
Testing in Production
at Scale

 Amit Gud | SREcon19 Americas | March 25, 2019

Meet Alice!

Alice
Software Developer

Upstream services

Downstream services

A

B C

D E F

Test
runner

A

D E F

B C

A’

F’E’D’

Key Takeaway

Testing in Production can be a
viable solution.

Agenda

01 The Scale
02 Why Test in Production?
03 Tenancy Oriented Architecture
04 Tenancy Building Blocks
05 Extensions to Tenancy Architecture

600
Cities

The Scale

64
Countries

75m
Active Riders

3m
Active Drivers

15m
Trips Per Day

10b
Cumulative Trips

1000s
Microservices

1000s
Commits per day

Agenda

01 The Scale
02 Why Test in Production?
03 Tenancy Oriented Architecture
04 Tenancy Building Blocks
05 Extensions to Tenancy Architecture

Why Test in Production?

Less operational cost of maintaining a
parallel stack.

One knob to control capacity.
No synchronization required.

Why Test in Production?

More accurate end-to-end capacity
planning.

Delta test traffic runs on the production stack.
Test traffic takes same code path as production traffic.

Bonus: The Testing in Production
framework enables other use case.

Use cases like Canary, Shadowing, A/B Testing become
an extension to the Testing in Production framework.

Agenda

01 The Scale
02 Why we Test in Production?
03 Tenancy Oriented Architecture
04 Tenancy Building Blocks
05 Extensions to Tenancy Architecture

Tenancy Oriented Architecture

Edge Gateway

.

.

.

Msg Q DB

Cache

ctxctx

keyspace: ctx

Log/Metrics

tag: ctx

Test traffic

Production traffic

● Isolation between test & production

● Tenancy-based access control
○ Test request cannot create/mutate prod artifacts

● Minimal deviation between test and
production environments

Design Considerations

● Infra components needing tenancy support

● Explosion of support matrix
○ # of transports/encodings
○ # of languages

● Gradual transition from current architecture to tenancy-aware
architecture

● Tenancy-based service discovery & routing

● Onboarding overhead - impact on developer productivity

Agenda

01 The Scale
02 Why Test in Production?
03 Tenancy Oriented Architecture
04 Tenancy Building Blocks
05 Extensions to Tenancy Architecture

Tenancy Building Blocks

1. Context & Context propagation

2. Tenancy Aware Infrastructure

3. Tenancy Aware Environments

4. Tenancy Aware Routing

1. Context & Context Propagation

● Tenancy context for both in-flight data (requests) and the at-rest data (persistent
artifacts)

● Tenancy can be ‘testing’, ‘production’, etc.
○ Aligns with tenancy of the actors involved in the request

● Request tenancy propagated agnostic to transport / protocol

● Persistent artifact tenancy implementation depends on the specific data
component

2. Tenancy Aware Infrastructure

● Types of infrastructure components
○ Storage datastores, e.g. Cassandra
○ Message queues, e.g. Kafka
○ External caching, e.g. Redis
○ Search, e.g. ElasticSearch
○ Observability: Logging, Metrics.

● 2 ways of making infrastructure aware of tenancy
○ Client library (language specific)
○ Gateway integration

3. Environments - Mixed Tenancy Mode (Goal State)

Test
(pre-prod/dev) Production (multi tenant)

Test
runner

● Every service instance is able to
handle both test and prod traffic.

● “Native tenancy” support for all
the infra components.

Services in mixed tenancy
mode.

Edge Gateway

3. Environments - Test Tenancy Mode (Intermediate
State)

Test Tenancy (prod build) Production (prod build)

.

.

.

● Supports tenancy adoption in advance
of infra support.

● Separates the infra components
explicitly via a separate environment.

● Utilize tenancy-based request routing
to route test traffic to test tenancy
environment.

Service instance in
Production environment.

Service instance in Test
Tenancy environment.

Downstream service.

4. Tenancy Aware Routing

● Out-of-process sidecar
implementation.

● Agnostic to service language
and transport used.

● Config-based routing policies
and instant kill-switch.

Test Tenancy
Instances

Production and Mixed
Tenancy Instances

Routing layer (Deputy)

Mixed tenancy instance

Production tenancy instance

Test tenancy instance

Test tenancy request

Production tenancy request

Ap

DmCmBpBt

At

Ap

Agenda

01 The Scale
02 Why we Test in Production?
03 Tenancy Oriented Architecture
04 Tenancy Building Blocks
05 Extensions to Tenancy Architecture

Extensions to Tenancy Architecture

● Rate Limiting
○ Tenancy-based QoS policies.
○ Safe-guard production from other traffic.

● Shadow traffic
○ Route traffic for A/B testing, where A is experimental code and B is production.
○ Ability to route only portion of the traffic without affecting production.

● Canary Deployments, Blue/Green Deployments
○ Gradually bring up/down deployments.

● Record & Replay
○ Duplicate part or whole of traffic to record requests for a particular scenario or user.

#TiP-is-not-as-scary-as-it-sounds!

Building a framework for Testing in Production is a
long-term investment and can be a viable solution.

Thanks

