Yank: Enabling Green Data Centers to Pull the Plug

Rahul Singh, David Irwin, Prashant Shenoy
University of Massachusetts Amherst

K.K. Ramakrishnan
AT&T Research
Data Center Reliability

- Infrastructure designed to be highly available
 - Applications expect stable servers
 - Highly redundant power infrastructure
 - Availability is expensive

- Alternative approach
 - Relax strict stability assumption
 - Design low-cost HA techniques to compensate
Transient Servers

- Transiency Scenarios
 - Spot instances in Amazon Cloud
 - Server downtime due to power outage
 - Use of intermittent renewables

- **New abstraction**: Transient Server
 - Unpredictable availability
 - Receive advance warning of termination
Yank Problem Statement

How to maintain application availability while allowing data centers to transparently use transient servers?

- Introduce Transient Server Abstraction
- Design Yank: System Support for Transient Servers
- Apply Yank to Green Data Centers
Supporting Transient Servers

- **Two Ways of Using Transient Servers**
 - Modify Application
 - *Easy* – Batch Applications
 - *Hard* – Interactive (Web) Applications
 - System Support

- **Yank: System Support for Transiency**
 - Given warning, transfer transient VMs to stable server
 - Must complete transfer within warning time
Strawman Approaches

- **Live Migration**
 - Xen Live Migration [NSDI 2005]
 - *Pros:* Low Overhead
 - *Cons:* Large Warning Time (~70-100secs)

- **High Availability (HA) Solutions**
 - Remus [NSDI 2008]
 - *Pros:* Low Warning Time
 - *Cons:* High Overhead, High Hardware Cost

HA

- Low Warning Time
- High Overhead

Live Migration

- High Warning Time
- Low Overhead
Yank’s Approach

- Yank Covers Entire Spectrum of Warning Time
 - Low Warning Time -> Equivalent to HA
 - High Warning Time -> Equivalent to Live Migration

- Adapts to Warning Time
 - Overhead depends on the warning time
Yank High-Level Design

- Transient Server
 - Transient VM1
 - Snapshot Manager
 - Transient VM2
 - Snapshot Manager

- Backup Server
 - Backup Engine
 - In-Memory Queues
 - Snapshots on Disk

- Stable Server
 - Restoration Service

Warning

Warning
Limit on dirty state sent within warning time

One option: one threshold
- Send when \(\text{size of dirty state} < \text{limit} \)

Alternative: two thresholds
- Upper threshold -> Synchronous send with buffering
- Lower threshold -> Asynchronous send with no buffering
Backup Engine

- Per-VM in-memory queues for receiving updates
 - Enables fast acknowledgements
 - Write VM memory state to disk in background
- Highly multiplexed
 - Reduces extra hardware/power required for Yank
Restoration service on stable server

1. Receives in-memory queue+snapshot in parallel
2. Applies in-memory queue to snapshot
3. Restores VM using hypervisor’s restoration command
Transient Servers in Green Data Centers

On-Site Renewables

On-Site Renewables

Grid Energy

Grid Energy

ATS

ATS

UPS (Smaller Capacity)

UPS

Transient Servers

Stable Servers
Experimental Setup

- Implementation
 - *Snapshot Manager* – modification to Remus in Xen
 - *Backup Engine* – user level Python and C code
 - *Restoration Service* – C code

- Cluster of Blade Servers
 - 4GB RAM, 2.13 GHz Processor

- Benchmark Applications
 - *TPC-W*: Online bookstore

- Renewable Energy generation
 - Solar/Wind Generation Traces from UMass Deployment
Exploiting Warning Time

TPC-W Data Transferred

- **Pre-Warning**
- **Post-Warning**

5 Warning Time (secs)

- 70x reduction in data transferred

TPC-W Response Time

- 20x improvement in response time with just 5 second warning

- 4GB backup server supports 15 transient VMS
Solar Power Driven Transiency

- Yank masks applications from transiency due to changing power availability
Conclusions

- Transient Servers
 - Servers that terminate after a warning
 - Applicable to many scenarios

- Yank
 - System support for transient servers
 - Virtualization-layer solution

- Evaluation
 - Low overheads – performance, hardware, power
 - Hide transiency due to renewable power
 - Ongoing Work: Apply to Amazon spot instances
Questions?