

Matt Brown, @xleem Customer Reliability Engineer March, 2018

Know thy enemy

How to prioritize and communicate risk

Matt Brown

Matt Brown

I'm a kiwi! Live & Work in NZ.



Matt Brown

I'm a kiwi! Live & Work in NZ.

2nd SREcon, 1st time speaking

https://goo.gl/T83gcf

Matt Brown

I'm a kiwi! Live & Work in NZ.

2nd SREcon; 1st time speaking

Tech Lead for CRE @ Google

Agenda

- What is risk?, some observations
- Approaches to risk, why prioritization is needed
- CRE's first attempt at prioritization
- What Risk Management can teach us about prioritization

What is risk?

Google Cloud

a situation involving exposure to danger.

define:risk google.com

SLO is critical to SRE

SLI

indicator

A measurable quantity representing what's important to users

SLO

objective

The target you want your SLI to reach

SLA

agreement


Consequences when the SLO is not met.

Not relevant to today's talk.

Error Budget

1 - SLO

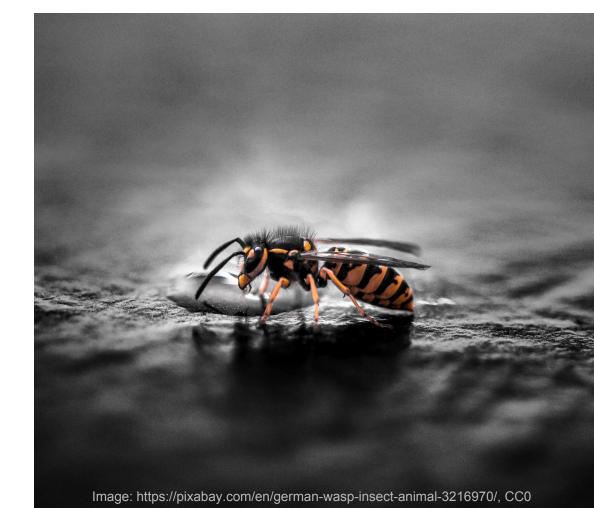
Our primary tool for prioritizing our work.

A situation involving consumption of the error budget

My observations on risk

Google Cloud

What's the biggest risk to your app / service



Many flavours

Personal

Risk can be good

Approaches to risk

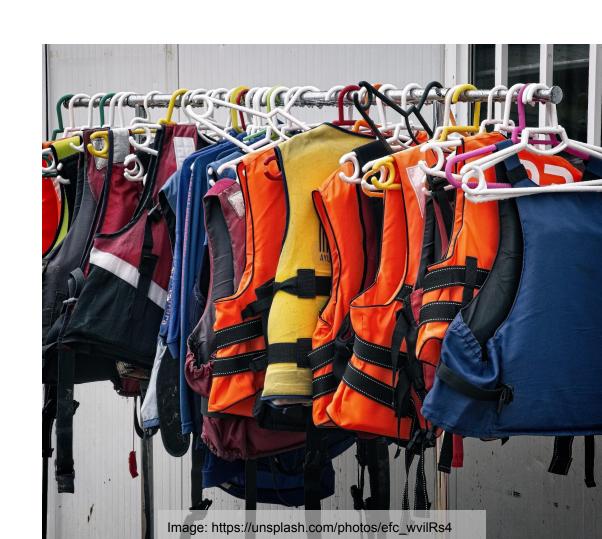
Google Cloud

Ignorance

Is not bliss

Paranoia

Is just as bad

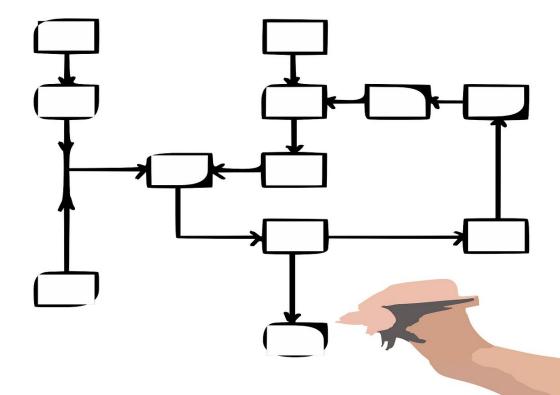


Eliminate

Reduce

Avoid

Prioritizing risk


Google Cloud

Intuition

System / / Process

The Risk Matrix

Google Cloud

Likelihood

Impact

The Matrix

Great display, easy to understand

Terrible for prioritization

	Catastrophic	Damaging	Minimal
Frequent	Overload results in slow or dropped requests during the peak hour each day.	The wrong server is turned off and requests are dropped.	Restarts for weekly upgrades drop in- progress requests (i.e., no lame ducking).
Common	A bad release takes the entire service down. Rollback is not tested.	Users report an outage before monitoring and alerting notifies the operator.	A daylight savings bug drops requests.
Rare	There is a physical failure in the hosting location that requires complete restoration from a backup or disaster recovery plan.	Overload results in a cascading failure. Manual intervention is required to halt or fix the issue.	A leap year bug causes all servers to restart and drop requests.

