Smart Monitoring System for Anomaly Detection on Business Trends in Alibaba

Zhaogang Wang
zhaogang.wzg@alibaba-inc.com
About me

• Senior Specialist of GOC (Global Operation Center) Team in Alibaba Group
 • Business trend monitoring
 • Business fault diagnosis and root cause analysis
 • Data warehouse for infrastructure and operation data

• Before I joined Alibaba
 • Senior Engineer of SRE Team in Baidu
Introduction to Alibaba Group
About business trends monitoring in Alibaba

- **Business faults management**
 - Mapping business functions to business trends

- **Faults Priority Definitions**
 - Orders per minute on Taobao decreased by XX% or above => P1 Fault
 - Transactions per minute on Alipay decreased by X% to XX% => P2 Fault

- **Business trends monitoring**
 - Business faults can be found by anomaly detection on business trends
Features of businesses trends

- Cyclicity
- Holiday Effect
- Noise and interference
Challenges of anomaly detection on business trends

• How to adopt the characteristics of different business trends?

• How to meet the artificial standards of faults?

• How to get all the configurations in automation?
Summary of anomaly detection approaches

- Local trend based
 - Static threshold
 - Dynamic threshold
 - Local regression

- Historical trend based
 - Trend prediction
 - Segment average of historical data
 - Time series decomposition
 - Holt-winters
 - STL (Seasonal Trend LOESS)
 - Machine Learning
 - Deep Learning (LSTM)
Our choice

• Our choice
 • STL (Seasonal Trend on LOESS)

• Advantages of STL on business trends time series
 • Suitable for cyclical data
 • Suitable for data with drifting trend
 • Robust to local noises and interference

How to get a good “prediction”

• A good “prediction”
 • Accurately fits business trends
 • Smooth and stable
Using STL directly on original data...

- **Drawbacks**
 - Effected by noise
 - Not smooth or stable
 - Not enough sensitive to recent trends

- **Solutions**
 - Customized data preprocessing
Customized data preprocessing

Remove history noises

Smooth the data

Smooth the data again:
Use recent trends to adjust the outline of historical data

Complete the "future" data.
A better “prediction” is born
Anomaly detection based on predicted curve

• The traditional N-sigma law
 • Anomaly point: residence > N * sigma

• N == 3?
 • Sigma varies with the time segment
 • Sigma varies with the business trend

• We need
 • Different N for each time segment and each business trend
How to determine the “N”s

- Divide the time segments by residence for each business trend
- Initialize the N for each time segment
- Adjust the N according to manual feedback
Manual feedback loop

• About the label data
 • Label data from the operators’ team
 • Effectiveness of the anomaly points
 • Quantity of the label data

• How to utilize the label data
 • Adjust the N parameter according to the label data
 • Tolerant the errors in the label data
Evaluation

• Anomaly detection
 • Precision: 80%
 • Recall: 80%

• Configuration cost
 • Auto parameter initialization
 • Auto parameter adjustment
 • When the business trend changes
Future work

• Lightweight anomaly detection for system metrics
• Early warning for business faults
• Fault diagnosis and root cause analysis
Q & A