The Day the DNS Died

Jeremy Blosser, Principal Operations Engineer
jblosser@sparkpost.com
@SparkPost

https://tinyurl.com/spdnstalk
Introduction

SparkPost, aka Message Systems, is a high-volume, transactional email software and services vendor.
Introduction

SparkPost, aka Message Systems, is a high-volume, transactional email software and services vendor.

We send a lot of email:
• Over 30% of the world’s non-spam email is sent using our software.
• 15B messages/month sent via our cloud offering.
Introduction

SparkPost, aka Message Systems, is a high-volume, transactional email software and services vendor.

We send a lot of email:
• Over 30% of the world’s non-spam email is sent using our software.
• 15B messages/month sent via our cloud offering.

That requires a lot of DNS:
• 8,000 queries/second.
• 20Mb/s+ sustained traffic just for DNS queries.
• Several different resolution paths.
Introduction

But DNS is easy, right?
Introduction

But DNS is easy, right?
Outline

• Introduction
• Previous DNS Design(s)
• May 2017 Outage
• New DNS Design
• Lessons Learned / Remembered
• References
• Questions?
Previous DNS Design(s)
Version 1, Centralized Internal Resolver Cluster
Version 1, Centralized Internal Resolver Cluster
Version 1, Centralized Internal Resolver Cluster

- MTA
- Resolver Cluster
 - Public DNS
 - Private DNS
 - AWS DNS
Version 1, Centralized Internal Resolver Cluster

MTA → Resolver Cluster

- Public DNS
- RBL DNS
- Private DNS
- AWS DNS
Version 1, Centralized Internal Resolver Cluster

MTA

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
Version 1, Centralized Internal Resolver Cluster

- MTA
- App
- Resolver Cluster:
 - Public DNS
 - RBL DNS
 - Private DNS
 - AWS DNS
Version 1, Centralized Internal Resolver Cluster

MTA

App

DB

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
Version 1, Centralized Internal Resolver Cluster

- MTA
- App
- DB
- Admin (auth)
- Public DNS
- RBL DNS
- Private DNS
- AWS DNS
Version 1, Centralized Internal Resolver Cluster

MTA
App
DB
Admin (auth)

Resolver Cluster

Public DNS
RBL DNS
Private DNS
AWS DNS
Version 1, Centralized Internal Resolver Cluster

MTA

App

DB

Admin (auth)

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
Version 1, Centralized Internal Resolver Cluster

- MTA
- App
- DB
- Admin (auth)
- Resolver Cluster
- Public DNS
- RBL DNS
- Private DNS
- AWS DNS
Version 2, AWS VPC Resolver

MTA

App

DB

Admin (auth)

AWS VPC Resolver

Public DNS

RBL DNS

Private DNS

AWS DNS
+ Version 2, AWS VPC Resolver

MTA

AWS VPC Resolver

Public DNS

App

RBL DNS

DB

Private DNS

Admin (auth)

AWS DNS
Version 1.5, Centralized Internal Resolver Cluster

MTA
App
DB
Admin (auth)

Resolver Cluster

Public DNS
RBL DNS
Private DNS
AWS DNS
Version 1.5, Centralized Internal Resolver Cluster

MTA
App
DB
Admin (auth)

Resolver Cluster

Public DNS
RBL DNS
Private DNS
AWS DNS
Version 3.14, Centralized Internal Resolver Cluster

MTA

App

DB

Admin (auth)

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
May 2017
May 2017 Outage

• A day like any other day until...
May 2017 Outage

• A day like any other day until...

 cmay

 i am seeing some non-paging dns_check alerts in email for 3 of the IPs from d and f ns1 boxes... they're are also firing and clearing quickly.
May 2017 Outage

• A day like any other day until...

 cmay
 i am seeing some non-paging dns_check alerts in email for 3 of the IPs from d and
 f ns1 boxes... they're are also firing and clearing quickly.

