Signatures, Patterns & Trends
KALE turns me on.

metrics

Skyline: anomaly detection

Oculus: similarity search

lotusleafcreations.etsy.com
Nothing easy is worth doing.
Kale 1.0: What worked well?
Timeseries similarity search: 👍

Shape Description Alphabet: a lovely hack.

1. Map line segments to tokens based on gradient.
 “a” /
2. Index tokens with Elasticsearch.
 “b” —
3. Search for similar subsequences using sloppy phrase queries.
 “c” —
 “d” —
 “e” —
Kale 1.0: What proved hard?
Architecture

Languages used:

- Python (Skyline app & workers)
- Ruby (Oculus search app)
- Java (Oculus ES plugin)
- JS (Skyline and Oculus apps)
Anomaly detection

I’m significantly not normal.

\[\omega = \frac{\left(\sum a_i x_i \right)^2}{\sum (x_i - \bar{x})^2} \]

(And that’s not a bad thing)

nauisicaadistribution.etsy.com
Not every anomaly is a point outlier. And not every point outlier still looks like one, if you step back and look at more data.
Periodic oscillations sometimes appear out of nowhere. Or previously-reliable ones can vanish just as suddenly.
Trends change, baselines can suddenly shift.

Healthy upward growth can drop out suddenly, flatten off or begin to fall.
Rare, discrete events can suddenly become more frequent.

Conversely, events you expect to see with some regularity can become much sparser or disappear completely.
And the best bit is...
... it’s usually not even a problem.
Kale 2.0, Phase 1: Thyme

- Library of algorithms and composable processing steps
- Aims to be memory-efficient and cache-friendly (for Java)
- Platform and infrastructure agnostic
- Supports flexible experimentation and prototyping

Built using **ReactiveX** framework

Interactive sample application and developer tutorial
A taste of Thyme

Schematic of a pipeline. The component parts can be assembled in various ways.
Lessons learnt from Kale 1.0

❖ Keep your architecture simple – especially for OSS releases
❖ “This is a good fit for this problem” doesn’t always imply “Let’s add this new piece to our stack”
❖ Don’t release a product/platform unless you have a good history of using it yourself
 ❖ ... and no plans to stop
Lessons learnt from Kale 1.0

- Anomaly detection is more than just outlier detection
- A one-size-fits-all approach probably won't fit at all
Lessons learnt from Kale 1.0

- Ensemble methods and auto-calibration a good idea
- Timeseries similarity search is feasible after all
 - ... if you constrain the search space by fingerprinting
- Don't forget human factors: good UI and workflow
Thank you!

And thanks to everyone who’s contributed: Abe Stanway, Avleen Vig, Jeff Kim, Jon Cowie, Katherine Daniels, Nishan Subedi

Follow us for updates:

https://github.com/etsy

https://codeascraft.com/

@codeascraft

"Thymus citriodorus" by Forest & Kim Starr
Shared under CC-BY 3.0 license