
Logs Told Us It Was DNS
It Felt Like DNS
It Had To Be DNS

It Wasn’t DNS

Elijah Andrews, Hemanth Malla
2023-03-21, SREcon23 Americas, Santa Clara

Hemanth Malla
Software Engineer

Datadog

Who are we?

Elijah Andrews
Software Engineer

Datadog

@hemanthmalla@elijahca
2

TitleDatadog

Over 600 integrations
Over 5,000 employees
Over 23,000 customers
Runs on millions of hosts
Tens of trillions of events per day

Tens of thousands of nodes
Hundreds of thousands of pods
100s of k8s clusters with 100-4000
nodes
Multi-cloud
Very fast growth

3

Kubernetes primer
● pods are scheduled on nodes

● applications run in pods

● each pod has a unique IP address

● Cilium is our Container Network Interface (CNI)

● Cilium glues node, pod, and AWS networking together

4

How it all started

5

Applications involved

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

6

Metrics service errors during rollouts
Error rate (server / client)

Latency (p90 and p99)

7

It's always DNS

Logs told us it was DNS

8

It's always DNS

Logs told us it was DNS

It looked like DNS

9

It's always DNS

Logs told us it was DNS

It looked like DNS

It had to be DNS

10

It's always DNS

Logs told us it was DNS

It looked like DNS

It had to be DNS

Right?

11

Chapter 1: DNS

12

Applications involved

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

13

Applications involved

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

Query
errors

Query
errors

14

Applications involved

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

Query
errors

Query
errors

DNS
errors

15

DNS setup

node-local-dns Cluster DNS Route53

Metrics Service

Cache
Forward

UDP

TCP

Cache
Authoritative for cluster
Forward

Kubernetes Node

16

Kubernetes cluster

DNS setup

node-local-dns Cluster DNS Route53

Metrics ServiceDNS
errors

Cache
Forward

UDP

TCP

Cache
Authoritative for cluster
Forward

Kubernetes Node

17

Kubernetes cluster

DNS setup

node-local-dns Cluster DNS Route53

Metrics ServiceDNS
errors

Cache
Forward

UDP

TCP

Cache
Authoritative for cluster
Forward

Kubernetes Node

18

Kubernetes cluster

Node-Local-DNS (NLD)

ran out of memory (OOM killed)

during rollouts

Should *never* happen

NLD Memory per pod on Metrics Service hosts (and limit)

19

Node-Local-DNS (NLD)

NLD Memory per pod on Metrics Service hosts (and limit)

max_concurrent is working

Sizing is wrong

20

Node-local-dns, 64MB => 256MB

NLD Memory per pod on Metrics Service hosts (and limit) Metrics Service Error rate (server / client)

No more OOM-kills

But not any better for Metrics Service

21

Too many queries at startup?
Max_concurrent: 1000

Upstream queries: ~5ms

=> NLD should do > 200k rps

=> with <400 rps we hit max_concurrent

What's happening?

22

Too many queries at startup?

Upstream marked unhealthy

Upstream is TCP

Connections are reused

but expire=10s

NLD can't create connections?
23

Why we hit max_concurrent

● NLD can't establish connections to upstreams

● The Forward plugin has a 5s timeout by default

● Incoming queries occupy a query slot for 5s

=> We hit max_concurrent=1000 with only 200rps

24

m5.4xlarge

Max: 10Gb/s

Sustained: 5Gb/s

=> looks ok

Networking issues?

Throughput (Gb/s) on Metrics Service nodes (+: Received / -: Sent)

25

But we are dropping packets

Microbursts?

=> Elastic Network Adapter (ENA) metrics

Networking issues?

m5.4xlarge

Max: 10Gb/s

Sustained: 5Gb/s

=> looks ok

Throughput (Gb/s) on Metrics Service nodes (+: Received / -: Sent)

TCP retransmits on Metrics Service nodes

26

Status
● DNS errors in Metrics Service on rollouts

● Node-local-DNS can't establish connections

=> Network issue?

27

Chapter 2: AWS Networking

28

We are saturating the interface

But no correlation with errors

Are we bursting over the instance limits?

ENA: Bandwidth exceeded (+:in / -:out)

Metrics Service Error rate (server / client)

29

Are we bursting over the instance limits?

conntrack allowance exceeded?

ENA: Conntrack exceeded

Metrics Service Error rate (server / client)

30

aws.ec2.conntrack_allowance_exceeded

The number of packets dropped because connection tracking
exceeded the maximum for the instance and new connections could
not be established. This can result in packet loss for traffic to or from
the instance

Connection tracking is required for security groups (stateful)

31

Let's test with network optimized instances

blue/yellow => m5.4xlarge

purple/grey (~0) => m5n.4xlarge

Promising!

