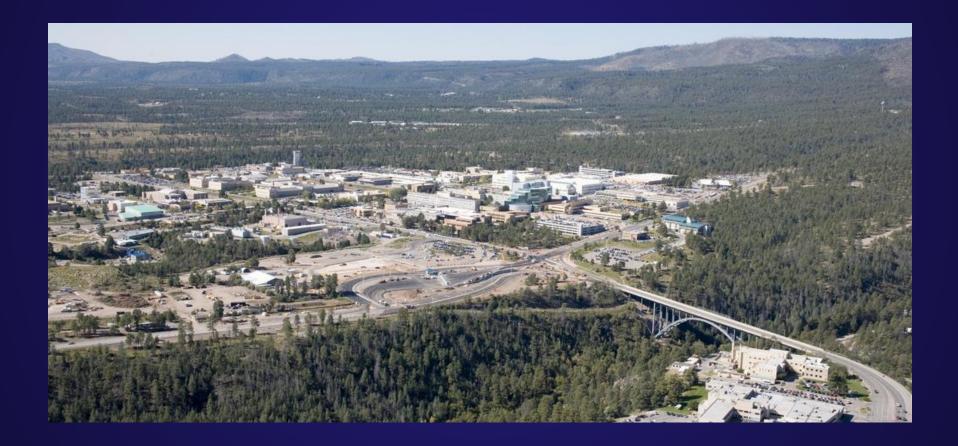
HPC Downtime Budgets: Moving SRE Practice to the Rest of the World

SREcon Europe 2016

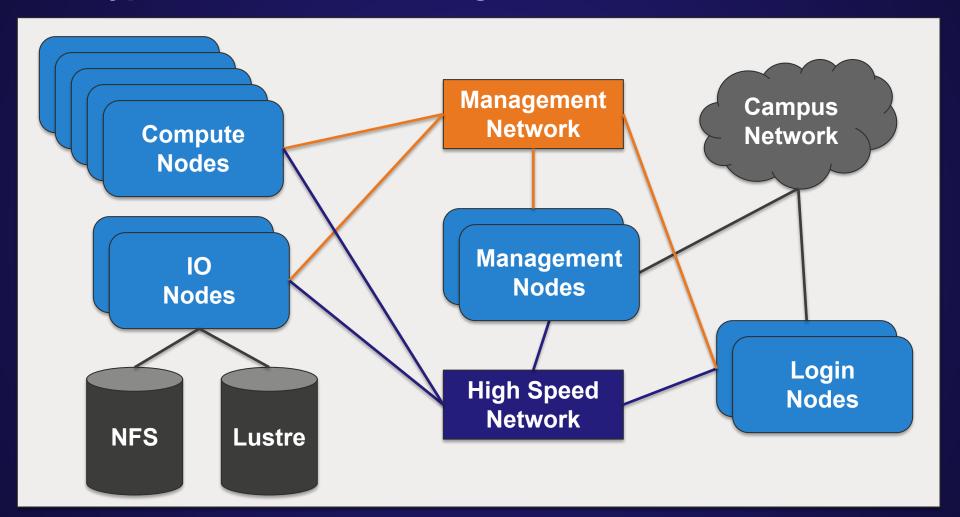
Cory Lueninghoener


July 12, 2016

whoami

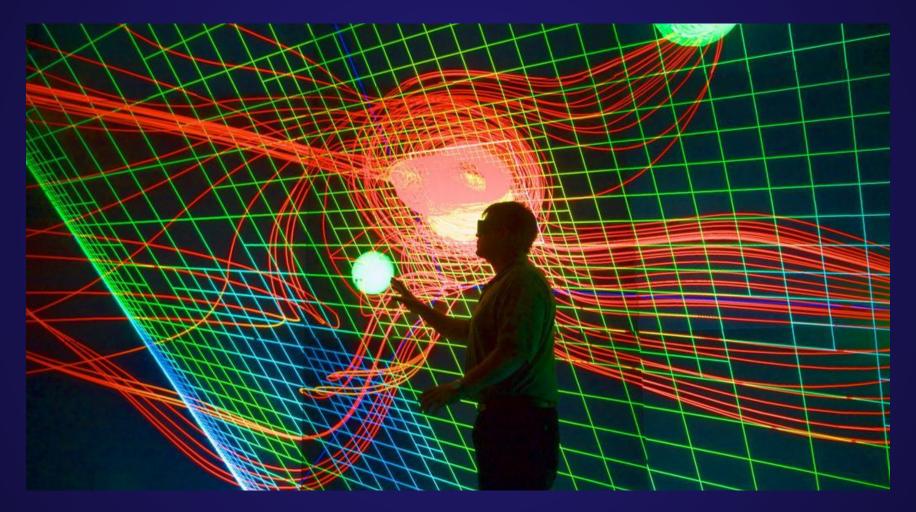
- Cory Lueninghoener
- HPC Design Group Leader, Los Alamos National Laboratory
- System administrator, config management junkie, scalable system builder
- Co-chair of LISA 2015
- @cluening | linkedin.com/in/cluening | github.com/cluening | cluening@lanl.gov

