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Key Takeaway

Testing in Production can be a 
viable solution.
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600
Cities

The Scale

64
Countries

75m
Active Riders

3m
Active Drivers

15m
Trips Per Day

10b
Cumulative Trips



1000s
Microservices

1000s
Commits per day
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Why Test in Production?

Less operational cost of maintaining a 
parallel stack.

One knob to control capacity.
No synchronization required.



Why Test in Production?

More accurate end-to-end capacity 
planning.

Delta test traffic runs on the production stack.
Test traffic takes same code path as production traffic.

Bonus: The Testing in Production 
framework enables other use case.

Use cases like Canary, Shadowing, A/B Testing become 
an extension to the Testing in Production framework.
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Tenancy Oriented Architecture

Edge Gateway
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keyspace: ctx

Log/Metrics

tag: ctx

Test traffic

Production traffic

● Isolation between test & production

● Tenancy-based access control
○ Test request cannot create/mutate prod artifacts

● Minimal deviation between test and 
production environments



Design Considerations

● Infra components needing tenancy support

● Explosion of support matrix
○ # of transports/encodings
○ # of languages

● Gradual transition from current architecture to tenancy-aware 
architecture

● Tenancy-based service discovery & routing

● Onboarding overhead - impact on developer productivity
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Tenancy Building Blocks

1. Context & Context propagation

2. Tenancy Aware Infrastructure

3. Tenancy Aware Environments

4. Tenancy Aware Routing



1. Context & Context Propagation

● Tenancy context for both in-flight data (requests) and the at-rest data (persistent 
artifacts)

● Tenancy can be ‘testing’, ‘production’, etc.
○ Aligns with tenancy of the actors involved in the request

● Request tenancy propagated agnostic to transport / protocol

● Persistent artifact tenancy implementation depends on the specific data 
component



2. Tenancy Aware Infrastructure

● Types of infrastructure components
○ Storage datastores, e.g. Cassandra
○ Message queues, e.g. Kafka
○ External caching, e.g. Redis
○ Search, e.g. ElasticSearch
○ Observability: Logging, Metrics.

● 2 ways of making infrastructure aware of tenancy
○ Client library (language specific)
○ Gateway integration



3. Environments - Mixed Tenancy Mode (Goal State)

Test 
(pre-prod/dev) Production (multi tenant)

Test 
runner

● Every service instance is able to 
handle both test and prod traffic.

● “Native tenancy” support for all 
the infra components.

Services in mixed tenancy 
mode.

Edge Gateway



3. Environments - Test Tenancy Mode (Intermediate 
State)

Test Tenancy (prod build) Production (prod build)

. 

. 

.

● Supports tenancy adoption in advance 
of infra support.

● Separates the infra components 
explicitly via a separate environment.

● Utilize tenancy-based request routing 
to route test traffic to test tenancy 
environment.

Service instance in 
Production environment.

Service instance in Test 
Tenancy environment.

Downstream service.



4. Tenancy Aware Routing

● Out-of-process sidecar 
implementation.

● Agnostic to service language 
and transport used.

● Config-based routing policies 
and instant kill-switch.

Test Tenancy 
Instances

Production and Mixed 
Tenancy Instances

Routing layer (Deputy)

Mixed tenancy instance

Production tenancy instance

Test tenancy instance

Test tenancy request

Production tenancy request
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Extensions to Tenancy Architecture

● Rate Limiting
○ Tenancy-based QoS policies.
○ Safe-guard production from other traffic.

● Shadow traffic
○ Route traffic for A/B testing, where A is experimental code and B is production.
○ Ability to route only portion of the traffic without affecting production.

● Canary Deployments, Blue/Green Deployments
○ Gradually bring up/down deployments.

● Record & Replay
○ Duplicate part or whole of traffic to record requests for a particular scenario or user.



#TiP-is-not-as-scary-as-it-sounds!

Building a framework for Testing in Production is a 
long-term investment and can be a viable solution.



Thanks


