
Adaptive Concurrency Control
for Mixed Analytical Workloads

Dan Kleiman
March, 2023



At Klaviyo, we do targeted messaging, data integrations, and analytics



Analytics via APIs, Dashboards, and Reports

Which email domains 
have the best open 
rates?

Who are my most 
engaged customers?

How much revenue 
did my last campaign 
generate?



Fast, Flexible
Query Services



Mixed workloads running on the same “shared calculator”



Healthy request processing for thousands of requests per second



Unhealthy request processing - waves of congestion



“My workload hasn’t changed. Why are my requests suddenly timing out?”



Better way to keep our service healthy for all our users?



Metrics Service
Request Flow



Metrics Service Request Flow



Metrics Service Request Flow - gRPC Server



Request Queuing and 
Concurrency



Healthy State - Queuing Balanced with Processing

4 requests in the queue,
4 second deadline each,
processing 1 request per second,
no timeouts



Unhealthy State - Queue Depth Exceeds Processing Rate

8 requests in the queue,
4 second deadline each,
processing 1 request per second,
last 4 requests to arrive time out



Unhealthy State - Processing Rate Slows Down

4 requests in the queue,
4 second deadline each,
2 seconds to process a request,
last 2 requests to arrive time out



Concurrency is nothing more than the number of requests a system can 
service at any given time and is normally driven by a fixed resource such 
as CPU. 

A system’s concurrency is normally calculated using Little’s law, which 
states: For a system at steady state, concurrency is the product of the 
average service time and the average service rate (L = 𝛌W). Any requests 
in excess of this concurrency cannot immediately be serviced and must 
be queued or rejected. With that said some queueing is necessary as it 
enables full system utilization in spite of non-uniform request arrival and 
service time.

Systems fail when no limit is enforced on this queue, such as during 
prolonged periods of time where the arrival rate exceeds the exit rate. As 
the queue grows so will latency until all requests start timing out and the 
system will ultimately run out of memory and crash. If left unchecked 
latency increases start adversely affecting its callers leading to 
cascading failures through the system.

from Netflix’s Performance Under Load

https://netflixtechblog.medium.com/performance-under-load-3e6fa9a60581


Accept or Reject
the Next Request?



Accept or Reject Before Queuing - Load Shedding

3 requests in the queue,
4 second deadline each,
processing 1 request per second,
accept or reject next request?



Accept or Reject Before Queuing - Load Shedding

4 requests in the queue,
4 second deadline each,
processing 1 request per second,
accept or reject next request?



Load Shedding at the Cluster Level



Load Shedding and Concurrency Control

1. How many requests are we already 
processing – inflight requests?

2. What our maximum number of requests we 
can process at once – concurrency limit?

3. If inflight request count < concurrency limit, 
accept the new request.

4. Otherwise, reject it.



Adaptive 
Concurrency Control



Adaptive Concurrency Control - Measuring Latency



Adaptive Concurrency Control - Record, Recalculate, React

1. Record latency (RTT) of each 
request

2. Calculate aggregate latency over a 
period of time

3. Adjust concurrency limits based 
on the aggregate latency value



Adaptive Concurrency Control - AIMD Algorithm

Additive Increase

When we are within our latency tolerance, we can 
increase the concurrency limit by 1.

Multiplicative Decrease

When we cross the latency threshold, we 
decrease the concurrency limit by a backoff 
multiplier.



Python implementation of Netflix’s java version

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java


Python implementation of Netflix’s java version

Backoff Condition

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java


Python implementation of Netflix’s java version

Possible Increase Condition

https://github.com/Netflix/concurrency-limits/blob/master/concurrency-limits-core/src/main/java/com/netflix/concurrency/limits/limit/AIMDLimit.java


“My workload hasn’t 
changed…”



Adaptive Concurrency Control - Partition Limits

After we derive a new Global Limit, we 
calculate Partition Limits as percentages of 
the Global limit.

Any caller can be mapped to a Partition.

Partition Limits guarantee throughput 
allocations on a per caller basis.



Going Live…



RTT increasing from 100ms to 400ms is a signal that we’re slowing down. 
Need to accept fewer new requests.



Reducing the limit in response to increased latency allows the system to recover gracefully.



Changes in RTT per server pod vary based on the query mix, 
so latency can vary considerably across the cluster.



When things did get bad? No more congestion, just spikes.



Any Questions?Thank you!

Ask me more @Dan_KleimanBlog post at klaviyo.tech