Where I Come From


HPC Systems

HPC Applications


```
int init pre(MarFS XattrPre*
                                    pre,
                                    obj type, /* see NOTE */
            MarFS_ObjType
             const MarFS_Namespace* ns,
             const MarFS_Repo*
                                    repo,
             const struct stat*
                                    st) {
  time t now = time(NULL);
                                /* for obj_ctime */
  if (now == (time_t)-1)
     return errno;
  // --- initialize fields in info.pre
  pre->repo
                     = repo;
   pre->ns
                     = ns;
  // captures the version of the software, not what's in the config-fi
  pre->config_vers_maj = MARFS_CONFIG_MAJOR; // marfs_config->version_
  pre->config_vers_min = MARFS_CONFIG_MINOR; // marfs_config->version_
  pre->obj_type
                     = obj type;
  pre->compression
                    = repo->comp_type;
  pre->correction
                    = repo->correct_type;
   pre->encryption
                     = repo->enc type;
```


A Typical HPC Cluster Design

At the Lab, We Manage...

- ~20 clusters ranging from 100s to 10,000s of nodes
- ~36,000 compute nodes
- ~1.2 million compute cores
- ~110 PB of Lustre across 10 filesystems
- ~5,000 square meters of computer room floor

A Typical HPC Application Design

Our Systems Support...

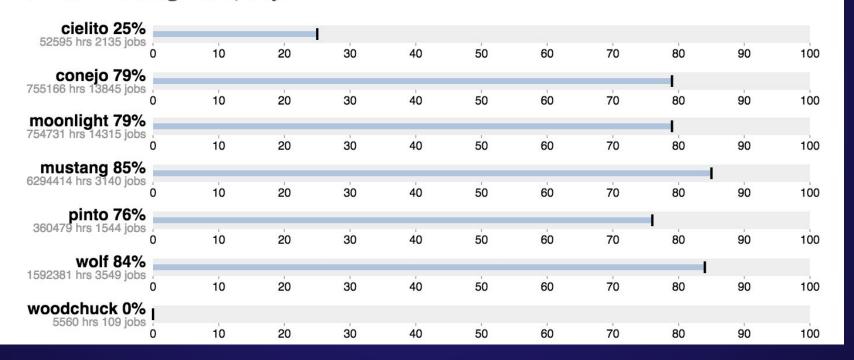
- Job sizes ranging between 64 cores to 64,000 cores
- Job sizes ranging between 4 and 4,000 nodes
- Job times ranging between 1 and 24 hours
- ~3,000 users
- ~6,000 jobs in a typical day

Comparing HPC to Web Engineering

Notable differences

- Instead of lots of small, redundant, resilient, or independent jobs, a smaller number of really large tightly coupled jobs
- Instead of millions of transactions per unit time, tens or hundreds
- Instead of millions of customers, a smaller set of domain experts

But a lot of similarities


- Very large scale systems
- Very small scale operations/admin/SRE/whatever teams
- Lots of monitoring and metrics gathering to do

Metrics We Gather

- Typical systems monitoring stuff
 - Node health temperature, load, error log, …
 - Outages both planned and unplanned
- HPC-specific stuff
 - High speed network health
 - Parallel filesystem health speed, free space, …
 - Job queue depth number of jobs in queue, size, owner, length of time
 - Utilization job start time, end time, size, owner

