

SLO
WORKSHOP

1

Outage Maths 4

How SLOs help… 5

The SLI Equation 6

Translating a user journey to SLI specifications 7

Specifying an Availability SLI 8

Request / Response 8

Other Availability SLIs 8

Specifying a Latency SLI 9

Request / Response 9

Other Latency SLIs 9

Specifying a Quality SLI 10

Request / Response 10

Specifying a Freshness SLI 11

Data Processing 11

Measuring Data Freshness as Response Quality 11

Specifying a Coverage SLI 12

Data Processing 12

Specifying a Correctness SLI 13

Data Processing 13

Measuring SLIs 14

Server-side Logging 14

Application Server Metrics 14

2

Front-end Infrastructure Metrics 15

Synthetic Clients (Probers) or Data 15

Client Instrumentation 15

Developing SLOs and SLIs 16

Example SLO Worksheet 16

User Journey: Home Page Load 16

Stoker Labs Inc. 18

Mission Statement 18

Our Game: Tribal Thunder 18

Service Architecture 19

User Journeys 19

View Profile Page 19

Buy In-Game Currency 20

App Launch 21

Manage Settlement 22

Play PvP Battle 23

Generate Leaderboards 24

Postmortem: Blank Profile Pages! 25

Impact 25

Root Causes and Trigger 25

Detection 25

Lessons Learned 25

Action Items 25

Profile Page Errors and Latency 26

3

Outage Maths

Reliability
Level

Allowed 100% outage duration

per year per quarter per 28 days

90% 36d 12h 9d 2d 19h 12m

95% 18d 6h 4d 12h 1d 9h 36m

99% 3d 15h 36m 21h 36m 6h 43m 12s

99.5% 1d 19h 48m 10h 48m 3h 21m 36s

99.9% 8h 45m 36s 2h 9m 36s 40m 19s

99.95% 4h 22m 48s 1h 4m 48s 20m 10s

99.99% 52m 33.6s 12m 57.6s 4m 1.9s

99.999% 5m 15.4s 1m 17.8s 24.2s

Boxes shaded red allow less than one hour of complete outage.

Allowed consistent error% outage duration
per 28 days, at 99.95% reliability

100% 10% 1% 0.1%

20m 10s 3h 21m 36s 1d 9h 36m 14d

4

How SLOs help…

...your business engineer for reliability

The product perspective:

If reliability is a feature, when do you
prioritise it versus other features?

The development perspective:

How do you balance the risk to
reliability from changing a system
with the requirement to build new,
cool features for that system?

The operations perspective:

What is the right level of reliability
for the system you support?

5

The SLI Equation

The proportion of valid events that were good.

Expressing all SLIs in this form has a couple of useful properties.

1. SLIs fall between 0% and 100%.
0% means nothing works, 100% means nothing is broken.
This scale is intuitive to reason about and directly translates
to percentage-reliability SLOs and error budgets.

2. SLIs have a consistent format.
Consistency allows common tooling to be built around SLIs.
Alerting logic, error budget calculations, and SLO analysis
and reporting tools can all be written to expect the same
inputs: good events, valid events, and SLO threshold.

Events can be prevented from counting against an error budget either by
including them in the numerator or by excluding them from the denom-
inator. The former is achieved by classifying some events good, the
latter by classifying some events invalid.

Typically, for systems serving requests over HTTP(S), validity is deter-
mined by request parameters like hostname or request path, to scope
the SLI to a particular set of serving tasks or response handlers.

Typically, for data processing systems, validity is determined by input
parameters, to scope the SLI to subsets of the data.

6

Translating a user journey to SLI specifications
A SLI specification is a formal statement of your users' expectations
about one particular dimension of reliability for your service, like latency
or availability. The SLI menu gives you guidelines for what dimensions of
reliability you are likely to want to measure for a given user journey.

Once you have SLIs specified for a system, the next step is to refine
them into implementations by making decisions around measurement,
validity and how to classify events as good.

7

Specifying an Availability SLI
The availability of a system serving interactive requests from users is a
critical reliability measure. If your system is not responding to requests
successfully, it's safe to assume it is not meeting your users' expec-
tations of its reliability.

Request / Response
The suggested specification for a request/response Availability SLI is:

The proportion of valid requests served successfully.

