
Reliability When Everything is
a Platform
Why we need to SRE our customers

Dave Rensin
rensin@google.com

Disclaimer:
Reliability != Availability; but for this talk, let’s pretend they are.

There is a well principled conversation to be had about the strict differences between
“reliability” and “availability”. I acknowledge they are often not the same thing, but for
this talk we can treat them interchangeably. Please don’t let the larger points get lost
in an argument about MTBF vs MTTR

In the beginning...

In the beginning almost every company starts with just one application. Like.. I don’t
know… Search.

If things go well...

If things go well then this application gets lots of users.

This needs to
stay up, so...

The more users it gets, the more important it is for it to be highly reliable. Eventually,
specialists take over this responsibility. We call them SREs

We did so well
with one...

One killer app worked so well.. Let’s add a second!

Let’s refactor!

Because we’re engineers we pretty quickly realize that these systems share common
requirements -- like storage. Let’s refactor!

Roles start get
squishy...

usersapplications

also users!

platform

Before long, roles start to get a little squishy.. For example.. These are users and
these are applications. But the applications are now also users. These other bits?
They’re now platforms

Team mitosis

usersapplications

also users!

platform

When this happens, it’s time for team mitosis. We create new control boundaries and
split SRE teams -- one group handles the applications and another group handles the
platform.. This has been pretty much the state of the world for the last 10(ish) years...

APIs as far as
the eye can see...

and platforms!!

usersapplications

also users!

platform

Network effects mean that our applications get more useful (and valuable!) when they
interconnect with other popular applications.. So we add APIs.. But… Now our
applications are also platforms! Pro Tip: a platform is any system whose interface is
an API. An application is any system whose main interface is a UI. Machines talk to
platforms. Humans talk to applications.

Principle #1
The Most Important Feature of Any System is its Reliability

In this world we need some principles to reason about things. Everybody (I hope!) can
agree on #1… The most important feature of any system is its reliability.

Principle #2
Our Monitoring Doesn’t Decide Our Reliability -- Our Users

Do

There are lots of ways to measure reliability, but the most important one is how our
users experience it in our systems. If they don’t perceive it as reliable, then it’s not --
no matter what the logs say...

and here’s where
things get tricky...

also
applications

and platforms!!

usersapplications

also users!

platform

Now… Some of our users are people, but some of them are also applications
developed and maintained by other companies. And they have users, too.. Uh oh…
Now the reliability perceived by our customers depends not just on the software we
write, but on the software they write! All turtles, all the way down….

“I’m good...
My

application
doesn’t have

an API...”

No… Your application just doesn’t have an official API. In the age of bots, if you’re
even a little bit popular then you’re getting scraped. Whether you like it or not, you
have an API -- even if it’s just your web UI.

Reliability is a
solved problem,

right?

● Whitepapers
● Best Practices
● Deployment Guides
● Sample Code

But surely this is a solved problem, right? We know how to do this.. We just need to
produce useful artifacts like whitepapers, best practices, deployment guides, sample
code, etc...

Principle #3
Well engineered software -> 99.9%; Well engineered

operations -> 99.99%; Well engineered business -> 99.999%

It takes well engineered software to get 3 9’s. That’s as far as whitepapers,
deployment guides, etc can get you. It takes well engineered operations -- including
shared monitoring and fast rollbacks -- to get to 4 9’s, and a well engineered business
to get 5 9’s. Usually around making hard choices about SLOs and SLAs.

30 day error budget

 99.9 % == 43.2min

 99.99% == 4.32min

 99.999 % == 26sec

https://pixabay.com/en/board-school-blackboard-empty-73496/

SRE
Math
Review

NOTE: Image is CC0 - https://pixabay.com/en/board-school-blackboard-empty-73496/

Just a quick SRE math review.. What’s the 30 day error budget at 3 9’s? Right..
43.2min. 4 9’s? Yup. 4.32min. And for completeness… 5 9’2? Correct.. 26sec.
Let’s focus on the 4 9’s target. If the application calling your platform is at all business
critical, they’ll usually be aiming for this target. The traditional approach of filing a
support ticket pretty much guarantees that they can’t rely on you and still build a 4 9’s
system.

https://pixabay.com/en/board-school-blackboard-empty-73496/
https://pixabay.com/en/board-school-blackboard-empty-73496/
https://pixabay.com/en/board-school-blackboard-empty-73496/

Assertion
Your Platform Customers Can Only Get 99.99% by Luck if

You Don’t Have Integrated Operations

The basic math and my observation while running Google’s Cloud Support is this:
You cannot expect your customers to reliably achieve 4 9’s for their customers if you
don’t have some kind of integrated operations… How much? What kind? Let’s talk
about that...