Utilization Is An Important Metric

LANL HPC Usage and Statistics HPC Machine Usage last 7 days

Monthly Cluster Maintenance

^ Calendar for Jun 2016						
< <pre><<pre> * denotes an entry is referred to by another ticket(s)</pre></pre>						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
29	30 I← Platforms Change Time I← Memorial Day Holiday	31 I← Turquoise DTN DST * I← Trinity PM/DST	1 I← Conejo PM/DST * I← Cielito PM/DST * I← Trinitite PM/DST I← Hobo Decommissioned	2 I← Programming Env. Maintenance PM/DST *	3	4
5	6 I← Platforms Change Time	7 I← Wolf PM/DST * I← Lightshow PM/DST * I← CFTA PM/DST I← Turquoise DTN DST I← Open User Gateways DST * I← TFTA PM/DST *CANCELED* * I← Trinity PM/DST	8 I← Trinitite PM/DST I← Cielo PM/DST * I← Hobo PM/DST *CANCELED* I← Mustang PM/DST * I← Woodchuck PM/DST * I← Cortez DST – 5 to 8 pm	9 I← Open Support Services DST * I← Open Monitoring Services DST * I← Open License Services DST *	10	11
12	13 I← Platforms Change Time	14 I← Turquoise DTN DST I← Pinto PM/DST * I← GPFS PM/DST I← Trinity PM/DST * I← Redcap PM/DST *	15 I← Trinitite PM/DST I← Viewmaster II PM/DST	16 I← Programming Env. Maintenance PM/DST * I← Secure Support Services DST *	17	18
19	20 I← Platforms Change Time	21 I← Turquoise DTN DST I← Moonlight PM/DST * I← Trinity PM/DST	22 I← Trinitite PM/DST I← Cielo PM/DST I← Luna PM/DST * I← Network PM * I← Cortez DST - 5 to 8 pm	23 I← Secure License Services DST ★	24	25
26	27	28 I← RFTA PM/DST * I← Secure User Gateways DST *	29	30	1	2

Monthly Cluster Maintenance

- Maintenance often affects an entire cluster at a time
 - This is a design tradeoff
 - Individual node work: no problem
 - OS image, high speed network, filesystems: safest with idle cluster
- User impact mitigation
 - Schedule similar clusters separately
 - Do pre-work when possible
 - Only idle cluster when needed
 - Leave login nodes up as much as possible

Minimize Impact on Users

- Balance: system work vs. user work
- Maintenance impact on users
 - How do we measure it?
 - How do we use that info to make stronger decisions?
- Error budget concept provides some inspiration

SRE Error Budgets

- Hack your SLA to your advantage
- The basic concept:
 - SLA says 99.99% uptime? That's actually .01% downtime
 - Use every bit of that time to innovate or fix
- Exact implementation doesn't guite fit
 - .01% of 10,000,000 web requests is 1,000 requests
 - .01% of 1,000 HPC jobs is 1/10 of a job

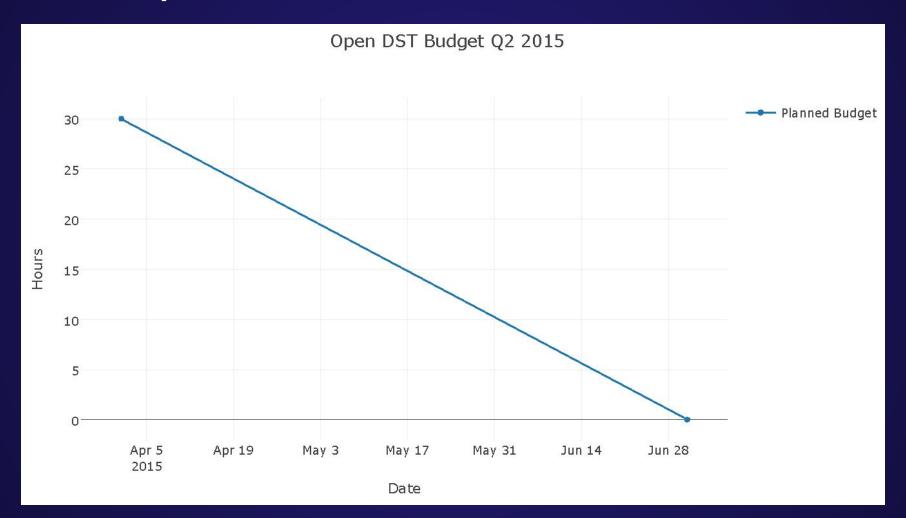
But the idea of tracking downtimes and using them to your advantage does fit