Turning this specification into an implementation requires making two
choices: which of the requests this system serves are valid for the SLI,
and what makes a response successful?

The definition of success tends to vary widely depending on the role of
the system and the choice of how to measure availability. One com-
monly used signifier of success or failure is the status code of an HTTP
or RPC response. This requires careful, accurate use of status codes
within your system so that each code maps distinctly to either success
or failure.

When considering the availability of an entire user journey, care must be
taken to enumerate and measure the ways that users can voluntarily exit
the journey before completion.

Other Availability SLIs
Availability is a useful measurement concept for a wide range of
scenarios beyond serving requests. The availability of a virtual machine
could be defined as the proportion of minutes that it was booted and
accessible via SSH, for example.

Sometimes, complex logic is required to determine whether a system is
functioning as a user would expect it. A reasonable strategy here is to
write that complex logic as code and export a boolean availability
measure to your SLO monitoring systems for use in a bad-minute style
SLI like the example above.

8

Specifying a Latency SLI
The latency of a system serving interactive requests from users is an
important reliability measure. A system is not perceived as "interactive"
by its users if their requests are not responded to in a timely fashion.

Request / Response
The suggested specification for a request/response Latency SLI is:

The proportion of valid requests served faster than a threshold.

Turning this specification into an implementation requires making two
choices: which of the requests this system serves are valid for the SLI,
and what threshold marks the difference between requests that are fast
enough and those that are not?

Setting a threshold for fast enough is dependent on how accurately
measured latency translates to the user experience. Systems can be
engineered to prioritize the perception of speed, allowing relatively loose
thresholds to be set. Requests may be made in the background by
applications, and thus have no user waiting for the response.

It can be useful to have multiple thresholds with different SLOs. When a
single threshold is used it often targets long-tail latency. But it can also
be useful to target median latency because the translation of perceived
latency to displeasure usually follows an S-curve rather than being
binary.

Other Latency SLIs
Latency can be equally important to track for data processing or
asynchronous work-queue tasks. If you have a batch processing pipeline
that runs daily, that pipeline probably shouldn't take more than a day to
complete. Users care more about the time it takes to complete a task
they queued than the latency of the queue acknowledgement.

One thing to be careful of here is only reporting the latency of
long-running operations on their eventual success or failure. If the
threshold for operation latency is 30 minutes but the latency is only
reported when it fails after 2 hours, there is a 90 minute window where
that operation was missing expectations but not measurably so.

9

Specifying a Quality SLI
If your system has mechanisms to trade off the quality of the response
returned to the user for e.g. lower CPU or memory utilization, you should
track this graceful degradation of service with a quality SLI. Users may
not be consciously aware of the degradation in quality until it becomes
severe, but their subconscious perceptions may still have an impact on
your business if e.g. degrading quality means serving less relevant ads
to users, reducing click-through rates.

Request / Response
The suggested specification for a request/response Quality SLI is:

The proportion of valid requests served without degrading quality.

Turning this specification into an implementation requires making two
choices: which of the requests this system serves are valid for the SLI,
and how to determine whether the response was served with degraded
quality.

In most cases, the mechanism used by the system to degrade response
quality should also be able to mark responses as degraded or increment
metrics to count them. It is therefore much easier to express this SLI in
terms of "bad events" rather than "good events".

Similar to measuring latency, if the quality degradation falls along a
spectrum it can be useful to set SLO targets at more than one point from
that spectrum. For a somewhat contrived example of this, consider a
service that fans out incoming requests to 10 optional backends, each
with a 99.9% availability target and the ability to reject requests when
they are overloaded. You might choose to specify that 99% of service
responses must be served with no missing backend responses and
99.9% must be served with no more than one missing response.

10

Specifying a Freshness SLI
When batch-processing data, it is common for the utility or relevance of
the outputs to degrade over time as new input data is generated by the
system or its users. The users, in turn, have expectations that the
outputs of the system are up-to-date with respect to those inputs. Data
processing pipelines must be run regularly or perhaps even rebuilt to
process small increments of input data continuously to meet those
expectations. A freshness SLI measures the system's performance
against those expectations and can inform those engineering decisions.

