
The best SREs seem to be the ones without the
title -- and what we can do about it?

Kishore Jalleda - unStruct.ai

To make it clear: this talk is not about who is better :-)

 ______ ______ ______
\-_(;-;)_-/ \-_(;-;)_-/ \-_(;-;)_-/
 || || ||
 / _/_ _/_

 ______ ______ ______
\-_(;-;)_-/ \-_(;-;)_-/ \-_(;-;)_-/
 || || ||
 / _/_ _/_

We write more code;
we are the better
SREs!

What a joke. We run
production; we are
the best!

Let's start with a real-world example

A ??? in the east coast causes a global SEV1

● An issue, which recovered in minutes, caused a cascading failure and partial outage of a

distributed app.

● Failure symptoms pointed to the wrong teams causing multiple reassessments and delays.

● Insufficient alerting and platform observability made it hard to pinpoint the root of the

problem.

Multiple_ReassigmentsInsufficient_Platform_Observability

Total teams involved in incident response.

7
(;-;)/ _(;-;)_/ _(;-;)_/ _(;-;)_/ _(;-;)_/ _(;-;)_/ _(;-;)_/

 || || || || || || ||

 __/__ __/__ __/__ __/__ __/__ __/__ __/__

(;-;)/ _(;-;)_/ _(;-;)_/ _(;-;)_/ _(;-;)_/

 || || || || ||

 / _/_ _/_ _/_ _/_

 (;-;)/ _(;-;)_/ _(;-;)_/

 || || ||

__/__ __/__ __/__

(;-;)/ _(;-;)_/

 || ||

 _/__ __/__

 (;-;)/ _(;-;)_/ _(;-;)_/

 || || ||

 _/__ _/__ _/__

(;-;)/ _(;-;)_/

 || ||

_/__ _/__

(;-;)/ _(;-;)_/

 || ||

_/__ _/__

Eng Team 2

Eng Team 1

Other Eng Team 1

Other Eng Team 2

Basic Incident Metadata

TTR: <1 hour.

Participants: 20+

Toil~: (20 x 2 TTR + 20 x1 PIR +
10 X 2 PIT) ~= 80 hours.

Advanced Metadata

No_of_reassignments: 4

Amount_of_misalignments: 2

No_of_adhoc_debuggings: 5

No_of_frustrated_people: 20

No_of_tools_that_did_not_wo
rk_during_mitigation: 3

Triage Team

SRE Team

Internal Customer
Team

Eng Team 1 SRE Team

"Is the platform
healthy"?

R/T Conversations during the incident

Let me look

Eng Team 2 Broadcast

Things look fine
from our end; no
alerts fired

Eng Team 1 SRE Team

I wonder if there
was a ??? issue

I don't see ???
dashboards; it'd be nice
to have that handy

Could you run
some
diagnostics?

Eng Team 2 Partner Eng Team 3
Investigation will
take time

R/T Conversations during the incident

This is not a
SEV1. BTW.

Other Eng Team 1 Broadcast

Well, these failures
can happen anytime

SRE Team BU specific

360 dashboard
did not show any
issues

Customers are welcome
to attend RCA meeting

Filed a partner
RCA ticket with
the team

Incident still not
acked

Any guesses on what the issue was?

Any guesses on what the issue was?

It's the Network.

The issue was a fiber cut in a data center.

Here's how this could have gone better (Hypothetically)

Hypothetical Result: Total time spent less than 30 minutes, with a handful of folks. Not 20+.

Initial diagnosis

"is the
platform
healthy?"

Cause Found

Bad link from the
fiber cut.

Incident
mitigated after
an app tier
restart

 Debrief

Add resilience to
service-to-service
calls

Loop Closed

Cadence exists
for managing
risks.

Loop closed in a
few weeks.

Paperwork Filed

File a partner
RCA ticket with
network.

Analysis of 1247 headline news and public postmortem
reports, that detail 597 unplanned outages that
occurred within a 7-year span.
https://ucare.cs.uchicago.edu/pdf/socc16-cos.pdf

The_Problem:
Why does the cloud stop computing?

Hardware
Power

Unknown

CVE
Insiders
User Errors

Network
Storage
Database
DNS

Change
Upgrade
Bugs
Config
Human

Load
Dependencies

Platform
Bad Arch

Only Y% of incidents can be mitigated
immediately

based on a study at Microsoft:
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_ese
cfse2020_towards.pdf

Y = ?
Any guesses?

https://ucare.cs.uchicago.edu/pdf/socc16-cos.pdf
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_esecfse2020_towards.pdf
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_esecfse2020_towards.pdf

Analysis of 1247 headline news and public postmortem
reports, that detail 597 unplanned outages that
occurred within a 7-year span.
https://ucare.cs.uchicago.edu/pdf/socc16-cos.pdf

The_Problem:
Why does the cloud stop computing?