HPC Downtime Budgets

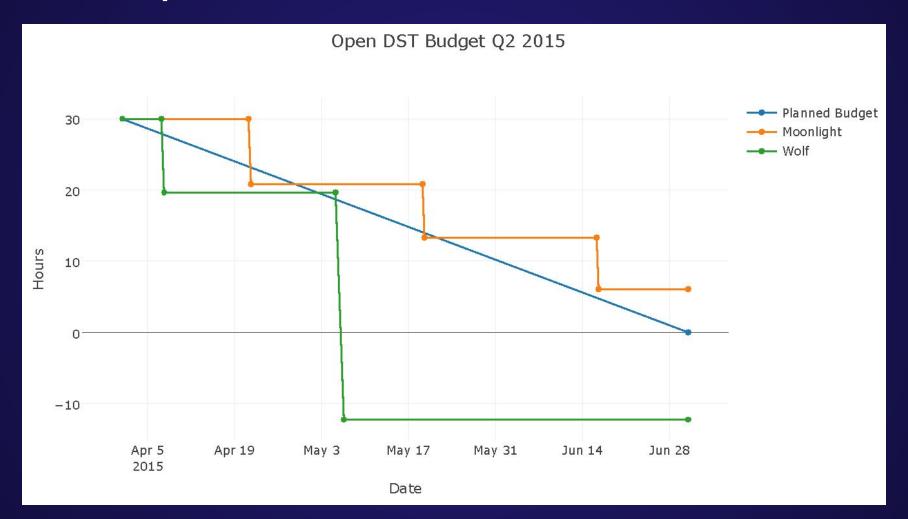
- Each cluster has one 10-hour Dedicated System Time (DST) scheduled each month
- In a quarter, 3 DSTs x 10 hours = 30 hours of scheduled downtime
- So, the budget per quarter per cluster is 30 hours
- Or, about 1.4% of the cluster's available time

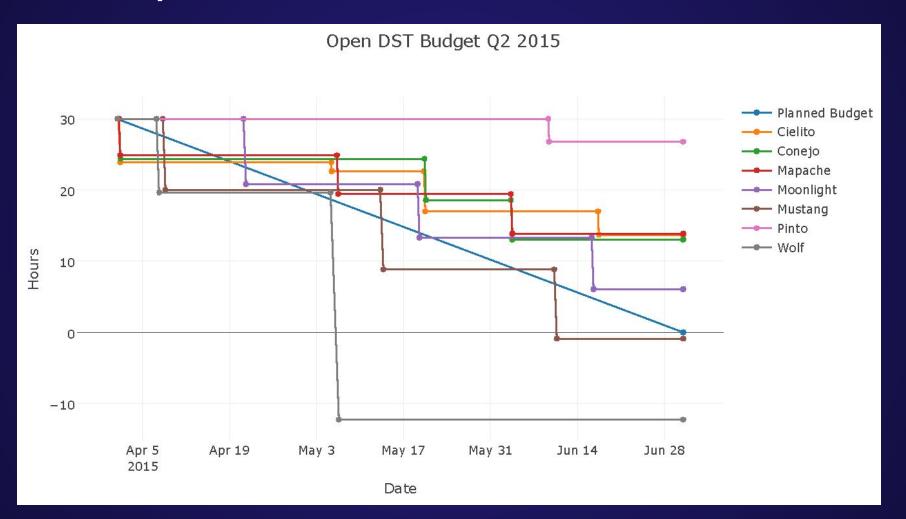
This is something we can track and use to make decisions