Data Processing
The suggested specification for a data processing Freshness SLI is:

The proportion of valid data updated more recently than a
threshold.

Turning this specification into an implementation requires making two
choices: which of the data this system processes are valid for the SLI,
and the threshold after which generated data should be considered
stale.

For a batch-processing system, freshness can be approximated as the
time since the completion of the last successful processing run. More
accurate freshness measurements for batch systems usually require
augmenting processing systems to track generation and/or source age
timestamps. Freshness for incremental streaming processing systems
can also be measured with a watermark that tracks the age of the most
recent record that has been fully processed.

Measuring Data Freshness as Response Quality
Stale serving data is a common way for response quality to be degraded
without a system making an active choice to do so. Measuring stale data
as degraded response quality is a useful strategy: if no user accesses
the stale data, no expectations around the freshness of that data can
have been missed. For this to be feasible, the parts of the system
responsible for generating the serving data must also produce a
generation timestamp that the serving infrastructure can check against a
freshness threshold when it reads data.

11

Specifying a Coverage SLI
A coverage SLI functions similarly to an availability SLI when processing
data in a system. When users have expectations that data will be
processed and the outputs made available to them, you should consider
using a coverage SLI.

Data Processing
The suggested specification for a data processing Coverage SLI is:

The proportion of valid data processed successfully.

Turning this specification into an implementation requires making two
choices: which of the data this system processes are valid for the SLI,
and how to determine whether the processing of a particular piece of
data was successful.

For the most part, the system doing the processing of the data ought to
be able to determine whether a record that it began processing was
processed successfully and output counts of success and failure. The
challenge comes from identifying those records that should have been
processed but were skipped for some reason. This usually requires
some way of determining the number of valid records that resides
outside of the data processing system itself, perhaps by running the
equivalent of COUNT(*) on the data source.

12

Specifying a Correctness SLI
In some cases it can be important to measure not just that a processing
system processes all the data it should have, but that it produces the
correct outputs while doing so. Correctness is something best ensured
proactively via good software engineering and testing practice, rather
than detected reactively in absentia. However, when users have strong
expectations that the data they are accessing has been generated
correctly—and have ways of independently validating that correctness—
having an SLI to measure correctness on an ongoing basis can be
valuable.

Data Processing
The suggested specification for a data processing Correctness SLI is:

The proportion of valid data producing correct output.

Turning this specification into an implementation requires making two
choices: which of the data this system processes are valid for the SLI,
and how to determine the correctness of output records.

For a correctness SLI to be useful, the method of determining correct-
ness needs to be independent of the methods used to generate the
output data. Otherwise, it is probable that any correctness bugs that
exist during generation will also exist during validation, preventing the
detection of the resulting incorrectness by the SLI. A common strategy is
to have "golden" input data that produces known-good outputs when
processed. If this input data is sufficiently representative of real user
data, and is designed to exercise most of the processing system's code
paths, then this can be sufficient to estimate overall correctness.

13

Measuring SLIs
Broadly speaking, there are five ways to measure an SLI, each with their
own set of advantages and disadvantages. Like many engineering
decisions there is no one right choice for all situations, but with a good
understanding of the trade-offs involved it is possible to choose SLI
implementations that meet the requirements of the system.

These classes of measurement methods are presented in decreasing
order of their distance from the user. In general, an SLI should measure
the user experience as closely as possible, so proximity to the user and
their interactions with the system is a valuable property.

Server-side Logging
Processing server-side logs of requests or processed data to generate
SLI metrics.

Pros Cons

+ Existing request logs can be processed
retroactively to backfill SLI metrics.

+ Complex user journeys can be
reconstructed using session identifiers.

+ Complex logic to derive an SLI
implementation can be turned into
code and exported as two much
simpler "good events" and "total
events" counters.

– Application logs will not contain
requests that did not reach servers.

– Processing latency makes logs-based
SLIs unsuitable for triggering an
operational response.

– Engineering effort is needed to
generate SLIs from logs; session
reconstruction can be time-consuming.

Application Server Metrics
Exporting SLI metrics from the code that is serving requests from users
or processing their data.

Pros Cons

+ Often fast and cheap (in terms of
engineering time) to add new metrics.

+ Complex logic to derive an SLI
implementation can be turned into
code and exported as two much
simpler "good events" and "total
events" counters.

