Fault Tree Analysis
Applied to Apache Kafka®
Agenda

The Challenge: Quantify Kafka Reliability

Introduction to Fault Tree Analysis

Kafka Fault Trees

 Availability

 Data Durability

Conclusion
The Challenge: Quantify Kafka Reliability
What are we trying to do?

Kafka is a “reliability tool”

Move data without lossiness

High stakes usage
Observability Data
Event Streaming
Change Data Capture
Why Quantify?

Determine probability of success

Find opportunities to trim cost
Defining SLOs

Need to define Service Level Objectives

Availability
Durability
Latency
Quantifying SLOs

Availability

What is the probability that writes or reads fail?

How long do we tolerate downtime?
Quantifying SLOs

Durability

What is the probability that we’ll lose data?

How much will we lose?
Quantifying SLOs

Latency

How long are transactions allowed to take?
Introduction to Fault Tree Analysis
What is Fault Tree Analysis?

Deductive Failure Analysis

Invented in 1962 for Minuteman I ICBM Launch Control System

Industry wide adoption

Aerospace

Military

Petrochemical

Et al.
Fault Tree Analysis: Event Symbols

- Basic
- Intermediate
- Transfer
Fault Tree Analysis: Gate Symbols

- OR
- AND
Fault Tree Analysis: OR Example

Write failure

RAID0

Disk failure

Disk1

Disk failure

Disk2

Disk failure

Disk3
Fault Tree Analysis: OR Example

4% probability of failure
Fault Tree Analysis: OR Example

4% probability of failure annualized

Write failure

Disk failure

Disk1

Disk2

Disk3
Fault Tree Analysis: OR Example

\[p(A \text{ “or” } B) = p(A) + p(B) - p(A) \times p(B) \]

Almost always small
Fault Tree Analysis: OR Example

12% chance of failure annualized
Fault Tree Analysis: AND Example
Fault Tree Analysis: AND Example

\[p(A \text{ and } B) = p(A) \times p(B) \]
Fault Tree Analysis: AND Example

99.9936% chance of success annualized
Fault Tree Analysis: AND Example

99.9936% chance of success annualized if we don’t remediate
Fault Tree Analysis: AND Example

99.999999996% chance of success if we remediate within 3 days
Fault Tree Analysis: AND Example

99.99999% chance of success if we remediate within 3 days
Fault Tree Analysis: AND Example

\[p(A \text{ and } B) = p(A) \times p(B) = (1 - e^{-p(A)*t}) \times (1 - e^{-p(B)*t}) \]

Where \(t = \text{time to remediate} \)

If \(p(A) \) and \(p(B) < 0.1 \), approximate to \(p(A) \times p(B) \times t^2 \)
Kafka Fault Trees
Availability

Can we write or read to a Kafka cluster?

Service Level Objective (SLO):

99.99% success rate per year
Availability

Write or read to single broker

Write-Read

Standalone Zookeeper Failure

SingleZookeeper

Broker failure

Broker

Disk Fails

Network partition

Other HW failure

OS Faults

Disk

Network

System

OS

4%

2%

1%

1%
Availability

- **Write or read to single broker**: 12.8% failure chance
- **Write-Read**:
 - **Standalone Zookeeper Failure**: 4.8% failure chance
 - **Zookeeper Cluster**
 - **Solid State Disk failure**
 - **SSD**: 0.8%
 - **Network partition**
 - **Network**: 2%
 - **OS Faults**
 - **OS**: 1%
 - **Other HW failure**
 - **System**: 1%
 - **Disk Fails**
 - **Disk**: 4%
 - **Network partition**
 - **Network**: 2%
 - **Other HW failure**
 - **System**: 1%
 - **OS Faults**
 - **OS**: 1%
Availability - Two brokers, single ZK
Availability - Collapse Host Faults

98.4% success chance
Availability - Multiple ZKs

99.4% success chance
Availability - Three Brokers

99.95% success chance
Availability - Summary

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Success Probability</th>
<th>Cost Per Nine*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone</td>
<td>87.2%</td>
<td>n/a</td>
</tr>
<tr>
<td>Two brokers, ISR=1, One ZK</td>
<td>98.36%</td>
<td>2</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Three ZKs</td>
<td>99.36%</td>
<td>2</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Five ZKs</td>
<td>99.36%</td>
<td>3</td>
</tr>
<tr>
<td>Three brokers, ISR=1, Three ZKs</td>
<td>99.95%</td>
<td>1.5</td>
</tr>
<tr>
<td>Three brokers, ISR=2, Three ZKs</td>
<td>99.36%</td>
<td>2.25</td>
</tr>
</tbody>
</table>

