
“We’re Still Down”
A metastable failure tale

Kyle Lexmond
Production Engineer
SRECon 2023 Americas,
March 2023

What is a metastable failure?

1. Trigger causes system to enter a bad state, and stay in bad state
even after trigger is removed

2. While in the bad state, the system is effectively unusable
3. Sustaining effect that prevents the system from self recovering

My Experience

• Peak DR Load Test scheduled
• Alerts flooded the CDN team channel
• Focus on getting machines back up

Architecture

Uniqueness

Region 1 Region 2 Region 3 Region 4

Fake Example Region Weights

?

?

?

Users POPs Region

CDN Request Flow

Users POPs Region

CDN Request Flow

Web Server

t

Storage

Users POPs Region

CDN Request Flow

Web Server

t

StorageTranscoder

Users POPs Region

CDN Request Flow

Web Server

t

StorageTranscoder

Back to the Story

Recap
● Machines are in a cycle of failing/healthy/failing
● More than one region is impacted
● Cascading failure?

Is this a Metastable Failure?

• All 3 criteria met

• The DR test was reverted
• But we were failing a lot of requests
• Regions would get hit by the thundering herd on individual

recovery

Recovery Attempts

Physical Recovery

• Power cycling machines
• Some machines ran out of memory and crashed
• Thundering herd on region recovery

Load shedding

• Tighten rate limits
• Disable background content fetch in apps
• Add additional web servers

Load shedding

• Tighten rate limits
• Disable background content fetch in apps
• Add additional web servers

• Changed healthchecks to ignore reality

● Forced connections to be spread across machines
● No more “lasering” healthy instances
● Prevented the thundering herd

● Broke the sustaining effect

Why did that work?

- Laura Nolan

“Many load-balancing systems use a health check to
send requests only to healthy instances, though you
might need to turn that behavior off during an
incident to avoid focusing all the load on brand-new
instances as they are brought up.”

https://www.infoq.com/articles/anatomy-cascading-failure/
https://www.infoq.com/articles/anatomy-cascading-failure/
https://www.infoq.com/articles/anatomy-cascading-failure/
https://www.infoq.com/articles/anatomy-cascading-failure/
https://www.infoq.com/articles/anatomy-cascading-failure/

What happened?

Users POPs Region

CDN Request Flow

Web Server

t

StorageTranscoder

?

?

Hindered & Helped

Delayed realization of incident scale

Different failure modes confused us

Healthchecks were affected by load
shedding, causing traffic oscillations

Hindered

Failed system isolated from other services

Stale cached content continued to be
served

Helped

Design Changes

Healthcheck
Improvements

● Below a threshold,
spread load evenly
instead of
overloading
remaining machines

“Panic Threshold”

… if the percentage of available hosts in the cluster becomes
too low, Envoy will disregard health status and balance either
amongst all hosts or no hosts.

This is known as the panic threshold.

- Panic threshold, Envoy Proxy Documentation
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/loa
d_balancing/panic_threshold

“Target group health:
Unhealthy state actions”

When the healthy targets in a zone fall below the threshold,
the load balancer sends traffic to all targets that are available
to the load balancer node, including unhealthy targets.

This increases the chances that a client connection succeeds,
especially when targets temporarily fail to pass health checks,
and reduces the risk of overloading the healthy targets.

- Target group health: Unhealthy state actions, AWS ALB
documentation
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-grou
p-health.html

Healthcheck
Improvements

● Short term history,
not only most
recent check

● Prevent the health
checks from being
subject to load
shedding

“The most important request
that a server will receive is a
ping request from a load
balancer.”

- David Yanacek

https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/

CDN Design ● Rebalance routing
weights to reduce
magnitude of traffic
shifts under DR

● Periodic automated
calculation of
weights based on
demand & capacity

● New automation to support
tier isolation

● Stronger container-level
isolation & resource limits

● Accelerated effort to add
autoscaling the transcoder &
web servers

Miscellaneous

Metastable failures occur when a system
fails under an increase in load, and can’t
self-recover due to a sustaining effect

Load shed by disabling healthchecks &
force “normal” traffic spread

Spread traffic across all services if there’s a
large % of failures to avoid overloading
surviving services

Takeaways

Questions?
THANK YOU FOR YOUR TIME

@lightweaver@hachyderm.io