– Application servers are unable to see
requests that do not reach them.

– Measuring overall performance of
multi-request user journeys can be
difficult if application servers are
stateless.

14

Front-end Infrastructure Metrics
Utilizing metrics from load-balancing infrastructure (e.g. GCP's layer 7
load balancer) to measure SLIs.

Pros Cons

+ Metrics and recent historical data most
likely already exist, so this option
probably requires the least engineering
effort to get started.

+ Measures SLIs at the point closest to
the user still within serving
infrastructure.

– Not viable for data processing SLIs, or
in fact any SLIs with complex
requirements.

– Can only measure approximate
performance of multi-request user
journeys.

Synthetic Clients (Probers) or Data
Building a client that sends fabricated requests at regular intervals and
validates the responses. For data processing pipelines, creating
synthetic known-good input data and validating outputs.

Pros Cons

+ Synthetic clients can measure all steps
of a multi-request user journey.

+ Sending requests from outside your
infrastructure captures more of the
overall request path in the SLI.

– Approximates user experience with
synthetic requests.

– Covering all corner cases is hard and
can devolve into integration testing.

– High reliability targets require frequent
probing for accurate measurement.

– Probe traffic can drown out real traffic.

Client Instrumentation
Adding observability features to the client the user is interacting with and
logging events back to your serving infrastructure that track SLIs.

Pros Cons

+ Provides the most accurate measure of
user experience.

+ Can quantify reliability of third parties,
e.g. CDN or payments providers.

– Client logs ingestion and processing
latency make these SLIs unsuitable for
triggering an operational response.

– SLI measurements will contain a
number of factors outside of direct
control.

– Building instrumentation into the client
can involve lots of engineering work.

15

Developing SLOs and SLIs
For each critical user journey, stack-ranked by business impact

1. Choose an SLI specification from the menu
2. Refine the specification into a detailed SLI implementation
3. Walk through the user journey and look for coverage gaps
4. Set SLOs based on past performance or business needs

Example SLO Worksheet

Make sure that your SLIs have an event, a success criterion, and specify
where and how you record success or failure. Describe your specification
as the proportion of events that were good. Make sure that your SLO
specifies both a target and a measurement window.

User Journey: Home Page Load
SLI Type: Latency
SLI Specification:

Proportion of home page requests that were served in < 100ms
(Above, “[home page requests] served in <100ms” is the numerator in the SLI
Equation, and “home page requests” is the denominator.)

SLI Implementations:
● Proportion of home page requests served in < 100ms, as

measured from the 'latency' column of the server log.
(Pros/Cons: This measurement will miss requests that fail to reach the backend.)

● Proportion of home page requests served in < 100ms, as
measured by probers that execute javascript in a browser
running in a virtual machine.
(Pros/Cons: This will catch errors when requests cannot reach our network, but
may miss issues affecting only a subset of users.)

SLO:
99% of home page requests in the past 28 days served in < 100ms.

16

EXAMPLE
SERVICE

This is a work of fiction. Names,
characters, businesses, places,

events, locales, and mechanics are
either the products of the author’s

imagination or used in a fictitious
manner. Any resemblance to actual

persons, living or dead, or actual
games is purely coincidental.

17

Stoker Labs Inc.
Mission Statement
Our company mission is to "replace conflict with games". The tribalism
and division we see throughout society becomes harmful when people
take life too seriously. We aim to provide an outlet for the competitive
urges and us-versus-them mentality so central to human nature via the
medium of mobile video gaming. We firmly believe that providing ways
for people to sublimate these urges in a manner that is fun rather than
psychologically and physically harmful will bring about a more
cooperative and successful world.

Our Game: Tribal Thunder
The rise of the vampires has taken a devastating toll on humanity, for-
cing those who survived to cluster together in the few remaining habit-
able regions far from previous centres of civilization. As the leader of a
tribe of survivors, you must recruit people to your cause, secure and
upgrade your settlement, raid vampire-occupied cities, and battle other
tribes for control of resources.

The game world is split up into a number of areas with varying rewards
and challenges. Access to areas with better rewards is gated by overall
play-time, settlement size and in-game currency expenditure. Each area
has its own leaderboard ranking the top tribes.

