Deception Task Design in Developer Password Studies: Exploring a Student Sample

Alena Naiakshina
Anastasia Danilova
Christian Tiefenau
Matthew Smith

Symposium on Usable Privacy and Security (SOUPS), Baltimore, MD, USA 2018
Motivation

- Design of end-user studies
 - Ample experience
 - Best-practice knowledge

- Lacking knowledge for developer studies

- Further insights into why developers struggle with end-user password storage
Motivation

● Design of end-user studies
 ○ Ample experience
 ○ Best-practice knowledge

● Lacking knowledge for developer studies

→ Meta-level

● Further insights into why developers struggle with end-user password storage
Motivation

- Design of end-user studies
 - Ample experience
 - Best-practice knowledge

- Lacking knowledge for developer studies → Meta-level

- Further insights into why developers struggle with end-user password storage → Primary study
Meta-level

- Qualitative vs. quantitative approach
 - Extended study:
 - Why Do Developers Get Password Storage Wrong? A Qualitative Usability Study (CCS‘17)

- Deception
 - Primed group: request to store end-user passwords securely
 - Fahl et al.\(^1\) found no significant difference within the priming conditions in an end-user password study.

- Task length

\(^1\) Fahl et al. On the ecological validity of a password study. (SOUPS’13)
Qual vs. Quant Setup

1. Hypotheses (researcher 1)

2. 67 participants registered for the study

3. Condition assignment: framework & priming (balanced for programming experience)

4. 40 participants took part in the study

5. Study
 - Implementation task: 8 hours
 - Survey
 - Interview

 ● First 20 used for **qualitative analysis**
 ● Analysis by researchers 2 & 3
 ● Published at CCS’17

 ● All 40 used for **quantitative study**
 ● Analysis by researchers 1-4
Demographics

● 40 participants
 ○ 6 female, 31 male, 3 prefer not to say

● Students
 ○ 33 Computer Science, 6 Media Informatics, 1 other
 ○ 12 BSc, 26 MSc Students, 2 other

● Age: mean 25
Results - Primary study
Framework → functionality

- H - Framework has an effect on the likelihood of achieving functional solutions.

→ Not statistically significant

→ We only had a power of 0.17, so this effect is worth looking at in follow-up studies
Framework → security

- H - Framework has an effect on the security score of participants attempting security.

7 points at most

JSF
Min 2, Median 5.5, Mean 4.3, Max 6

Spring
Min, Median, Mean, Max 6
Framework → security

- H - Framework has an effect on the security score of participants attempting security.

→ Statistically significant before multiple testing correction

→ We think it is likely that a larger sample would confirm the trend that Spring participants earn higher scores than JSF participants.
Java experience

- Acar et al.¹ → programming language experience has an effect on the security of participants’ solutions

- H - Years of *Java experience* have an effect on the security scores.

 → Not statistically significant in our study

 → Our student sample had a much smaller range of programming experience

 → Suggests that it might not be necessary to balance programming experience when working with *students*.

¹ Acar et al. Security developer studies with github users: Exploring a convenience sample. (SOUPS’17)
Copy and paste

- Previous work:
 - “Because Stack Overflow contains many insecure answers, Android developers who rely on this resource are likely to create less secure code.”
 - “We show that 196,403 (15%) of the 1.3 million Android applications contain vulnerable code snippets that were very likely copied from Stack Overflow.”

1 Acar et al. You get where you're looking for: The impact of information sources on code security. (SP’16)
2 Fisher et al. Stack overflow considered harmful? The Impact of Copy & Paste on Android Application Security. (CoRR abs’17)
Copy and paste

Our results:

● **Significant positive effect** of copy/paste events

● All secure solutions came from participants who copied and pasted security code

● 0% of participants who did not copy/paste created a secure solution
Results - Meta-level
Priming hypotheses

H - **Priming** has an effect on the likelihood of participants **attempting security**.

<table>
<thead>
<tr>
<th>Primed group</th>
<th>Non-Primed group</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/20</td>
<td>2/20</td>
</tr>
</tbody>
</table>

→ **Statistically significant**
Priming hypotheses

H - **Priming** does not have an effect on **achieving a secure solution** once the attempt is made.

<table>
<thead>
<tr>
<th>Primed group</th>
<th>Non-Primed group</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/14</td>
<td>0/2</td>
</tr>
</tbody>
</table>

→ **Statistically significant before multiple testing correction**
Task length

● Short tasks
 ○ Common in previous work, straightforward, feasible
 ○ No distraction tasks, i.e., clear focus on security

● One-day time frame
 ○ Allows distraction tasks
 ○ 8 hours: longest time we could reasonably ask participants to remain in a lab setting
 ○ Full-screen capture, history of all code, copy/paste events, website history etc.

● Multi-day time frame
 ○ Trade-off between ecological validity and the ability to gather high-fidelity data
Task design

- Priming task
 - 14/20 interacted with security libraries/APIs
 - 6/20 did not attempt to add security → no interaction with security libraries/APIs

→ Shorter, API usability focused study

→ Discover usability problems of security APIs
Task design

- Deception task
 - 2/20 interacted with security libraries/APIs
 - 18/20 did not attempt to add security
 → no interaction with security libraries/APIs

→ Why do developers not add security without study countermeasures or being prompted.

→ More work needed to validate the ecological validity of deception in this context.
Deception task

- 2 attempted but failed
- 2 erroneously thought it was secure
- 2 security not part of the task
- 3 functionality more important
- 8 were not aware
- 3 no reason

Realistic behavior

Real world
 - Many password database compromises
Laboratory setting advantages

- You can monitor what participants google
 - 20/38 used Google when answering the survey
 - 6 framework-related topics
 - 14 password storage-related topics

- 4/16 non-primed participants without security attempts searched **how to store user passwords securely** while answering the survey

- 7/12 primed participants with secure solutions searched for **additional password storage security details** to answer questions of the survey
Quantitative vs. Qualitative

- Compared two frameworks with A/B test.
- We are confident that deception changes the behavior of participants dramatically.

Already...
- ...highlighted many of the problems faced by developers.
- ...delivered a good indication of priming effect.

We did not find much to add to the conclusions of the qualitative study!
Study design

- Many valuable insights can be gained without the need for larger sample sizes.

- Recruitment of participants biggest challenge.

- The extra 20 participants did not add much in the way of insights.

→ We recommend doing **qualitative studies** in order to investigate the **usability of APIs**!
Primings / Deception
Allows us to study two completely different aspects:

API usability vs. security awareness

Google
Our participants googled survey questions
Beware of knowledge questions!

Copy/Paste
Positive effect on the security of our participants’ code
Do more qualitative developer studies in lab!