Hardware
Power

Unknown

CVE
Insiders
User Errors

Network
Storage
Database
DNS

Change
Upgrade
Bugs
Config
Human

Load
Dependencies

Platform
Bad Arch

Only 90% of incidents can be mitigated
immediately

based on a study at Microsoft:
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_ese
cfse2020_towards.pdf

Y = 90

https://ucare.cs.uchicago.edu/pdf/socc16-cos.pdf
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_esecfse2020_towards.pdf
https://www.cse.cuhk.edu.hk/lyu/_media/conference/zchen_esecfse2020_towards.pdf

Three major patterns in those 10% of the incidents

Pattern #1:

Service/Resource

dependency graph is

inadequate

Pattern #2:

Failure’s symptoms

insufficient to point to the

responsible service team

Pattern #3:

Long time to identify

possible causes and impact

scope

Platform_is_complex

Too_long_to_detect

Who_to_call?Service_dependancy_map

Multiple_assignments

 What_alerts_to_fire?

Who are almost always called for help?

Mary or Bob from that SRE-like team.

As a result of this complexity, Mary and Bob from that SRE-like team, or that central service are
almost always called for help, if the failure symptoms are hard to pinpoint to a possible cause or a
team.

Leading to burnout, frustration and productivity losses.

How did we get here?
Contributing Factors

Contributing_Factor_1:

Lack of understanding of what the true spirit of SRE is, leading to resource misallocation, inefficiencies and wasted
efforts.

Contributing_Factor_2:

IC/Leadership misalignment; organizational politics leading to anti patterns and wrong incentives.

Contributing_Factor_3:

Tooling built by non practitioners, leading to low adoption, ROI and efficacy. External tools can do a better job to make
things better; most seem to look and feel the same.

2011

DevOps & PE
(embedded model)

2023

Let's do something
moment for the future

of the discipline.

2005

Ops & Silos

2029

In slide 28.

2016

FOMO period. I need an
SRE team now.

Contributing_factor #1:
What is SRE?

Lack of understanding of what SRE
truly is, contributing to the problem.
I blame it on the SRE book ;) (jk).

Mgmt 1.0

Tech figuring out
management.

2005

Good times; Lean,
mean times

Good times. Tech
started to boom.
People worked hard.

2011

Multiple layers &
Hierarchies

I need 3 layers under
me to manage 20
people. Or a VP/Dir
having 2 directs.

2017

(SRE) Management
2.0 Definition Time

Code will be the
conduit between ICs
and Managers.

2023

This one is tricky.
But.

The era of pure people
manager roles might
be over. Time to act
now().

2029

Contributing_factor #2 (What is SRE?):
Org Politics and IC/Leadership Misalignment

This period is likely when
some bad decisions were
made with hiring, vision and
mission for SRE.

Contributing_factor #3:
Incomplete SRE Tooling

Just for fun exercise:
What if the SRE book was instead a…?

Any guesses?

Contributing_factor #3:
Incomplete SRE Tooling

Just for fun exercise:
What if the SRE book was instead a…?

Any guesses?

an…

SRE (SaaS) Platform

That would have been nice ;-)

2005

Many were born during
this period

On-call scheduling &
Observability, ITIL, Bug

Tracking, etc.

2011

FOMO Moment

Enterprise SaaS bloat.

2017

Crowded Market

Most seem to look and
feel the same.

2023

Most will likely be
extinct.

Unless you focus on
real problems and real

solutions.

2029

Contributing_factor #3:
Incomplete SRE Tooling

Most seem like they are working on those 90% use cases - But why?
● N+ variations of Paging People

● Etc.

● Etc.

{N} - left to your interpretation ;).

If you were to replicate a tool, at least add your secret sauce :).

Contributing_factor #3:
Incomplete SRE Tooling

Practical Solutions

#1:
"Platform

Competence"

#3:
SRE

Management
2.0

#4:
Next-Gen
Tooling

#2:
More Coding

"Platform
Competence"

Capacity,
Cost & Risk

Mgmt

Build &
Release

IcM/IrM
Tooling &
Cadence

Observability,
Monitoring &

Alerting

Practical_solution #1:
Define what SRE is to you;
Structure your teams accordingly

DR, BCP &
HA

Practical_solution #1:
"Platform Competence"

What is "Platform Competence"?

It is the ability to answer one simple question: "Is the platform healthy?"

Platform, in this context is the complex tree of dependencies that are required to build and operate your app/service,
including but not limited to network, storage, databases, people, service owners, process, service/resource dependencies,
middleware, abstractions, observability, monitoring, CI/CD, (L)LM Infra; and other components, that are needed to reliability,
efficiently and securely operate an online service.

Note: Term platform competence not coined by me; it was cloned by someone (or a group of people) on my team at Microsoft.

Practical_solution #1:
"Platform Competence"

What is "Platform Competence"?