ENA: Bandwidth exceeded

32

Let's test with network optimized instances

No impact on

- Conntrack

- Metrics Service errors / latency

m5.4xlarge

m5n.4xlarge

33

What about bigger instances?
m5.4xlarge

m5.8xlarge

Much better!

TCP retransmits on Metrics Service nodes

34

Conntrack limits?

From AWS

● Hypervisor conntrack can track hundreds of thousands of flows

● m5.8xlarge : can track 2x the flows compared to m5.4xlarge

● m5n.4xlarge : same as m5.4xlarge

=> Makes sense based on our tests

35

How can we saturate this conntrack?

Stable state: ~13k connections

Rollouts: ~60k

Pretty high but 60k vs X00k ????

36

VPC Flow Logs

● Capture IP flow information on Elastic Network Interfaces (ENI)

● Flow level: 5-tuple, 2 flows per TCP connection

● Flow record: 5 tuple, bytes, packets, TCP flags...

● Aggregated every 1mn and delivered to S3

● Not always complete

● Huge amount for large VPCs (we filtered with Athena)

37

Flows from a Metrics Service node

Old pod IP disappears after ~60s

Spike in flows at pod deletion

50k flows in 1mn feels very high

38

What about ingress flows?

Ingress flows should ~match Egress

Very weird second spike

What are these flows?

39

Zoom on ingress flows to old IP

None: already established

FIN: terminating

SYN: reconnect attempts: 130k over 90s!

40

What about egress?

RST match first SYN spike

What about this second spike?

41

Why do we get RST for a few seconds only?

● Metrics Service performs a grpc.GracefulStop with 10s timeout

○ Server stops accepting new connections

○ Server waits for existing RPC to finish

○ Server tells clients to disconnect (HTTP2 GoAway)

● During these 10s, incoming connection attempts get an RST

● After these 10s, the pod is deleted and its IP is not bound by anything

42

Where are these attempts coming from?
Only a few IPs => Alerting Engine

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

43

Where are these attempts coming from?

Web App

Alerting
Engine

Metrics Index

Metrics Store

Metrics
Service

#conntrack entries on Alerting Engine nodes

Seems to confirm!

44

Status
● DNS errors in Metrics Service on rollouts

● Node-local-DNS can't establish connections

● AWS conntrack for instance is saturated

● Alerting Engine is SYN-Flooding Metrics Service on rollouts

=> Why don't we see these connections on Metric Service Nodes?

45

Chapter 3: Node Networking

46

Cilium Architecture

47

Source : Cilium documentation

Routing on nodes

Metrics Service Node

Metrics Service
IP: 10.x.y.z

vethX

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

Cilium agent

Cilium
Operator

48

Routing on nodes

Metrics Service
IP: 10.x.y.z

vethX

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

Cilium agent

Cilium
OperatorMetrics Service Node

49

Routing on nodes

Metrics Service
IP: 10.x.y.z

vethX

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

Cilium agent

Cilium
OperatorMetrics Service Node

50

Stable state

Metrics Service
IP: 10.x.y.z

vethX

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ens6
(pods)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

Alerting pod
IP: 10.a.b.c

SYN

Alerting node conntrack
10.a.b.c:portN => 10.x.y.z:6415 SYN

Hypervisor conntrack
10.a.b.c:portN => 10.x.y.z:6415 SYNNode conntrack

10.a.b.c:portN => 10.x.y.z:6415 SYN

Connection tracked with SYN-RECV state

Metrics Service Node

51

Stable state

Metrics Service
IP: 10.x.y.z

vethX

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ens6
(pods)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

Alerting pod
IP: 10.a.b.c

SYN

Alerting node conntrack
10.a.b.c:portN => 10.x.y.z:6415 EST

Hypervisor conntrack
10.a.b.c:portN => 10.x.y.z:6415 ESTNode conntrack

10.a.b.c:portN => 10.x.y.z:6415 EST

SYN/ACK

Connection transitions to ESTABLISHED state

Metrics Service Node

52

What happens on pod deletion?

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

Metrics Service Node

53

What about traffic to old IP?

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

?