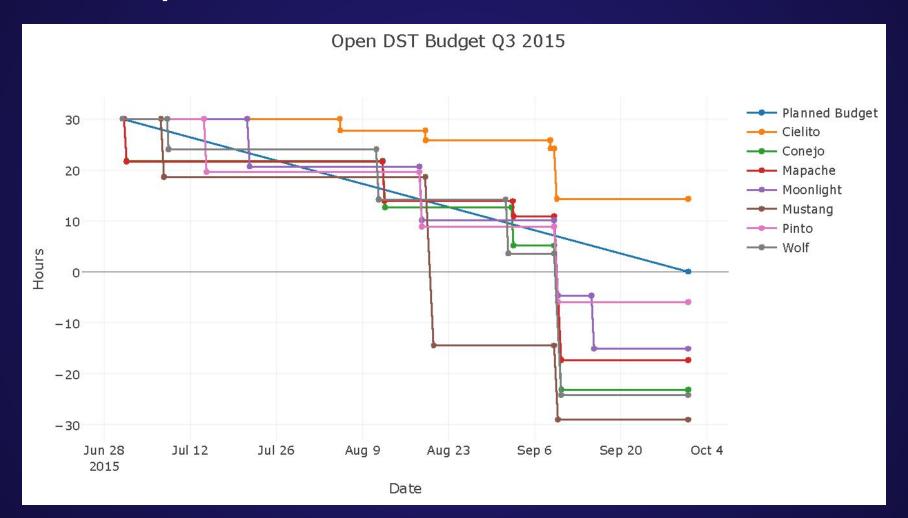
Goals

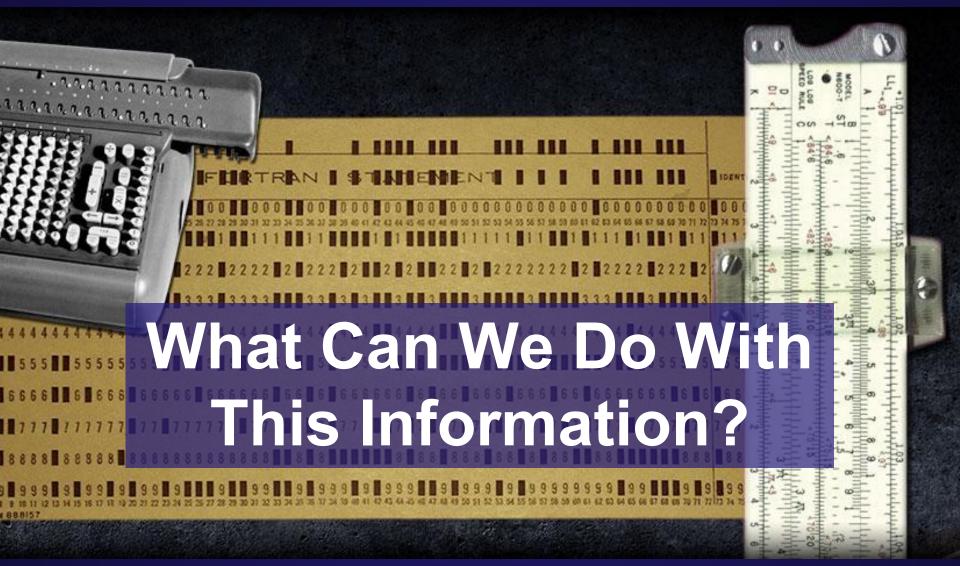

- Track maintenance downtime
- Make downtime risk analysis easier
- Inspire team members to play the game
- Report up the chain how we are doing

Not Goals


- Make maintenance days more stressful
- Get into a minute-pinching mode
- Figure out how to beat the system
- Become more worried about the metric than the outcome


- Python script
- ... that connects to a mysql stats database
- ... to generate json output
- ... that is graphed using plotly


Status: still proof of concept



Downtime Budgeting and Reporting

Facilities Work Budgeting

Lightning Strike Budgeting

Dedicated User Time Requests

Admin Time to Fix Technical Debt

The Challenge

- How can this talk be generalized?
- Many SRE ideals easily map to traditional environments
 - Monitoring and metrics
 - Incident planning and analysis
 - Automation and configuration management
- Many don't
 - Scalability
 - SRE hiring
 - Continuous deployment

The Challenge

- What makes SRE environments unique?
- How can I teach somebody in a different environment to use what I have learned?

The Challenge

- This is not a conversion or evangelization challenge
- This is a community-building challenge