More importantly, it is something AI will take much, much longer to replicate, given the non-deterministic
attribute of the nature of work it entails - which is having the ability to connect complex relationships, among
the sea of abstractions and frameworks upon which modern software is built.

Making your platform more observable is a hard problem.

"His awesome presentation on the future of programming states that in ~3 yrs, an AI robot engineer will cost < $10 per month and will do everything an engineer can today."

- Source: LinkedIn.

Note: Term not coined by me. It was by someone (or a group of people) on my team at Microsoft in 2018.

Practical_solution #2:
Coding Goals for Everyone

Everybody needs to code (to a varying degree, of course) -- even leaders. This is for developing
empathy, stepping up and assisting the team when needed, for proper rep at promo time) -- with the
macro goal of creating a true SRE culture where the practitioners can focus on platform competence.
Start with some official coding goals/KPIs.

Need more management and leadership participation on the front lines -- and attending more
post-incident reviews.

Practical_solution #2:
Toil Tracking and Reporting

Toil is evil

And should not be tolerated; it must be properly tracked and taken seriously by management, to free up
time for coding and other things that matter.

Mindset shift

SREs must learn to say no and share the love; must be comfortable enforcing SLOs and error/alert/toil
budgets. Again, so they can focus on things that matter.

Practical_solution #3:
(SRE) Management 2.0

1

Manager/Skip/Corp/World
Alignment
Don't be oblivious. Align with your Boss,
Boss' boss, the corp and the world.

3

Evangelize/Manage your team's
products/tools/Projects
If you are not running, marketing and selling all
the good stuff your team does, you are not
doing your job well. Also, bring fresh ideas in.

5

Review your Teams' Code
You are more prepared for a good rep at
the table during promo.You also stay
sharp and contribute to the strategy.

2

Write Code
Unless you like rust. Not the

programming language; the other rust.
You will also be so much more

empathetic to your team's needs

4
Continuous

Performance/People
Management using tools

Data collection and analysis will help.
Also Hiring.

Also, flatter orgs. Please. A clueless VP/Dir with 2
direct reports isn't going to cut it anymore.

Practical_solution #4: Next-Gen SRE Tooling for the Enterprise

$XM in Potential Savings; -50% in Toil

Observability & Analysis of Unstructured data

Observability of your Platform

Opinionated Domain Cadence

Human-Centric Design & Human factors

(Async) Workflow Orchestration

NLTs & Knowledge Graphs

ATTR_1

ATTR_3

ATTR_2

ATTR_5

ATTR_4

ATTR_6

Practical_solution #4: Next-Gen SRE Tooling for the Enterprise

+50% Productivity; -60% Stress

NLP-Based Design

Scalable, Multiplicative Actions.

"Collaborative Interplay and Synchronization" *

Context Modeling & Situational Awareness

Asset/Attribute Correlation Mining & Intelligence

Inclusive Postmortems/PIRs

ATTR_7

ATTR_9

ATTR_8

ATTR_11

ATTR_10

ATTR_12

* - source:

http://rave.ohiolink.edu/etdc/view?acc_num=osu1593661547087969

http://rave.ohiolink.edu/etdc/view?acc_num=osu1593661547087969

2005

Servers
Code: Mostly concrete
Arch: Monolith
SRE: On Call

Cloud
Code: Abstractions Begin
Arch: Monolith
SRE: On call and/or embedded

2011

2017

(Micro) Services / K8s / Docker
Code: Abstractions Overload
Arch: (Micro) Services
SRE: Several flavours w/ multiple
layers

2023

Generative AI: ChatGPT, Etc.
Code: Abstractions Max
Arch: (Micro) Services
SRE: Define what SRE is for your
org.

2029

Generative AI -> Orchestrator
AI -> Full-Stack AI
Code: AI with a persistence layer.
Arch: Full-stack AI
SRE: Everybody is a platform
engineer. No more Dev or Ops
delineation.

Future of SRE

One last question

Whose job will it be to fix things when AI becomes unreliable or has an outage?

One last question

Whose job will it be to fix things when AI becomes unreliable or has an outage?

It's going to be the job of the SRE to fix things.

But, we need the right skills: "Platform Competence"

My attempt to contribute to the future of our industry

Building the Next-gen SRE/Platform Tooling

AI-Infused Process Orchestration & Observability for Incident Management.

I am looking to onboard Customers.5

Q&A

Key takeaways Recap:
1. Define what SRE is -- to you; not what it meant for Google.
2. "Platform Competence" and professions like SRE/Platform Eng potentially becoming even more

valuable with the rise of AI. Prereq is coding.

3. Next-Gen, Human-Centric (SRE/Platform) Tooling that can dramatically increase situational

awareness (everything from detection, diagnosis, toil tracking, analysis, repair, escalations, etc.).

4. Management/Leadership <=> IC Alignment via Code; more leaders at the front lines; (re)define

what it means to a manager/leader in 2023 and beyond.

5. If you haven't already done so, learn to leverage AI to advance the profession.

