Smart Monitoring System For Automatic Anomaly Detection and Problem Diagnosis

Xianping Qu
quxianping@baidu.com
March 2015
Who am I?

• Xianping Qu
 – Senior Engineer, SRE team, Baidu
 – quxianping@baidu.com

• Baidu SRE Team
 – Over 400 Engineers
 – Support over 300 products, developed by 20,000 engineers

• Areas of Interest
 – Monitoring system
 – Data Analysis
About Baidu (百度)

- **Search**
 - Webpage/Image/Video/News/Dictionary/Web Directory/...

- **Social**
 - Forum/Album/...

- **LBS**
 - Maps/Group Buy/...

- **Knowledge**
 - Wiki/Knows/Experience/...

- **Mobile**
 - Search/Mobile phone assistant/...

- **Cloud**
 - Personal Cloud storage/Baidu Cloud/...

- ...
Agenda

• Background

• Smart Monitoring System
 – Anomaly Detection
 – Alarm Filter
 – Problem Diagnosis

• Summarize
Exponentially growing servers

Trend of numbers of servers at Baidu

~20 times over 5 years
The scale of the data

<table>
<thead>
<tr>
<th>Total Data</th>
<th>> 1.5 EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webpage count</td>
<td>> 300 billion</td>
</tr>
<tr>
<td>Webpage updates</td>
<td>> 1 billion / day</td>
</tr>
<tr>
<td>Monitoring data</td>
<td>> 20PB</td>
</tr>
<tr>
<td>Monitoring data growth</td>
<td>> 40TB / day</td>
</tr>
</tbody>
</table>

Monitoring and Diagnosis are vital!
Early methods for monitoring and diagnosis

- **Monitoring Items**
 - Machine level: 90 million
 - Service level: 50 million

- **Alarms**
 - Threshold
 - Accuracy
 - Drifting
 - Annoyance vs promptness

- **Diagnosis**
 - Curves, Logs, Trace
Some Examples In Detail
Diverse thresholds

Threshold against yesterday’s value

Threshold against accumulated value
Drifting thresholds

Workday

Weekend

Holiday
Annoyance vs Promptness of Alarms
Diagnosis

- Monitoring
- Changing Events
- Relationship
- Log
- ...

```
<table>
<thead>
<tr>
<th>task</th>
<th>thread</th>
<th>state</th>
<th>start time</th>
<th>duration</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>tdi</td>
<td>thread_1</td>
<td>done</td>
<td>2015-03-10</td>
<td>14:30</td>
<td>0.5s</td>
</tr>
<tr>
<td>event</td>
<td>Downloader_http</td>
<td>done</td>
<td>2015-03-10</td>
<td>14:45</td>
<td>1.26 s</td>
</tr>
<tr>
<td>tdi</td>
<td>thread_2</td>
<td>running</td>
<td>2015-03-10</td>
<td>14:50</td>
<td></td>
</tr>
<tr>
<td>event</td>
<td>Downloader_http</td>
<td>done</td>
<td>2015-03-10</td>
<td>14:55</td>
<td>1.27 s</td>
</tr>
<tr>
<td>tdi</td>
<td>thread_3</td>
<td>running</td>
<td>2015-03-10</td>
<td>15:00</td>
<td></td>
</tr>
<tr>
<td>event</td>
<td>Downloader_http</td>
<td>done</td>
<td>2015-03-10</td>
<td>15:05</td>
<td>1.28 s</td>
</tr>
<tr>
<td>tdi</td>
<td>thread_4</td>
<td>running</td>
<td>2015-03-10</td>
<td>15:10</td>
<td></td>
</tr>
<tr>
<td>event</td>
<td>Downloader_http</td>
<td>done</td>
<td>2015-03-10</td>
<td>15:15</td>
<td>1.29 s</td>
</tr>
</tbody>
</table>
```

```
[12250 task_manager.cpp:504] insert task to be executed: 5.npsa-imbs-999.IM.all
[12254 detect_task.cpp:890] build threshold success: 10.npsa-imbs-999.IM.all: IMBS_FLOW
[1224 task_manager.cpp:338] abnormal detected: [10.npsa-imbs-999.IM.all: IMBS_FLOW]
[1224 task_manager.cpp:306] execute query: [5.npsa-imbs-999.IM.all: IMBS_FLOWcnt_avg]
[1224 task_manager.cpp:338] abnormal detected: [5.npsa-imbs-999.IM.all: IMBS_FLOWcnt_avg]
[12250 task_manager.cpp:504] insert task to be executed: 10.npsa-imbs-999.IM.all
[12254 detect_task.cpp:890] build threshold success: 10.npsa-imbs-999.IM.all: IMBS_FLOW
[1224 task_manager.cpp:338] abnormal detected: [10.npsa-imbs-999.IM.all: IMBS_FLOW]
```

```
12214 redis_manager.cpp:50c] Redis pipeline thread exited
```
Automatic and smart monitoring and diagnosis
Smart monitoring system: 酷贝