We Need to SRE Our Customers

As SREs in our companies we’re expected to be the experts and bar raisers for
Reliability and scale. We need to do this for our customers, too. In the following slides
I’ll tell you how and why.

Stage 1
Perform periodic and rigorous
application reliability reviews
(ARRs) on their key components
that rely on your platform.

What exactly is an ARR? This is the process of an SRE (or two) from your company
deeply inspecting the design and operation of the customer’s app. Your SREs know
the failure modes of your platform, and common failure modes of apps on your
platform - you know where to look for potential problems.

The Anatomy of an ARR
(Key Questions to Ask)

● “What reliability is your application getting now? Can you prove it!”
○ Your customers are almost certainly measuring (and alerting!) on things that don’t much

matter.
○ Key: Alert on symptoms -- not causes

● “What are your SLOs and how do they relate to your SLIs?”
○ We find that most customers have implicit (rather than explicit) SLOs that are only

‘intuitively’ tied to their business objectives. You need to sort that.
○ Key: They need to have a sane error budget and mechanisms to address misses or they’ll

forever have unrealistic expectations of your platform.

Stage 2

Build Shared Monitoring and
Alerting

● A common source of truth
between teams

● They only page on metrics in
the shared monitoring. No
secret data

● System auto-cuts support
tickets

NOTE: Shared Monitoring == The Greatest Black Box Probing Network EVER

Shared Monitoring is Everybody’s
Bestest Friend

● You can’t realistically expect 99.99%+ without it.

○ 99.99% = 4.32min/mo. It’s not practical to expect a human to (a) notice, (b)

gather data, and (c) file a ticket in that time.

● Helps eliminate the blame game

● The greatest black-box probing network you can have because it perfectly

tracks your customer’s experience.

Stage 3

Practice Operational Rigor Between
Teams

● Every postmortem is a joint
postmortem

● Action items are assigned (and
tracked) in both directions

● Open/closed items are
reviewed at least quarterly, but
probably monthly.

YOU are the incident commander for the joint postmortem. YOU drive it forward.

Some rules of the road..

1. YOU own and drive the postmortem process. YOU are the incident commander.

a. This is a service you are providing to your customer (probably for $0 extra). That entitles you to
have opinions. Postmortem follow-up is the vehicle to express those opinions and turn them into
results.

2. If a postmortem doesn’t have at least one AI for each party, then that’s a red flag.

a. We broke something? How could their app have been designed to be more resilient?

b. They broke something? What can we do to our platform to make it harder for them to break it again
in the same way?

c. There’s almost always something we/they can do to make it better for next time.

Stage 4

Joint On-call

● When they spin up a war room,
you join and lead debugging
from your side

● Regular DiRT/WoM exercises
● If your company permits it, joint

projects -- including tooling
development

DiRT == Disaster and Recovery Testing -- regularly scheduled production mayhem.
Not a thought experiment!

Observation from our DiRT that both directions of escalation are important to
exercise; how does your company contact them urgently, how do they contact you
urgently?

WoM == Wheel of Misfortune -- periodic role playing of an outage/incident. IS a
thought experiment, but goes as far as possible without actually intentionally causing
problems.

“You can only fight the way

you practice”

― Miyamoto Musashi, A Book of Five Rings: The Classic Guide to Strategy

http://www.goodreads.com/author/show/8330589.Miyamoto_Musashi
http://www.goodreads.com/work/quotes/1318780

We Started Doing This In July
 (and announced it in October)

What is CRE?

A team of Google SREs

● Pointed outwards, instead of
inwards

● Comfortable talking to
customers

● Software development (esp.
externalizing internal SRE
tools)

● Conduct ARRs
● Do ongoing design review
● Build and maintain shared

monitoring

“So.. This is a
kind of

professional
services,

right?”

No. ProServ has its place, but this is not it. This is a partnership of equals where you
expect to bring strong opinions to the table. We ensure this dynamic in CRE by not
charging extra $’s for it. That way we can “hand the pagers back” anytime we get the
idea that the customer isn’t interested in putting in their half of the effort. If you make
this a work-for-hire arrangement you erode that common ground.

It’s early days, but we’re seeing promising results...

https://goo.gl/KBys08

https://goo.gl/KBys08
https://goo.gl/KBys08

TL;DR

● Everything is a platform -- we are all platform SREs!
● Reliability is the most important feature but is contingent on customer

decisions. Your reputation (and success) depends in part on their choices.
● Spes Consilium Non Est - Hope is not a strategy. Don’t hope your customers

make good design choices. Help them do it!
● This is not theory. We do this everyday at Google. You can, too!

Q&A