 yaakov
 this may be something new and exciting
May 2017 Outage

- A day like any other day until...

```plaintext
@cmay

i am seeing some non-paging dns_check alerts in email for 3 of the IPs from d and f ns1 boxes... they're are also firing and clearing quickly.

@yaakov
this may be something new and exciting

@cmay

I guess that answers my question

```
```

```plaintext
host example.com 10.90.80.83
;;; connection timed out; no servers could be reached
Chads-MacBook-Pro:node cmay$ host example.com 10.90.80.79
;;; connection timed out; no servers could be reached
Chads-MacBook-Pro:node cmay$ host example.com 10.90.80.86
;;; connection timed out; no servers could be reached
```
```
May 2017 Outage

• A day like any other day until...

 cmay
 i am seeing some non-paging dns_check alerts in email for 3 of the IPs from d and
 f ns1 boxes... they're are also firing and clearing quickly.

 yaakov
 this may be something new and exciting

 cmay
 I guess that answers my question

 host example.com 10.90.80.83
 ;; connection timed out; no servers could be reached
 Chads-MacBook-Pro:~ cmay$ host example.com 10.90.80.79
 ;; connection timed out; no servers could be reached
 Chads-MacBook-Pro:~ cmay$ host example.com 10.90.80.86
 ;; connection timed out; no servers could be reached

 yaakov
 damn damn damn damn
May 2017 Outage

• A day like any other day until...

@SparkPost
May 2017 Outage

DNS Cluster Aggregate CPU
May 2017 Outage

MTA Cluster Aggregate CPU
May 2017 Outage

MTA Cluster Aggregate CPU
May 2017 Outage

Mail Delivery
(one customer)
May 2017 Outage

(Near) Total Impact

• Sending mail
May 2017 Outage

(Near) Total Impact

• Sending mail
 - (most) customer mail injection not impacted
May 2017 Outage

(Near) Total Impact

- Sending mail
 - (most) customer mail injection not impacted
- App/DB traffic
May 2017 Outage

(Near) Total Impact

• Sending mail
 - (most) customer mail injection not impacted
• App/DB traffic
• Metrics
May 2017 Outage

(Near) Total Impact

• Sending mail
 - (most) customer mail injection not impacted
• App/DB traffic
• Metrics
• Config management (partial)
May 2017 Outage

(Near) Total Impact

• Sending mail
 - (most) customer mail injection not impacted
• App/DB traffic
• Metrics
• Config management (partial)
• Admin logins
May 2017 Outage

(Near) Total Impact

- Sending mail
 - (most) customer mail injection not impacted
- App/DB traffic
- Metrics
- Config management (partial)
- Admin logins

And to add to the damage, I can't get my VPN to come up...
May 2017 Outage
May 2017 Outage

Diagnosing Blind
May 2017 Outage

Diagnosing Blind

• Lack of insight into our DNS
• Unable to reach support systems
May 2017 Outage

Diagnosing Blind

• Lack of insight into our DNS
• Unable to reach support systems
• Is it throttling (again)?
• Is it capacity (again)?
May 2017 Outage

Diagnosing Blind

- Lack of insight into our DNS
- Unable to reach support systems
- Is it throttling (again)?
 - Central forward to VPC Resolver
 - Immediately overrun
- Is it capacity (again)?
 - Add capacity
 - Immediately affected
May 2017 Outage

Mitigation

• Repoint individual instances to VPC Resolver
 - Edit resolv.conf
May 2017 Outage

resolv.conf

- Limited to 3 entries
- Always tried top to bottom
- Limited practical retry
- Read on app startup
 - Changes require restarts
May 2017 Outage

Mitigation

• Repoint individual instances to VPC Resolver
 - Edit resolv.conf, with restarts
 - Provided breathing room
• Main resolver cluster recovered as load was removed
• App tier recovery: 2 hours
• Major customer mail recovery: 4-5 hours
• Time to full recovery: 7 hours
May 2017 Outage

Mitigation

Webhook SQS Queued Messages
May 2017 Outage

Diagnosis

• Asymmetric DNS packet flow
 - Tcpdump
 - AWS Network Flow Logs

```
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
5000 packets captured
5585 packets received by filter
476 packets dropped by kernel
outbound:4756
inbound:163
```

• Average 300 responses per 5000 queries (94% failure)
May 2017 Outage

The Cause?
May 2017 Outage

The Cause?

