterns

Where possible, control the ramp-up speed

Flat Diurnal Slow ramp-up

Traffic spike Bulk workload

Choosing Your Headroom

Efficiency = 100% – max(traffic_spike)

Headroom

Reaction
Window

Capacity

Load

Stockout Resilience

Stockout: underlying platform runs
out of capacity

Use as many availability zones and
regions as you can

Build capacity agility

Provisioning For Failover

All failover models are wrong. Test your failovers!

Zone 1

100%

Zone 2

0%

Zone 1

66%

Zone 2

66%

Zone 3

66%

Active/passive N+1

Efficiency

Tuning The Autoscaling

Autoscaling Target

p100

p99

p95

Tuning The Autoscaling

Reaction Window Stabilization / decay period

Capacity

Load

Tuning The Autoscaling

Reaction Window Stabilization / decay period

Capacity

Load

Resource Inefficiency

Load Balancing

Efficiency = 100% – max(traffic_spike) – load_imbalancemax-mean

Lo
ad

Servers

Good load balancing Poor load balancing

Mean

Max

Probability Distributions

Efficiency = 100% – max(traffic_spike) + load_imbalancemax-mean

Efficiency = 100% – Pmax(traffic_spike + load_imbalancemax-mean)

Efficient Failovers

N+1: Increase the N!

● N=1 50% efficiency loss
● N=4 20% efficiency loss

Active/Passive

● Use lower SLO / spot instances
● Underprovision and scale

Efficiency = 100% – Pmax(traffic_spike + load_imbalancemax-mean +
failover_capacity)

80% 80% 80% 80%80%

100/100 0/80

Batch Traffic

Key observation: Batch traffic is latency tolerant

● Split it out

● Use lower SLO
/ spot instances

● Run it hotter

User-facing
capacity

Batch capacity

T4

Finding The Right Shape

CPU

RA
M

E2

L5
X1

B7

Instance Type

Usage

Bigger Is Better

Resource Tradeoffs

Byte/$: HDD > SSD > RAM

IO/$: HDD < SSD < RAM

For GC languages: CPU vs RAM

By
te

s

IOPS

Icons by SmashIcons from www.flaticon.com

Handling Overload

Overload And Efficiency

Headroom

Overload

Capacity (overload tolerant)

Load

Capacity

Understand Your Limits

Efficiency = safe_cpu% – Pmax(traffic_spike + load_imbalancemax-mean +
failover_capacity)

Fixed
costs

Peak
efficiency

Efficiency
breakdown

Increased latency, errors'Safe' CPU

Loadshedding

Rejecting 1 request is better than
deadlining 2

Reject fast, reject early

Can be done client side: throttle
on latency/errors, exponential
backoff

Loadbalancing via loadshedding

Client Overloaded
Server

Overloaded
Server Server

OVERLOADED

OVERLOADED

OK

Loadbalancing via loadshedding

Quality Of Service

● Use tiered traffic

● Serve degraded results

Overloaded
Server

High

Medium

Low

High

Medium

Low

Fairness Under Overload

Maintain performance for as many
users as possible

Choose the right scheduler

Load shed proportionally

Shed load

The Efficiency Formula

Efficiency = safe_cpu% – Pmax(
traffic_spike
+ load_imbalancemax-mean
+ failover_capacity

)

Efficiency = safe_cpu% – PErrorBudget(
traffic_spike
+ load_imbalancemax-mean
+ failover_capacity

)

Pr
ob

ab
ili

ty
Headroom required0

PErrorBudget PMax

Takeaways

Efficiency = safe_cpu% – PErrorBudget(traffic_spike + load_imbalance + failover_capacity)

● Autoscale everything.

● Expand your footprint to minimise N+1 overheads.

● Test your failovers regularly.

● Understand your resource needs. Reshape your servers to fit. Trade off
resources.

● Being more reliable under overload improves efficiency.

Questions?

#22apac-day2-track1