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

SYN

Metrics Service Node

54

Let's simulate

nodeA:~$ nc -vz 10.x.y.z 12345

Delete pod with IP 10.x.y.z on nodeB and attempt to connect from nodeA

Connection attempt

55

Let's simulate

nodeA:~$ nc -vz 10.x.y.z 12345

Delete pod with IP 10.x.y.z on nodeB and attempt to connect from nodeA

Connection attempt

nodeB:~$ sudo tcpdump -pni ens6 "port 12345"
listening on ens6, link-type EN10MB (Ethernet), capture size 262144 bytes
08:28:52.086251 IP 10.a.b.c.51718 > 10.x.y.z.12345: Flags [S], seq 4126537246, win 26883, options [mss
8961,sackOK,TS val 2002199904 ecr 0,nop,wscale 9], length 0

On nodeB => SYN without an answer

56

Let's simulate

nodeA:~$ nc -vz 10.x.y.z 12345

Delete pod with IP 10.x.y.z on nodeB and attempt to connect from nodeA

Connection attempt

nodeB:~$ sudo tcpdump -pni ens6 "port 12345"
listening on ens6, link-type EN10MB (Ethernet), capture size 262144 bytes
08:28:52.086251 IP 10.a.b.c.51718 > 10.x.y.z.12345: Flags [S], seq 4126537246, win 26883, options [mss
8961,sackOK,TS val 2002199904 ecr 0,nop,wscale 9], length 0

On nodeB => SYN without an answer

$ ip route get 10.x.y.z from 10.a.b.c iif ens6
RTNETLINK answers: Invalid cross-device link

Where would the SYN be routed to? => Reverse Path filter!

57

Let's simulate

nodeA:~$ nc -vz 10.x.y.z 12345

Delete pod with IP 10.x.y.z on nodeB and attempt to connect from nodeA

Connection attempt

nodeB:~$ sudo tcpdump -pni ens6 "port 12345"
listening on ens6, link-type EN10MB (Ethernet), capture size 262144 bytes
08:28:52.086251 IP 10.a.b.c.51718 > 10.x.y.z.12345: Flags [S], seq 4126537246, win 26883, options [mss
8961,sackOK,TS val 2002199904 ecr 0,nop,wscale 9], length 0

On nodeB => SYN without an answer

$ ip route get 10.x.y.z from 10.a.b.c iif ens6
RTNETLINK answers: Invalid cross-device link

Where would the SYN be routed to? => Reverse Path filter!

Oct 28 08:25:54 nodeB kernel: IPv4: martian source 10.x.y.z from 10.a.b.c, on dev ens6

Sure enough, martian packet warning in kernel logs

58

Reverse Path filtering

● Security feature from the kernel to prevent IP spoofing

○ If return path uses incoming interface accept the packet

○ Otherwise drop it

● Log these events : "Martian Packets"

● Loose mode: only drop if there is no return route

59

Back to our node

ens6
(pods)

ens5
(node)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

Drop

Reverse path filter
Return path? => ens5
=> Martian packet
=> Drop

main route table
0.0.0.0/0 => ens5
10.x.y.z => vethX

ip rules
to other pods => main route table
from 10.x.y.z => ens6 route table

Oct 28 08:25:54 kernel: IPv4: martian source
10.x.y.z from 10.a.b.c, on dev ens6

Metrics Service Node

60

What about conntracks?

main route table
0.0.0.0/0 => ens5

ens6
(pods)

ENI IPs:
- 10.x.y.z
- ….

ens6 route table
0.0.0.0/0 => ens6

ip rules
to other pods => main route table

Drop

Reverse path filter
Return path? => ens5
=> Martian packet
=> Drop

Alerting pod
IP: 10.a.b.c

SYN

Alerting node conntrack
10.a.b.c:portN => 10.x.y.z:6415 SYN
…
10.a.b.c:portZ => 10.x.y.z:6415 SYN

Hypervisor conntrack
10.a.b.c:portN => 10.x.y.z:6415 SYN
…
10.a.b.c:portZ => 10.x.y.z:6415 SYN

Repeated for all Alerting clients

Node conntrack

Connections in SYN-RECV state expire after 60s

Metrics Service Node

61

But, we use "loose" mode

● rp_filter = 2 => loose mode
● Loose + default route (ens5) => we should not drop
● What's happening?

$ ip route get 10.x.y.z from 10.a.b.c iif ens6
RTNETLINK answers: Invalid cross-device link

$ sysctl net.ipv4.conf.ens6.rp_filter
net.ipv4.conf.ens6.rp_filter = 2

62

Let's have a look
https://github.com/torvalds/linux/blob/master/net/ipv4/fib_frontend.c#L344

63

https://github.com/torvalds/linux/blob/master/net/ipv4/fib_frontend.c#L344

Let's have a look

64

Let's have a look

65

Let's have a look

66

Let's have a look

ifa_list => List of IPs associated with device

67

Interface IP check is made after evaluating
loose mode

But pod interfaces don't have IPs assigned
Let's test

$ ip route get 10.x.y.z from 10.a.b.c iif ens6
RTNETLINK answers: Invalid cross-device link