Connection Tracking
May 2017 Outage

The Cause?

[Undocumented] Connection Tracking
May 2017 Outage

The Cause?

[Undocumented] Connection Tracking
May 2017 Outage

After Action Conclusions

- Incident response process was functional
- Ability to respond via the process was compromised
- Limits of iteration
- New DNS design required
New DNS Design
New DNS Design

Requirements

- Resolve all needed name sources
- Modifiable without changing resolv.conf
- Avoid throttling
- No conntrack
- Multi cluster / isolate components
- Distributed across resolver clusters
- Minimize latency
- Effective caching
- Respect TTLs
- Increase DNS profiling and monitoring
New DNS Design

MTA

| cache1 |
| cache2 |

App

| cache1 |
| cache2 |

DB

| cache1 |
| cache2 |

Admin (auth)

| cache1 |
| cache2 |

AWS VPC Resolver

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
New DNS Design

Network Configuration

• Dedicated VPC for isolation
• Open Security Groups with stateless ACLs
• Separate resolver clusters to isolate impacts
• Query traffic favors same Availability Zone
New DNS Design

MTA
- cache1
- cache2

App
- cache1
- cache2

DB
- cache1
- cache2

Admin (auth)
- cache1
- cache2

AWS VPC Resolver

Resolver Cluster

Public DNS

RBL DNS

Private DNS

AWS DNS
New DNS Design

Resolver (Unbound) Configuration

- Instance and service tuning
- Multiple network interfaces per instance
- Multiple IPs per interface
- “serve-expired” enabled
New DNS Design

OS Configuration

- Two local cache services
- 127.0.0.1 routes to resolvers in same AZ
- 127.0.0.2 routes to resolvers in other AZs

dnsmasq Configuration

- Max concurrency
- Max cache size

/etc/resolv.conf points to:
- 127.0.0.1
- 127.0.0.2
- direct resolver IP
New DNS Design

<table>
<thead>
<tr>
<th>MTA</th>
<th>cache1</th>
<th>AWS VPC Resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cache2</td>
<td>Resolver Cluster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>App</th>
<th>cache1</th>
<th>AWS VPC Resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cache2</td>
<td>Resolver Cluster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>cache1</th>
<th>AWS VPC Resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cache2</td>
<td>Resolver Cluster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin (auth)</th>
<th>cache1</th>
<th>AWS DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cache2</td>
<td></td>
</tr>
</tbody>
</table>

Public DNS

RBL DNS

Private DNS
Lessons Learned / Remembered

• AWS’ main service model is pull, not push
Lessons Learned / Remembered

- AWS’ main service model is pull, not push
- Not all cloud provider limits are apparent
 - make sure they understand your business
Lessons Learned / Remembered

• AWS’ main service model is pull, not push
• Not all cloud provider limits are apparent
 - make sure they understand your business
• Instrument your support services
 - and protect them from each other
Lessons Learned / Remembered

• AWS’ main service model is pull, not push
• Not all cloud provider limits are apparent
 - make sure they understand your business
• Instrument your support services
 - and protect them from each other
• resolv.conf is not agile
 - not even eventually consistent
Lessons Learned / Remembered

• AWS’ main service model is pull, not push
• Not all cloud provider limits are apparent
 - make sure they understand your business
• Instrument your support services
 - and protect them from each other
• resolv.conf is not agile
 - not even eventually consistent
• Iteration doesn’t solve it all
Lessons Learned / Remembered

• It’s always a DNS problem
Lessons Learned / Remembered

• It’s always a DNS problem
 - unless it’s a firewall problem
References

- http://unbound.net/
Questions?

jblosser@sparkpost.com