Expected Cost

Google Cloud

Expected cost

- Risk Management is a well studied field
- Expected Cost = Probability (Likelihood) * Cost (Impact)
- Costs are easily comparable, solving our matrix problems.
- Can we rephrase our risk characteristics to be able to use this?
- \$\$ Cost is not always easy for SRE to estimate
- But we already have a budget. A cost is something you spend. We must be able to merge these concepts!

Expected cost for SRE

LikelihoodQuantified

Quantified as MTBF (days)

Ideally from historical data.

Pragmatically we estimate. (ETBF)

Impact

Quantified as MTTR (typically minutes).

How much of your error budget will this risk consume?

ETTD

ETTR

% Users

Cost

Annual error budget minutes we expect this risk to consume.

Risk Input

Risk Name		
Operator accidentally deletes database; restore from backup required		
Bug in new release breaks uncommon request type		
Physical failure of hosting; implement back-up/DR plan		
Overload causes 15% slow requests at peak each day		
No lame-ducking/health-checks; restarts drop in-flight requests		

https://goo.gl/bnsPj7

Risk Input

Risk Name	ETTD (mins)	ETTR (mins)	% Users	ETBF
Operator accidentally deletes database; restore from backup required	5	480	100	1460
Bug in new release breaks uncommon request type	1440	30	2	90
Physical failure of hosting; implement back-up/DR plan	5	720	100	1095
Overload causes 15% slow requests at peak each day	0	60	15	1
No lame-ducking/health-checks; restarts drop in-flight requests	0	1	100	7

Calculated Expected Cost

Risk Name	ETTD (mins)	ETTR (mins)	% Users	ETBF	Bad mins/year
Operator accidentally deletes database	5	480	100	1460	121
Bug in new release breaks uncommon request type	1440	30	2	90	119
Physical failure of hosting; implement back-up/DR plan	5	720	100	1095	242
Overload causes 15% slow requests at peak each day	0	60	15	1	3287
No lame-ducking/health-checks; restarts drop requests	0	1	100	7	52

Stack Rank

How does this compare to your first guess?

Risk	Bad mins/year
Overload causes 15% slow requests at peak each day	3287
Physical failure of hosting; implement back-up/DR plan	242
Operator accidentally deletes database	121
Bug in new release breaks uncommon request type	119
No lame-ducking/health-checks; restarts drop requests	52

Risk	Bad mins/year	99.99%
Overload causes 15% slow requests at peak each day	3287	
Physical failure of hosting; implement back-up/DR plan	242	
Operator accidentally deletes database	121	
Bug in new release breaks uncommon request type	119	
No lame-ducking/health-checks; restarts drop equests	52	

Error budget analysis

99.99% SLO

52.596 mins/year budget

25% threshold (13.1 mins)

Risk	Bad mins/year	99.9%
Overload causes 15% slow requests at peak each day	3287	
Physical failure of hosting; implement back-up/DR plan	242	
Operator accidentally deletes database	121	
Bug in new release breaks uncommon request type	119	
No lame-ducking/health-checks; restarts drop equests	52	

Error budget analysis

99.9% SLO

525.96 mins/year budget

25% threshold (131 mins)

Risk	Bad mins/year	99.9%
Overload causes 15% slow requests at peak each day	3287	
Physical failure of hosting; implement back-up/DR plan	242	
Operator accidentally deletes database	121	
Bug in new release breaks uncommon request type	119	
	407	

Error budget analysis

99.9% SLO

525.96 mins/year budget

25% threshold (131 mins)

Takeaways

SLO

You need an SLO, and an error budget.

Foundation for all SRE work and prioritization.

Risks abound

The world is constantly trying to threaten our SLO.

Our job as SREs is to manage that risk.

Prioritization

We can't engage with every risk, we need to prioritize.

Humans are terrible at prioritizing risk.

Estimated Cost

A well established technique for comparing risks.

Breaking a risk into characteristics gives opportunity to reduce bias.

Try it today!

It's easy to apply this technique.

Here's a template spreadsheet you can use:

https://goo.gl/bns Pi7

Thank you!

Feedback Welcome

These slides

Me

https://goo.gl/bwT7eC

mattbrown@google.com

@xleem

NEXT 16

San Francisco