*Cost is computed in “disk units” / “number of nines”:
Kafka Broker Rotational Disk = .5
Zookeeper SSD Disk = 1
Lower is better
Availability - Broker SSD

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Success Probability</th>
<th>Cost Per Nine*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone</td>
<td>90.4%</td>
<td>1</td>
</tr>
<tr>
<td>Two brokers, ISR=1, One ZK</td>
<td>99.08%</td>
<td>1.5</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Three ZKs</td>
<td>99.77%</td>
<td>2.5</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Five ZKs</td>
<td>99.77%</td>
<td>3.5</td>
</tr>
<tr>
<td>Three brokers, ISR=1, Three ZKs</td>
<td>99.99%</td>
<td>1.5</td>
</tr>
<tr>
<td>Three brokers, ISR=2, Three ZKs</td>
<td>99.77%</td>
<td>3</td>
</tr>
</tbody>
</table>

* SSD Disk = 1
Availability - Broker EBS

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Success Probability</th>
<th>Cost Per Nine*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone</td>
<td>91.6%</td>
<td>1.5</td>
</tr>
<tr>
<td>Two brokers, ISR=1, One ZK</td>
<td>99.29%</td>
<td>2.25</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Three ZKs</td>
<td>99.82%</td>
<td>3.75</td>
</tr>
<tr>
<td>Two brokers, ISR=1, Five ZKs</td>
<td>99.82%</td>
<td>5.25</td>
</tr>
<tr>
<td>Three brokers, ISR=1, Three ZKs</td>
<td>99.99%</td>
<td>4.5</td>
</tr>
<tr>
<td>Three brokers, ISR=2, Three ZKs</td>
<td>99.82%</td>
<td>2.25</td>
</tr>
</tbody>
</table>

* EBS disk units:
EBS SSD Disk = 1.5

Assumption that EBS fails at .2%
Durability

What are the chances of losing data?

Service Level Objective (SLO):

99.999999% durability per year
Durability

We lose data when all hosts with replicas go down

Assumptions:

- 6TB per broker (2TB per disk w/ RAID)
- 70MB/s replication rate
- ~24 hours to replicate full broker
- We replace bad hosts almost immediately
Durability - Two brokers - One 6TB Disk

\[1 - e^{-p(A)*t} \times 1 - e^{-p(B)*t} \]
Durability - Add Raid0

99.9999% durability
Durability - Three brokers

99.99999999% durability
Durability

Assumption:

48TB per broker

70MB/s replication rate

~8 days to replicate full broker

We replace bad hosts almost immediately
Durability - Three brokers 24 disks

99.999% completeness
Durability - Summary

<table>
<thead>
<tr>
<th></th>
<th>Data completeness</th>
<th>Cost Per Nine*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone</td>
<td>99.99%</td>
<td>.125</td>
</tr>
<tr>
<td>Two brokers</td>
<td>99.999999%</td>
<td>.5</td>
</tr>
<tr>
<td>Two brokers RAID0</td>
<td>99.9999%</td>
<td>.22</td>
</tr>
<tr>
<td>Three brokers RAID0</td>
<td>99.99999999%</td>
<td>.15</td>
</tr>
<tr>
<td>Three brokers RAID0 - 48TB</td>
<td>99.999%</td>
<td>1</td>
</tr>
</tbody>
</table>

* Cost is computed in “disk units” / “number of nines”:
 Single non-raid disk = .5
 Raid0 = .167
 Zookeeper SSD Disk = 1
 Lower is better
Latency

FTA focused on failures
Latency is not an inherent failure
Experiment with worst-case scenarios
Conclusion
Tools and References

Fault Tree Models: github.com/afalko/fta-kafka

OSS tool to draw and compute models: github.com/rakhimov/scram

How Not to Go Boom: Lessons for SREs from Oil Refineries by Emil Stolarsky

Fault Tree Analysis - A History by Clifton A. Ericson II

Fault Tree Handbook with Aerospace Applications by Dr. Michael Stamatelatos and Mr. José Caraballo

Failure Trends in a Large Disk Drive Population by Eduardo Pinheiro, Wolf-Dietrich Weber and Luiz Andre Barroso

Solving Data Loss in Massive Storage Systems by Jason Resch

Failures at Scale and How to Ride Through Them by James Hamilton
Takeaways

FTA can be applied to:

- Kafka Availability and Durability SLOs
- Find cost savings
- Uncover decisions that reduce reliability
Further Work

Kafka on Kubernetes analysis

Improve **scram-pra**

Better FTA inputs via Distributed Tracing
Thank you!

github.com/afalko/fta-kafka

Andrey Falko <afalko@lyft.com>

Thank You