We have around 50M 30-day active users playing, with between 1M and
10M players online at any given time. We add new world areas once per
month, which drives a spike in both traffic and revenues.

The primary revenue stream stems from the exchange of real-world
money for in-game currency via in-app purchases. Players can earn
currency without paying for it by winning PvP battles, playing mini-
games, or over time via control of in-game resource production. Players
can spend in-game currency on settlement upgrades, defensive em-
placements for PvP battles, and by playing a recruitment mini-game that
gives them a chance of recruiting highly-skilled people to their tribe.

18

Service Architecture

The game has both a mobile client and a web UI. The mobile client
makes requests to our serving infrastructure via JSON RPC messages
transmitted over RESTful HTTP. It also maintains a web socket
connection to receive game-state updates. Browsers talk to the web
servers via HTTPS. Leaderboards are updated every 5 minutes.

User Journeys
View Profile Page

Players can log in to their game account, view their settlement and make
profile changes from a web browser. A player loading their profile page
is a simple journey that we will go through together in the workshop.

19

Buy In-Game Currency

Our most important user journey is the one that generates all our
revenue: users buying in-game currency via in-app purchases. Requests
to the Play Store are only visible from the client. We see between 0.1 and
1 completed purchase every second; this spikes to 10 purchases per
second after the release of a new area as players try to meet its
requirements.

20

App Launch

There are three parts to the app launch process, depending on whether
the user already has an account and whether that account has been
previously accessed on the current device. Account creation and auth
token request rates are low, but we see between 20 and 100 QPS of
syncData requests, spiking to 1000 after the release of a new area.

21

Manage Settlement

Settlement management is a trio of relatively simple API requests.
Upgrading settlements, building defenses and recruiting tribespeople
consumes wall-clock time as well as in-game currency. Players spend a
lot of time managing their settlements: we see 2000-3000 requests per
second across all these API endpoints, spiking up to 10,000/s. If the
game servers consistently take more than a second to compute a tick,
users will notice their buildings not completing on time.

22

Play PvP Battle

Launching an attack on another player spins up an RTS-like tower
defence battle where the attackers troops try to overrun the defenders'
emplacements. The defender can deploy some of their troops to aid
their defence. Both sides get points in proportion to the amount of
damage they dealt to the opposition. We see around 100 attacks
launched every second.

23

Generate Leaderboards

Competition for the top spots is fierce because players in a given area
primarily battle each other and are of similar skill levels. PvP battles are
scheduled across the pool of game servers on a least-loaded basis:
there is no guarantee that a battle between two players from a given
game area will be hosted on the game server which also ticks their
settlements.

Battle scores are written to an append-only log of unprocessed scores
on the local game server when the battle ends. A set of background
tasks run every five minutes to rotate the append-only logs, archive old
logs to a cloud storage service, aggregate the unprocessed scores and
merge them into the leaderboards.

24

Postmortem: Blank Profile Pages!
Impact

From 08:43 to 13:17, users accessing their profile pages received
incomplete responses. This rendered them unable to view or edit their
profile.

Root Causes and Trigger

The proximate root cause was a bug in the web server's handling of
unicode HTML templates. The trigger was commit a6d78d13, which
changed the profile page template to support localization, but at the
same time accidentally introduced unicode quotation marks (U+201C “,
U+201D ”) into the template HTML. When the web server encountered
these instead of the standard ascii quotation mark (U+0022 "), the
template engine aborted rendering of the output.

Detection

Because the aborted rendering process did not throw an exception, the
HTTP status code for the incomplete responses was still 200 OK. The
problem thus went undetected by our SLO-based alerts. The support and
social media teams manually escalated concerns about a substantially
increased level of complaints relating to the profile page at 12:14.

Lessons Learned

Things that went well:

● Support/SM teams were able to find the correct escalation path
and successfully contact ops team.

Things that went poorly:

● HTTP status code SLIs cannot detect incomplete responses.
● Web server uses a severely outdated vendored version of the

templating engine with substantially broken unicode support.

Where we got lucky:

● User profile page is relatively unimportant to our revenue stream.

Action Items

… to be determined!

25

Profile Page Errors and Latency
NOTE: both these graphs have logarithmic Y axes!

26