Cool ➔ Bay

Collection ➔ Detection ➔ Diagnosis
Collection

• **Service data**
 – PV, income, flow...

• **Machine & program data**
 – CPU, MEM, DISK, NETWORK...

• **Changing events**

• ...

Anomaly detection system

- offline part
 - Offline data
 - Data classification algorithm
 - 3-sigma
 - Holt winters
 - Local regression
 - Clustering, compared with regular training
 - Training Parameters
 - Loading user labels
 - Generate anomaly detection configuration

- online part
 - Real time data
 - Online anomaly detection
 - Detect algorithms
 - Viterbi decoder
 - Alarm
Detection: Strategy 1, 3-sigma rule

• Determine constant threshold algorithmically
 – Statistics on past data
 – Assume Gaussian distribution

\[
\bar{x} \pm 3\sigma
\]
Detection: Strategy 2, the segmented 3-sigma rule

- Multiple distributions: day vs night
 - Split data into 15-min segments
 - Day-on-day statistics
Detection: Strategy 3, KS-test

- Multiple distributions: workdays vs weekends / holidays
 - Differentiate using KS-test
 - Statistics within Workday/Weekend/Holiday
Other factors to consider

- Sometimes, the data is changing
 - e.g. compare the holiday PV with the workday PV

![Graph showing data comparison between workday, weekend, and holiday periods.](image-url)
Detection: Strategy 3, holt-winters

- Holt-winters algorithm
- Learn both seasonal and adjacent trend
Detection: Strategy 4, local regression

- The detection of local spurt or sudden drop
 - LOESS algorithm based on local regression
Deal with slow decline in data trend

- Smart cumulative method

- The signal cycle of raw data changed
 - 10s, 30s changed to 15mins, 1hour, 24hours

- Then use 3-sigma and holt-winters to detect
Challenge: generated threshold parameters vs. business requirement

• Incorporate engineers’ manual input:
 – Modify the parameters
 – Mark undetected anomaly
 – Mark false positive alarm

• Learn adjustment automatically
 – Alarm label \rightarrow Adjust parameters $+$ / $-$
Alarm filter

- Viterbi decoder
- The formation of abnormal events, rather than a single abnormal points
Problem diagnosis

• Help Diagnose
 – Total-dimensions and sub-dimensions
 – Upgrade/operation event and time series data
 – Operation and maintenance module relationship
Total dimension and sub-dimension

- Based on the total dimension and sub-dimension
- Example: the total revenue and advertise revenue
- Sort by impact weight
Heat map

- Sort anomaly numbers by dimension degree
- Slice data by abnormal regional, browser, channel
- Comparison of multi-dimensional anomaly
Issues caused by upgrades

• Based on upgrade events and metrics

• Time approximation
Issues diagnosis from operation and maintenance perspective

- Module calling graph
- Event and module relations
Establish the overall service view
Now, “酷贝” is born!
Summary

- It is difficult to detect anomalies and find the root cause when an anomaly occurs.

- A smart monitoring system for automatic anomaly detection @Baidu is demonstrated.

- Including data model of incidents, proactive anomaly detection algorithms, correlation analysis, and visualization.
Future

• Characterization of workload spikes
• Dynamic resource allocation
• Capacity management
• Identification of performance problems
• ...

Thanks