CAPACITY PLANNING: Telling the future without a crystal ball
HELLO!

I am Evan Smith
and I’m an SRE with Hosted Graphite.

You can find me at
@TheJokersThief

Or iamevan.me if you’re really desperate
WHY BOTHER?

- Anticipate sharp growth
- Only spend as much as you actually need
- Avoid 3AM pages
CAPACITY PLANNING OBJECTIVE

The goal should be to drive the system to the appropriate level of risk for the lowest cost.
A CASE STUDY:

“We’ve been running our authentication service for three years, how do we possibly start planning capacity now?”

– Generrico Shoppe
INTENTS & SLOs

What should this service accomplish?
Understanding **intent** begins with helping define a **Service Level Objective**
"I want 50 cores in clusters X, Y, and Z for service Foo."

This and the following examples come from The SRE Book: Chapter 4 - Service Level Objectives
"I want to meet service Foo’s demand in each geographic region, and have \(N + 2 \) redundancy."
"I want to run the Authentication Service at 5 nines of reliability. It’s gotta be up always."
CASE STUDY:

- What if it costs €10,000 to give you 5 nines?
 - 9 hrs/yr down (3 nines) is actually fine

- Where is most of your business?
 - Heaviest users in US and UK, we could use different SLOs per-region (lower SLOs outside of US/UK)
SERVICE TRIGGERS

Which metrics move the needle?
- Find **driver metrics**
- Look at historical **inflection points**
CASE STUDY:
CASE STUDY:

- Authentication is driven proportional to:
 - Number of users
 - Number of linked services
- Plotting capacity against the driver metrics, we discover:
 - \(<\text{num services}> * \text{\textless num users}\) accurately describes load
 - Every 64,000 units, they increase capacity by 16 servers
ACTIONABLE INSIGHTS

When should capacity change?
- It sounds obvious but **document everything**
 - process
 - findings
 - assumptions
 - graphs and metrics
- If a tree falls in the woods, it doesn’t exist until it’s **documented**
Make insights actionable
Always provide easy access to context

TCP Capacity Plan:

Capacity Plan Outline:

- **Increase** when percentage of nodes under threshold is above 20%

This graph shows total percentage for 8 cores - 800% max. To ensure we stay below 80% CPU Usage, we want idle time to be at least 160% for each host.

UDP Capacity Plan:

Capacity Plan Outline:

- **Increase** when difference between scaled trend and current capacity is above 17
- **Decrease** when difference between scaled trend and current capacity is below 5
CASE STUDY:

- If every 64,000 units, they increase by 16, they probably actually want to increase by 4 server every 16,000
- We should **increase** capacity every increase of 14,500 units
- We should **decrease** capacity every decrease of 14,500 units
FORECAST

What does the future look like?
If you’re not tracking the capacity of your services already...

START RIGHT NOW
The easiest way to **predict the future** is to **use the past**

Estimate the capacity for each period by looking at **change from the past**
CASE STUDY:

- Put your estimates in a table AND graph it!

<table>
<thead>
<tr>
<th>Timeline</th>
<th>State</th>
<th>Increase By</th>
<th>Actual Date</th>
<th>Actual State</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Oct 2017</td>
<td>22</td>
<td>4 nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Feb 2018</td>
<td>26</td>
<td>4 nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 May 2018</td>
<td>30</td>
<td>4 nodes</td>
<td>5 April 2018</td>
<td>28</td>
</tr>
<tr>
<td>23 Aug 2018</td>
<td>34</td>
<td>4 nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Dec 2018</td>
<td>38</td>
<td>4 nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42 nodes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOME FINAL TIPS

1. Your plan’s buffer should also account for **Lead Time** - how long it takes to go from no server to production-ready

2. Machine Learning have some great methods for choosing your driver metrics - **PCA, Lasso Regression, feature selection**

3. Capacity Planning is **not a set-it-and-forget-it activity** - you will need to come back to your plan every 1-3 months (at least at the start) depending on its size
THANKS!

Any questions?
You can find me at
- @TheJokersThief
- evan.smith@hostedgraphite.com
Further Reading/Watching:

1. **Cloud Capacity Planning.. an Oxymoron?** by Coburn Watson (Netflix)
2. **The Data in the Planning** by Sebastien de Larquier (Netflix)
3. **Capacity Planning** by David Hixson (Google) and Kavita Guliani (Google) (excerpt from ;login: vol 40 published by usenix)
4. **SRE Book - Chapter 18: Software Engineering** by (Google) Dave Helstroom and Trisha Weir with Evan Leonard and Kurt Delimon
5. **Capacity Management For The Cloud** by Ernest de Leon (Mirantis)