Expected, Let's now give ens6 a random IP unrelated to our network

$ ip addr add 192.168.1.1/32 dev ens6

$ ip route get 10.x.y.z from 10.a.b.c iif ens6
10.x.y.z from 10.a.b.c via 10.m.n.1 dev ens5
 cache iif ens6

We are hitting reverse path filtering because the pod interface has no IP…
- Recent versions of Cilium give it an IP
- If it has an IP, SYN are still dropped but conntrack sizes are consistent (and no martian packet warnings)
- We contributed a PR to make old IPs unreachable and send ICMP errors to clients

https://github.com/cilium/cilium/pull/18505
68

https://github.com/cilium/cilium/pull/18505

Status
● DNS errors in Metrics Service on rollouts

● Node-local-DNS can't establish connections

● AWS conntrack for instance is saturated

● Alerting Engine is SYN-Flooding Metrics Service on rollouts

● Conntracks are not consistent because Reverse Path Filtering drops SYNs

● We hit Reverse Path filtering because of an edge case in the kernel

=> Why do we have so many SYNs?

69

Chapter 4: gRPC client configuration

70

2 questions

1. Why were clients sending SYN requests for so long?

2. Why were clients sending SYN requests so frequently?

71

RPC setup

Alerting
Engine

Metrics
Service

gRPC (client-side
lb)

Route 53

1. Service Discovery
2. Query

Metrics
ServiceMetrics

ServiceAlerting
EngineAlerting

Engine

DNS

72

DNS propagation time during Rollouts

Alerting
Engine

Metrics
Service

Route 53

DNS
Metrics
Service

Metrics
Service
deleted

Alerting
EngineAlerting

Engine

external-dns
Watch Metrics Service podsMaintain Metrics Service records

Cluster A Cluster B
73

Cluster A

Alerting Node

DNS propagation time during Rollouts

Metrics
Service

Route 53 DNS

Metrics
Service

Metrics
Service
deletedAlerting

Engine

external-dns
10s
gRPC GracefulStop, 10s timeout
Only acts on kubelet delete

0-15s: Sync loop

TTL: 15s
NLD
TTL: 15s

Cluster B

?

74

Cluster A

Alerting Node

DNS propagation time during Rollouts

Metrics
Service

Route 53 DNS

Metrics
Service

Metrics
Service
deletedAlerting

Engine

external-dns
10s
gRPC GracefulStop, 10s timeout
Only acts on kubelet delete

0-15s: Sync loop

TTL: 15s
NLD
TTL: 15s

Cluster B

30s

gRPC min_time_between_resolutions:30s
=> Client has info after 30s or 60s

75

DNS propagation time during Rollouts

Deletion starts No client is using the Old IP Clients progressively
start using new IP

76

gRPC history at Datadog

● Originally, clients optimized for complex logic

○ DNS resolution in application code

○ One channel per backend IP

○ pick_first gRPC load balancing

● We changed the default to gRPC "standards"

○ Channels get a domain name and gRPC resolves

○ round_robin load balancing policy

○ This is when the issue started!

77

Alerting still had one channel per backend

Alerting Engine Pod

Application
code

IP 1

IP 2

IP N

1 client/channel per IP

APP LB

Metrics
Service 1

Metrics
Service 2

Metrics
Service N

78

Reconnection differences

● pick_first and round_robin have very different policies on connection failures

○ pick_first: do not attempt to reconnect until the application asks for it

○ round_robin: automatically attempt to reconnect using reconnect options

● when using pick_first, we used max_reconnect_backoff_ms=300 ms

● ~reasonable for on-demand reconnects

79

Does it add up?

Alerting
Engine * X000

reconnect every 0.3 s
= X0,000 SYN / sec
 to each Metric
 Service Pod!

80

The fix

81

Finally

Metrics Service pod replacements (rollout)

conntrack count for Alerting Engine

average DNS response time by Metrics Service pod (ms)

Metrics Service Error rate (server / client)

82

Lessons Learned

83

● Debugging this incident was long and painful but we learned a lot

● Sometimes it's not DNS

● Powerful abstractions leak in complex ways

● gRPC setup can be complex, making changes dangerous

● ENA metrics and VPC flow logs are extremely useful

● Required complex team efforts (thanks Laurent, Wendell, Matt,

Nayef!)

Lessons Learned

84

Thank you

See the blog post for more details: dtdg.co/not-always-dns

We’re hiring: datadoghq.com/careers/

elijah@datadoghq.com
hemanth.malla@datadoghq.com @hemanthmalla

@elijahca

85

mailto:elijah.andrews@datadoghq.com
mailto:hemanth.malla@datadoghq.com

86

